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Figure 1: Seal-3D: The first interactive pixel level NeRF editing tool. We design an interactive user editing method and
system Seal-3D, which achieves instant (≈1s) preview (left) by our novel pretraining strategy. High-quality editing results
can be further obtained by a short period (in 1 or 2 minutes) of finetuning. The editing results of our implemented editing
tools (right) are view-consistent with rich shading details (e.g. shadows) on the original surface (left).

Abstract

With the popularity of implicit neural representations,
or neural radiance fields (NeRF), there is a pressing need
for editing methods to interact with the implicit 3D mod-
els for tasks like post-processing reconstructed scenes and
3D content creation. While previous works have explored
NeRF editing from various perspectives, they are restricted
in editing flexibility, quality, and speed, failing to offer di-
rect editing response and instant preview. The key chal-
lenge is to conceive a locally editable neural representa-
tion that can directly reflect the editing instructions and up-
date instantly. To bridge the gap, we propose a new interac-
tive editing method and system for implicit representations,
called Seal-3D 1 , which allows users to edit NeRF models
in a pixel-level and free manner with a wide range of NeRF-

∗Equal contribution.
†Corresponding author.
Project page: https://windingwind.github.io/seal-3d/

1“Seal” derived from the name of rubber stamp in Adobe Photoshop.

like backbone and preview the editing effects instantly. To
achieve the effects, the challenges are addressed by our pro-
posed proxy function mapping the editing instructions to the
original space of NeRF models in the teacher model and a
two-stage training strategy for the student model with local
pretraining and global finetuning. A NeRF editing system
is built to showcase various editing types. Our system can
achieve compelling editing effects with an interactive speed
of about 1 second.

1. Introduction

Implicit neural representations, e.g. neural radiance
fields (NeRF) [24], have gained increasing attention as
novel 3D representations with neural networks to model a
3D scene. Benefiting from the high reconstruction accu-
racy and rendering quality with relatively low memory con-
sumption, NeRF and its variations [50, 3, 33, 26, 4, 45, 41]
have demonstrated great potential in many 3D applica-
tions like 3D reconstruction, novel view synthesis, and Vir-

1
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tual/Augmented Reality.
With the popularity of the new implicit representations

and an increasing number of implicit 3D models, there is
a pressing demand for human-friendly editing tools to in-
teract with these 3D models. Editing with implicit neural
representations is a fundamental technique required to fully
empower the representation. Objects reconstructed from the
real world are likely to contain artifacts due to the noise of
captured data and the limitations of the reconstruction algo-
rithms. In a typical 3D scanning pipeline, manual correc-
tion and refinement to remove artifacts are common stages.
On the other hand, in 3D content creation applications like
3D games, animations, and filming, artists usually need to
create new content based on existing 3D models.

Prior works have made attempts to edit 3D scenes rep-
resented by NeRF, including object segmentation [20, 44] ,
object removal [19] , appearance editing [14, 27, 22] , and
object blending [7], etc. These existing NeRF editing meth-
ods mainly focus on coarse-grained object-level editing and
the convergence speed can not meet the demands of inter-
active editing. Some recent methods [48, 5] transform the
editing of NeRF into mesh editing by introducing a mesh
as an edit proxy. This requires the user to operate on an
additional meshing tool, which limits interactivity and user-
friendliness. To the best of our knowledge, there are no
existing methods that are able to support interactive pixel-
level editing of neural radiance fields with fast converging
speed, which is mainly due to the challenges discussed be-
low.

Unlike existing explicit 3D representations e.g. point
cloud, textured mesh, and occupancy volume, which store
the explicit geometry structure of objects and scenes, im-
plicit representations use neural networks to query features
of a 3D scene including geometry and color. Existing 3D
editing methods, taking the mesh-based representation as
an example, can change object geometry by displacing ver-
tices corresponding to target object surface areas and object
textures. Without explicit explainable correspondence be-
tween the visual effects and the underlying representations,
editing the implicit 3D models is indirect and challenging.
Further, it is difficult to locate implicit network parameters
in local areas of the scene, meaning that adaptations of the
network parameters may lead to undesired global changes.
This results in more challenges for fine-grained editing.

