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Figure 1: SegGPT is capable of segmenting everything in context with only one single model, which uses in-context examples
to indicate different tasks. For each sample, the orange box □ on the left displays the example/prompt image and its
corresponding mask, while the blue box □ on the right shows the input image and the resulting mask output. The mask
represents the bright region attached to the image. The caption for each sample (in the yellow box) is only for explanation.
Notably, SegGPT can perform arbitrary object segmentation (segment different components of the scene, such as the big red
sphere, all the spheres, contour of all spheres, top surfaces, and shadows), multiple part segmentation (specialized parts of the
iconic Statue of Liberty), rainbow segmentation, video object segmentation without videos in training, and close-set semantic
segmentation with learnable prompt tuning. More examples are shown in Figure 5.

Abstract

We present SegGPT, a generalist model for segmenting ev-
erything in context. We unify various segmentation tasks into
a generalist in-context learning framework that accommo-
dates different kinds of segmentation data by transforming
them into the same format of images. The training of Seg-
GPT is formulated as an in-context coloring problem with
random color mapping for each data sample. The objec-
tive is to accomplish diverse tasks according to the context,
rather than relying on specific colors. After training, Seg-
GPT can perform arbitrary segmentation tasks in images

*Equal contribution. Correspondence to xinlong.wang96@gmail.com.

or videos via in-context inference, such as object instance,
stuff, part, contour, and text. SegGPT is evaluated on a
broad range of tasks, including few-shot semantic segmenta-
tion, video object segmentation, semantic segmentation, and
panoptic segmentation. Our results show strong capabilities
in segmenting in-domain and out-of-domain targets, either
qualitatively or quantitatively.

1. Introduction

Segmentation is one of the most fundamental problems
in computer vision, which aims to localize and re-organize
meaningful concepts at the pixel level, e.g., foreground, cat-
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egory, object instance, etc. During recent years, we have
witnessed great progress in developing more accurate and
faster algorithms for various segmentation tasks, such as fore-
ground segmentation [45], interactive segmentation [55, 38],
semantic segmentation [36, 32, 58, 43], instance segmenta-
tion [20, 13, 4, 52], and panoptic segmentation [26, 7, 10].

However, these specialist segmentation models are lim-
ited to specific tasks, classes, granularities, data types, etc.
A new model has to be trained when adapting to a different
setting, e.g., to segment a novel concept, or to segment ob-
jects in videos instead of images. This requires expensive
annotation efforts and is not sustainable for a large number
of segmentation tasks.

In this work, we aim to train a single model that is capable
of solving diverse and unlimited segmentation tasks. The
main challenges are twofold: (1) to incorporate those very
different data types in training, e.g., part, semantic, instance,
panoptic, person, medical image, aerial image, etc.; (2) to
design a generalizable training scheme that differs from
conventional multi-task learning, which is flexible on task
definition and is capable of handling out-of-domain tasks.

To address these challenges, we present SegGPT, a gener-
alist model for segmenting everything in context. We view
segmentation as a general format for visual perception and
unify different segmentation tasks into a generalist in-context
learning framework [50]. This framework accommodates
different kinds of segmentation data by transforming them
into the same format of images. The training of SegGPT is
formulated as an in-context coloring problem with random
color mapping for each data sample. The objective is to color
the corresponding areas, such as classes, object instances,
parts, etc., only according to the context. By using a random
coloring scheme, the model is forced to reference contextual
information to complete the assigned task, instead of rely-
ing on specific colors. This allows for a more flexible and
generalizable approach to training. The remaining parts of
training keep the same as [50] using a vanilla ViT [46] and a
simple smooth-ℓ1 [19] loss.

After training, SegGPT is able to perform diverse seg-
mentation tasks in images or videos given a few examples
via in-context inference, such as object instance, stuff, part,
contour, text, etc. To effectively ensemble multiple exam-
ples in context, we propose a simple yet effective context
ensemble strategy, the feature ensemble, which can help the
model benefit from the multi-example prompting setting.
Additionally, SegGPT can conveniently serve as a specialist
model without updating the model parameters, by tuning a
specific prompt for a specialized use case, such as in-domain
ADE20K semantic segmentation.