To bridge the gap, in this paper, we propose an inter-
active pixel-level editing method and system for implicit
neural representations for 3D scenes, dubbed Seal-3D. The
name is borrowed from the popular 2D image editing soft-
ware Adobe PhotoShop [1], as its seal tool provides similar
editing operations. As shown in Fig. 1, the editing system
consists of five types of editing as examples: 1) Bounding
box tool. It transforms and scales things inside a bounding
box, like a copy-paste operation. 2) Brushing tool. It paints

specified color on the selected zone and can increase or de-
crease the surface height, like an oil paint brush or graver.
3) Anchor tool. It allows the user to freely move a control
point and affect its neighbor space according to the user in-
put. 4) Color tool. It edits the color of the object surfaces.

To achieve the interactive NeRF editing effects, we ad-
dress the challenges of implicit representations discussed
above. First, to establish the correspondence between the
explicit editing instructions to the update of implicit net-
work parameters, we propose a proxy function that maps
the target 3D space (determined by the user edit instructions
from an interactive GUI) to the original 3D scene space, and
a teacher-student distillation strategy to update the parame-
ters with the corresponding content supervision acquired by
the proxy function from the original scenes. Second, to en-
able local editing, i.e. mitigating the influence of the local
editing effect on the global 3D scenes under the non-local
implicit representations, we propose a two-stage training
process: a pretraining stage of updating only the positional
embedding grids with local losses for editing areas while
freezing the subsequent MLP decoder to prevent global de-
generation, and a finetuning stage of updating both the em-
bedding grids and the MLP decoder with global photomet-
ric losses. With this design, the pretraining stage updates lo-
cal editing features and the finetuning stage blends the local
editing areas with global structures and colors of unedited
space to achieve view consistency. This design has the ben-
efit of an instant preview of the editing: the pretraining can
converge very fast and presents local editing effects within
approximately 1 second only.

In summary, our contributions are as follows:

• We propose the first interactive pixel-level editing
method and system for neural radiance fields, which
exemplifies fine-grained multiple types of editing
tools, including geometry (bounding box tool, brush
tool, and anchor tool) and color edits;

• A proxy function is proposed to establish the cor-
respondence between the explicit editing instructions
and the update of implicit network parameters and a
teacher-student distillation strategy is proposed to up-
date the parameters;

• A two-stage training strategy is proposed to enable in-
stant preview of local fine-grained editing without con-
taminating the global 3D scenes.

2. Related Work

Novel view synthesis. Given a set of posed image cap-
tures of a scene, the task of novel view synthesis is to
generate photo-realistic images from arbitrary novel views.
Recently, neural network have been introduced into the
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Figure 2: Illustration of the editing framework. Left: a 3D point and view direction from the target space after user editing
is mapped to the original source space to get guidance ct, σt from the teacher model fT

θ for the student training. Right:
the student training consists of two stages: fast pretraining to provide instant preview by updating partial parameters of the
network with local losses and finetuning with global losses.

rendering pipeline and leveraged for multiple representa-
tions, such as voxels [21, 35], point clouds [2, 6], multi-
plane images (MPIs) [17, 23, 52], and implicit representa-
tions [36, 24]. Typically, Neural radiance field (NeRF) [24]
uses a single MLP to implicitly encode a scene into a volu-
metric field of density and color, and takes advantage of vol-
ume rendering to achieve impressive rendering results with
view-dependent effects, which inspires a lot of follow-up
works on human [30, 42], deformable objects [28, 29], pose
estimations [18], autonomous system [32, 49], surface re-
construction [45, 41], indoor scenes [47], city [38, 43], etc.
NeRF’s MLP representation can be enhanced and acceler-
ated by hybrid representations, including voxels [33, 37],
hashgrids [26] and tensorial decomposition [4, 40]. In
this paper, our interactive editing framework is developed
based on Instant-NGP [26], which achieve real-time render-
ing speed for NeRF inference and state-of-the-art quality of
novel view synthesis.

Neural scene editing. Scene editing has been a widely re-
searched problem in computer vision and graphics. Early
method focus on editing a single static view by insert-
ing [15, 54], relighting [16], composition [31], object mov-
ing [12, 34], etc. With the development of neural render-
ing, recent works attempt to perform editing at different
levels of the 3D scene, which can be categorized as scene-
level, object-level, and pixel-level editing. Scene-level edit-
ing methods focus on changing in global appearances of a
scene, such as lighting [8] and global palette [14]. Intrinsic
decomposition [51, 27, 9, 46, 53, 10] disentangles mate-
rial and lighting field and enables texture or lighting edit-
ing. However, scene-level methods are only able to mod-
ify global attributes and are unable to apply to specified
objects. Object-level editing methods use different strate-
gies to manipulate the implicitly represented object. Object-
NeRF [44] exploit per-object latent code to decompose neu-

ral radiance field into objects, enabling object moving, re-
moval, or duplicating. Liu et al. [20] design a conditional
radiance field model which is partially optimized according
to the editing instructions to modify semantic-level color or
geometry. NeRF-editing [48] and NeuMesh [5] introduce
a deformable mesh reconstructed by NeRF, as an editing
proxy to guide object editings. However, these methods are
restricted to object-level rigid transformation or are not gen-
eralizable to arbitrary out-of-distribution editing categories.
In contrast, pixel-level editing aims to provide fine-grained
editing guidance precisely selected by pixels, instead of re-
stricted by object entities. To the best of our knowledge,
NeuMesh [5] is the only existing method that achieves edit-
ing at this level. However, it depends on the mesh scaf-
fold, which limits the editing categories, e.g. cannot create
out-of-mesh geometry structures. In contrast, our editing
framework does not require any proxy geometry structures,
allowing it to be more direct and extensive.

Besides, optimizing the performance of neural editing
method remains an open problem. Existing methods require
minutes or even hours of optimization and inference. Our
method is the first pixel-level neural editing framework to
achieve instant interactive (i.e. second-level) performance.

3. Method
We introduce Seal-3D, an interactive pixel-level editing

method for neural radiance fields. The overall pipeline
is illustrated in Fig. 2, which consists of a pixel-level
proxy mapping function, a teacher-student training frame-
work, and a two-stage training strategy for the student
NeRF network under the framework. Our editing work-
flow starts with the proxy function which maps the query
points and ray directions according to user-specified edit-
ing rules. Then a NeRF-to-NeRF teacher-student distilla-
tion framework follows, where a teacher model with editing
mapping rules of geometry and color supervises the train-
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ing of a student model (Sec. 3.2). The key to interactive
fine-grained editing is the two-stage training for the student
model (Sec. 3.3). In an extra pretraining stage, the points,
ray directions, and inferred ground truth inside edit space
from the teacher model are sampled, computed, and cached
previously; only parameters with locality are updated and
the parameters causing global changes are frozen. After
the pretraining stage, the student model is finetuned with
a global training stage.

3.1. Overview of NeRF-based Editing Problem

We first make a brief introduction to neural radiance
fields and then analyze the challenges of NeRF-based edit-
ing problems and the limitations of existing solutions.

3.1.1 NeRF Preliminaries

Neural radiance fields (NeRFs) provide implicit representa-
tions for a 3D scene as a 5D function: f : (x, y, z, θ, φ) 7→
(c, σ), where x = (x, y, z) is a 3D location and d = (θ, ϕ)
is the view direction, while c and σ denote color and volume
density, respectively. The 5D function is typically parame-
terized as an MLP fθ.

To render an image pixel, a ray r with direction d is shot
from the camera position o through the pixel center accord-
ing to the intrinsics and extrinsics of the camera. K points
xi = o + tid, i = 1, 2, . . . ,K are sampled along the ray,
and the network fθ is queried for their corresponding color
and density:

(ci, σi) = fθ(xi,d) (1)

Subsequently, the predicted pixel color Ĉ(r) and depth
value D̂(r) are computed by volume rendering:

Ĉ(r) =

K∑
i=1

Tiαici, D̂(r) =

K∑
i=1

Tiαiti (2)

Ti =
∏
j<i

(1− αj), αi = 1− exp (σiδi) (3)

where αi is the alpha value for blending, Ti is the accu-
mulated transmittance, and δi = ti+1 − ti is the distance
between adjacent points. NeRF is trained by minimizing
the photometric loss between the predicted and ground truth
color of pixels.

In this paper, we build our interactive NeRF editing sys-
tem upon Instant-NGP [26], which achieves nearly real-
time rendering performance for NeRF. Although our im-
plementation of instant interactive editing relies on hybrid
representations for NeRF to achieve the best speed perfor-
mance, our proposed editing framework does not rely on a
specific NeRF backbone and can be transplanted to other
frameworks as long as they follow the aforementioned vol-
ume rendering pipeline.

3.1.2 Challenges of NeRF-based Editing

NeRF-like methods achieve the state-of-the-art quality of
scene reconstruction. However, the 3D scene is implic-
itly represented by network parameters, which lacks inter-
pretability and can hardly be manipulated. In terms of scene
editing, it is difficult to find a mapping between the explicit
editing instructions and the implicit update of network pa-
rameters. Previous works attempt to tackle this by means of
several restricted approaches:

NeRF-Editing [48] and NeuMesh [5] introduce a mesh
scaffold as a geometry proxy to assist the editing, which
simplifies the NeRF editing task into mesh modification.
Although conforming with existing mesh-based editing,
the editing process requires extracting an additional mesh,
which is cumbersome. In addition, the edited geometry is
highly dependent on the mesh proxy structure, making it
difficult to edit spaces that are not easy or able to be rep-
resented by meshes while representing these spaces is one
key feature of the implicit representations. Liu et al. [20]
designs additional color and shape losses to supervise the
editing. However, their designed losses are only in 2D pho-
tometric space, which limits the editing capability of a 3D
NeRF model. Furthermore, their method only supports edit-
ing of semantic-continuous geometry in simple objects, in-
stead of arbitrary pixel-level complex editing.

Moreover, to the best of our knowledge, existing meth-
ods have not realized interactive editing performance con-
sidering both quality and speed. Liu et al. [20] is the
only existing method that completes optimization within a
minute (37.4s according to their paper), but their method
only supports extremely simple objects and does not sup-
port fine-grained local edits (see Fig. 10 for details). Other
editing methods (e.g. NeuMesh [5]) usually require hours
of network optimization to obtain edit results.

In this paper, we implement an interactive pixel-level
editing system, which can be extended to new editing types
easily using similar editing strategies as the traditional ex-
plicit 3D representation editing. Our method does not re-
quire any explicit proxy structure (instead, a proxy function,
see Sec. 3.2) and can define various pixel-level editing ef-
fects without an explicit geometry proxy. It also enables in-
stant preview (≈1s) (see Sec. 3.3). Tab. 1 compares the edit
capabilities between our method and previous methods.

Method w/o Explicit Proxy Pixel-Level Interactive Time
Ours ✓ ✓ ✓ seconds

NeuMesh [5] ✗ (partial) ✗ hours
NeRF-Editing [48] ✗ ✗ ✗ hours

Table 1: Comparison with recent methods in edit capa-
bilities. Our method supports arbitrary editing, does not
require any explicit geometry proxy, and achieves interac-
tive editing in seconds.

17686
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Pretrain (1.6s)
PSNR: 30.41

Finetune (113.8s) 
PSNR: 41.91

Depth Map

Figure 3: Example of brush editing: 3D painting with color and thickness.

3.2. Editing Guidance Generation

Our design implements NeRF editing as a process of
knowledge distillation. Given a pretrained NeRF network
fitting a particular scene that serves as a teacher network,
we initialize an extra NeRF network with the pretrained
weights as a student network. The teacher network fT

θ gen-
erates editing guidance from the editing instructions input
by the user, while the student network fS

θ is optimized by
distilling editing knowledge from the editing guidance out-
put by the teacher network. In the subsection, editing guid-
ance generation for the student model supervision is intro-
duced and illustrated on the left of Fig. 2.

Firstly, the user edit instructions are read from the inter-
active NeRF editor as pixel-level information. The source
space S ⊂ R3 is the 3D space for the original NeRF model
and the target space T ⊂ R3 is the 3D space for the NeRF
model after editing. The target space T is warped to the
original space S by Fm : T 7→ S . Fm transforms points
within the target space and their associated directions ac-
cording to editing rules which are exemplified below. With
the function, the “pseudo” desired edited effects cT , σT for
each 3D point and view direction in the target space can
be acquired by querying the teacher NeRF model fT

θ : the
transformed points and directions (in source space) are fed
into the teacher network get the color and density. The pro-
cess can be expressed as

xs,ds = Fm(xt,dt),xs ∈ S,xt ∈ T , (4)

cT , σT = fT
θ (xs,ds) (5)

Where xs,ds denotes source space point position and
direction and xt,dt denotes target space point position and
direction.

For brevity, we define the entire process as teacher infer-
ence process F t := fT

θ ◦ Fm : (xt,dt) 7→ (cT , σT ). The
inference result cT , σT mimics the edited scene and acts as
the teacher label, the information of which is then distilled

by the student network in the network optimization stage.
The mapping rules of Fm can be designed according to

arbitrary editing targets. In particular, we implement 4 types
of editing as examples.

• Bounding shape tool, which supports common fea-
tures in traditional 3D editing software including copy-
paste, rotation, and resizing. The user provides a
bounding shape to indicate the original space S to be
edited and rotates, translates, and scales the bounding
box to indicate the target effects. The target space T
and mapping function Fm are then parsed by our in-
terface

xs =S−1 ·RT · (xt − ct) + cs,

ds =RT · dt

Fm :=(xt,dt) 7→
{

(xs,ds) , if xt ∈ T
(xt,dt) , otherwise

where R is rotation, S is scale, and cs, ct are the center
of S, T , respectively.

With this tool, we even support cross-scene object
transfer, which can be implemented by introducing the
NeRF of the transferred object as an additional teacher
network in charge of part of the teacher inference pro-
cess within the target area. We give a result in Fig. 7.

• Brushing tool, similar to the sculpt brush in traditional
3D editing that lifts or descends the painted surface.
The user scribbles with a brush and S is generated by
ray casting on brushed pixels. The brush normal n,
and pressure value p(·) ∈ [0, 1] are defined by user,
which determines the mapping:

xs = xt − p(xt)n,

Fm := (xt,dt) 7→ (xs,dt)
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PSNR: 42.83
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Figure 4: Example of bounding shape editing: bulb scaling.

• Anchor tool, where the user defines a control point
xc and a translation vector t. The region surround-
ing xc will be stretched by a translation function
stretch(·;xc, t). Then the mapping is its inverse:

xs = stretch−1(xt;xc, t)

Fm := (xt,dt) → (xs,dt)

please refer to the supplementary material for the ex-
plicit expressions of stretch(·;xc, t).

• Non-rigid transform tool, which allows for the accu-
rate and flexible transformation of selected space.

xs = R · xt + t,

ds = R · dt,

Fm := (xt,dt) 7→ (xs,ds)

Where R, t are interpolated from the transform ma-
trixes of the three closest coordinates of a pre-defined
3D blending control grid with position and transforma-
tion of each control point. The results can be found in
Fig. 9.

• Color tool, which edits color via color space mapping
(single color or texture). Here the spatial mapping is
identical and we directly map the color output of the
network to HSL space, which helps for color consis-
tency. Our method is capable of preserving shading
details (e.g. shadows) on the modified surface. We
achieve this by transferring the luminance (in HSL
space) offsets on the original surface color to the target
surface color. Implementation details of this shading
preservation strategy are presented in the supplemen-
tary.

For the training strategy of distillation, the student model
fS
θ is optimized with the supervision of pseudo ground

truths generated by the aforementioned teacher inference
process F t. The editing guidance from the teacher model
is distilled into the student model by directly applying the
photometric loss between pixel values Ĉ, D̂ accumulated
by Eq. (2) from the teacher and student inference.

However, we find that the convergence speed of this
training process is slow (≈30s or longer), which cannot
meet the needs of instant preview. To tackle this problem,
we design a two-stage training strategy: the first stage aims
to converge instantly (within 1 second) so that a coarse edit-
ing result can be immediately presented to the user as a pre-
view, while the second stage further finetunes the coarse
preview to obtain a final refinement.

3.3. Two-stage Student Training for Instant Preview

Local pretraining for instant preview. Usually, the edit
space is relatively small compared to the entire scene, so
training on the global photometric loss is wasteful and leads
to slow convergence. To achieve instant preview of editing,
we adopt a local pretraining stage before the global training
begins. The local pretraining process consists of: 1) uni-
formly sample a set X ⊂ T of local points within the target
space and a set D of directions on the unit sphere, and feed
them into the teacher inference process F t to obtain teacher
labels cT , σT , and cache them in advance; 2) the student
network is trained by local pertaining loss Llocal:

(cT , σT ) = F t(x,d), (cS , σS) = fS
θ (x,d), (6)

Llocal =
∑

x∈X ,d∈D

λ1∥cT − cS∥1 + λ2∥σT − σS∥1 (7)

where cS , σS are the predicted color and density of sampled
points x ∈ X by the student network, and cT , σT are cached
teacher labels. This pretraining stage is very fast: after only
about 1 second of optimization, the rendered image of the
student network shows plausible color and shape consistent
with the editing instructions.
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However, training on only the local points in the edit-
ing area may lead to degeneration in other global areas un-
related to the editing due to the non-local implicit neural
network. We observe the fact that in hybrid implicit repre-
sentations (such as Instant-NGP [26]), local information is
mainly stored in the positional embedding grids, while the
subsequent MLP decodes global information. Therefore, in
this stage, all parameters of the MLP decoder are frozen to
prevent global degeneration. Experimental illustrations will
be presented in Sec. 4.3 and Fig. 12.

Global Finetuning. After pretraining, we continue to
finetune fS

θ to refine the coarse preview to a fully converged
result. This stage is similar to the standard NeRF train-
ing, except that the supervision labels are generated by the
teacher inference process instead of image pixels.

Lglobal =
∑
r∈R

λ3∥ĈT − ĈS∥2 + λ4∥D̂T − D̂S∥1 (8)

where R denote the set of sampled rays in the minibatch
and (ĈT , D̂T ),(ĈS , D̂S) are accumulated along ray r by
Eq. (2) according to (cT , σT ),(cS , σS), respectively.

It is worth mentioning that the student network is capa-
ble of generating results of better quality than the teacher
network that it learns from. This is because the map-
ping operation in the teacher inference process may pro-
duce some view-inconsistent artifacts in the pseudo ground
truths. However, during the distillation, the student network
can automatically eliminate these artifacts due to the multi-
view training that enforces view-consistent robustness. See
Sec. 4.2 and Fig. 6 for details.

4. Experiments and Analysis
4.1. Implementation Details

Network. In order to disentangle shape and color latent
information within the hashgrids, we split the single hash
table in the NeRF network architecture of Instant-NGP [26]
into two: a density grid Gσ and a color grid Gc, with the
same settings as the original density grid in the open-source
PyTorch implementation torch-ngp [39]. We do this to
make it possible to make fine-grained edits of one to one of
the color or geometry properties without affecting the other.
The rest of the network architecture remains the same, in-
cluding a sigma MLP fσ and a color MLP f c. For a spatial
point x with view direction d, the network predicts volume
density σ and color c as follows:

σ, z = fσ(Gσ(x)) (9)
c = f c(Gc(x), z,SH(d)) (10)

where z is the intermediate geometry feature, and SH is the
spherical harmonics directional encoder [26]. The same as

𝐹𝐹𝑡𝑡 Output

Original Model

Pretrain (1.1s)
PSNR: 35.33

Finetune (61.4s) 
PSNR: 45.67

Figure 5: Example of anchor editing: fake tooth.

Pretrain (1.0s)
PSNR: 35.08

Finetune (34.5s) 
PSNR: 40.85

𝐹𝐹𝑡𝑡 OutputOriginal Model

Figure 6: Example of editing on the real-world scene: to
(DTU Scan 83).

Figure 7: Example of object transfer editing: from the Lego
scene (NeRF Blender) to the family scene (Tanks and Tem-
ples).

Instant-NGP’s settings, fσ has 2 layers with hidden channel
64, f c has 3 layers with hidden channel 64, and z is a 15-
channel feature.

We compare our modified NeRF network with the vanilla
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architecture in the Lego scene of NeRF Blender Synthetic
dataset[24]. We train our network and the vanilla network
on the scene for 30,000 iterations. The result is as follows:

• Ours: training time 441s, PSNR 35.08dB

• Vanilla: training time 408s, PSNR 34.44dB

We observe slightly slower runtime and higher quality for
our modified architecture, indicating that this modification
causes negligible changes.

Training. We select Instant-NGP [26] as the NeRF back-
bone of our editing framework. Our implementations are
based on the open-source PyTorch implementation torch-
ngp [39]. All experiments are run on a single NVIDIA RTX
3090 GPU. Note that we make a slight modification to the
original network architecture. Please refer to the supple-
mentary material for details.

During the pretraining stage, we set λ1 = λ2 = 1 and the
learning rate is fixed to 0.05. During the finetuning stage,
we set λ3 = λ4 = 1 with an initial learning rate of 0.01.
Starting from a pretrained NeRF model, we perform 50-
100 epochs of local pretraining (for about 0.5-1 seconds)
and about 50 epochs of global finetuning (for about 40-60
seconds). The number of epochs and time consumption can
be adjusted according to the editing type and the complex-
ity of the scene. Note that we test our performance in the
absence of tiny-cuda-nn [25] which achieves superior speed
to our backbone, which indicates that our performance has
room for further optimization.

Datasets. We evaluate our editing in the synthetic NeRF
Blender Dataset [24], and the real-world captured Tanks and
Temples [13] and DTU [11] datasets. We follow the official
dataset split of the frames for the training and evaluation.

4.2. Experimental Results

Qualitative NeRF editing results. We provide extensive
experimental results in all kinds of editing categories we
design, including bounding shape (Figs. 4 and 6), brushing
(Fig. 3), anchor (Fig. 5), and color (Fig. 1). Our method not
only achieves a huge performance boost, supporting instant
preview at the second level but also produces more visually
realistic editing appearances, such as shading effects on the
lifted side in Fig. 3 and shadows on the bumped surface in
Fig. 8. Besides, results produced by the student network
can even outperform the teacher labels, e.g. in Fig. 6 the F t

output contains floating artifacts due to view inconsistency.
As analyzed in Sec. 3.3, the distillation process manages to
eliminate this. We also provide an example of object trans-
fer (Fig. 7): the bulb in the Lego scene (of Blender dataset)
is transferred to the child’s head in the family scene of Tanks
and Temples dataset.

Interactive Edit 
Instructions Edit Results

O
urs

N
euM

esh
O

urs
N

euM
esh

Figure 8: Comparisons on texture/color painting between
NeuMesh [5] and our method. Note that NeuMesh requires
hours of finetuning while ours needs only seconds.

GT (Rendered in Blender)
NeuMesh

PSNR 27.84
Rendering Speed: 0.009 FPS

Ours
PSNR 28.03

28FPS
Ours MeshOriginal

Figure 9: Comparison on qualitative and quantitative be-
tween NeuMesh [5] and our method. The PSNR is com-
puted from the editing result and the rendering of the ground
truth mesh with the same editing applied.

Instructions Liu et al. [20] NeuMesh [5] Ours

Figure 10: Comparison of the pixel-wise editing ability be-
tween baselines [20, 5] and ours. Note that [20] does not
focus on the same task of pixel-wise editing as the other
two. We are not to compete with their method.

Comparisons to baselines. Existing works have strong
restrictions on editing types, which focus on either geom-
etry editing or appearance editing, while ours is capable of
doing both simultaneously. Our brushing and anchor tools
can create user-guided out-of-proxy geometry structures,
which no existing methods support. We make comparisons
on color and texture painting supported by NeuMesh [5] and
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1 second 30 seconds 60 seconds

w/o Pretraining

w/o Finetuning

Full Model (1s pretraining + 59s finetuning) 
PSNR: 31.41 37.84 42.26

PSNR: 32.25 30.84 29.86

PSNR: 26.64 28.75 40.16

Figure 11: Ablation studies on two-stage training strategy.
Zoom in for degradation details of “w/o finetuning”.

Fixing MLP (Ours)w/o Fixing MLP in Pretraining

Figure 12: Ablation study on MLP fixing.

Liu et al. [20].
Fig. 8 illustrates two comparisons between our method

and NeuMesh [5] in scribbling and a texture painting task.
Our method significantly outperforms NeuMesh, which
contains noticeable color bias and artifacts in the results. In
contrast, our method even succeeds in rendering the shadow
effects caused by geometric bumps.

Fig. 9 illustrates the results of the same non-rigid blend-
ing applied to the Mic from NeRF Blender[24]. It clearly
shows that being mesh-free, We have more details than
NeuMesh[5], unlimited by mesh resolution.

Fig. 10 shows an overview of the pixel-wise editing abil-
ity of existing NeRF editing methods and ours. Liu et
al. [20]’s method does not focus on the pixel-wise editing
task and only supports textureless simple objects in their
paper. Their method causes an overall color deterioration

within the edited object, which is highly unfavorable. This
is because their latent code only models the global color fea-
ture of the scene instead of fine-grained local features. Our
method supports fine-grained local edits due to our local-
aware embedding grids.

4.3. Ablation Studies

Effect of the two-stage training strategy. To validate
the effectiveness of our pretraining and finetuning strategy,
we make comparisons between our full strategy (3rd row),
finetuning-only (1st row) and pretraining-only (2nd row) in
Fig. 11. Our pretraining can produce a coarse result in only
1 second, while photometric finetuning can hardly change
the appearance in such a short period. The pretraining stage
also enhances the subsequent finetuning, in 30 seconds our
full strategy produces a more complete result. However,
pretraining has a side effect of local overfitting and global
degradation. Therefore, our two-stage strategy makes a
good balance between both and produces optimal results.

MLP fixing in the pretraining stage. In Fig. 12, we val-
idate our design of fixing all MLP parameters in the pre-
training stage. The result confirms our analysis that MLP
mainly contains global information so it leads to global de-
generation when MLP decoders are not fixed.

5. Conclusion
We have introduced an interactive framework for pixel-

level editing for neural radiance fields supporting instant
preview. Specifically, we exploit the two-stage teacher-
student training method to provide editing guidance and de-
sign a two-stage training strategy to achieve instant network
convergence to obtain coarse results as a preview. Unlike
previous works, our method does not require any explicit
proxy (such as mesh), improving interactivity and user-
friendliness. Our method also supports preserving shad-
ing effects on the edited surface. One limitation is that our
method does not support complex view-dependent lighting
effects such as specular reflections, and can not change the
scene illumination, which can be improved by introducing
intrinsic decomposition. Besides, our method does not han-
dle the reconstruction failures (such as floating artifacts) of
the original NeRF network.
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31, pages 7716–7726, Montréal, Canada, 2018. Curran As-
sociates. 3

[35] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
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