Our main contributions are as follows. (1) For the first
time, we demonstrate a single generalist model capable of
performing a diverse set of segmentation tasks automatically.
(2) We evaluate the pre-trained SegGPT on a broad range of

tasks directly, i.e., without fine-tuning, including few-shot
semantic segmentation, video object segmentation, semantic
segmentation, and panoptic segmentation. (3) Our results
show strong capabilities in segmenting in-domain and out-
of-domain targets, either qualitatively or quantitatively.

However, this work does not aim to claim new state-
of-the-art results or outperform existing specialist methods
across all benchmarks, as we believe that this may not be the
responsibility of a general-purpose model.

2. Related Work
2.1. Visual Segmentation

Segmentation is a fundamental problem in computer vi-
sion that involves localizing and organizing meaningful con-
cepts at the pixel level. The type of segmentation task varies
depending on the definition of the concepts, such as fore-
ground, category, or object instance. For example, semantic
segmentation [59] involves pixel-level semantic classifica-
tion of an image, while instance segmentation [34] aims to
identify different object instances and their categories. Video
object segmentation [56, 41, 14] is the task of segmenting a
particular object throughout the entire video sequence given
only the object mask of the first frame.

Previous segmentation methods [36, 32, 58, 43, 20, 13,
4, 52, 26, 7, 10] have been designed specifically for certain
tasks and cannot be generalized for switching tasks or chang-
ing categories. This paper introduces a general interface that
is compatible with all segmentation tasks with an appropri-
ate training scheme, a single generalist model can achieve
good performance on both in-domain and out-of-domain
segmentation tasks, either qualitatively or quantitatively.

2.2. Vision Generalist

In recent years, there have been efforts to unify different
tasks in the vision domain using Transformer-based mod-
els, resulting in several vision generalists [8, 9, 60, 37, 27].
DETR [7] is one of the first to adopt Transformer [46] as a
task-specific head for object detection. Pix2Seq series [8, 9]
defines the output spaces of vision tasks as discrete ones
and performs the task of object detection, instance segmen-
tation, keypoint estimation, and image captioning, in an
auto-regressive manner. Unified-IO [37] and OFA [49] per-
form joint modeling across vision, vision & language, and
NLP tasks in a sequence-to-sequence manner, that both the
inputs and outputs are defined to a sequence of discrete to-
kens. UViM [27] unifies pixel-labeling tasks together, such
as panoptic segmentation, depth estimation, and colorization,
but trains separate models for each.

Although these works all appear to unify different tasks
into similar spaces, they actually accomplish each task
through some form of hard indicators, such as a special
token, making it difficult to generalize to new tasks. In con-
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Figure 2: Illustration of overall training framework of SegGPT. We incorporate diverse segmentation data, including part,
semantic, instance, panoptic, person, medical image, and aerial image segmentation, and transform them into the same format
of images. We generate in-context samples that share similar contexts on-the-fly, e.g., the overlapped colors shown in each
column, which indicate the same category or the same instance. We adopt a general Painter [50] framework with in-context
coloring as the training objective and a random coloring scheme for more flexible and generalizable training.

trast, this work uses an in-context framework that maintains
flexibility on task definition and utilizes a random coloring
scheme to prevent the model from collapsing into a multi-
task learning solution and instead forces it to accomplish the
assigned task via referring contextual information. Another
difference is the scope of the tasks. This work primarily
focuses on a crucial category in visual perception, namely
image segmentation.

2.3. In-Context Visual Learning

GPT-3 [5] introduces the concept of in-context learning to
deep learning, which allows a series of NLP tasks to be for-
mulated as text completion problems given prompts and ex-
amples. In computer vision, [3] first proposes an in-context
training framework using inpainting with discrete tokens on
figures and infographics from vision articles, demonstrat-
ing the framework’s capabilities in foreground segmentation,
single object detection, and colorization. Painter [50] adopts
masked image modeling on continuous pixels to perform
in-context training with supervised datasets, on seven diverse
and challenging vision tasks, achieving highly competitive
results on these tasks.

Our work builds upon the Painter framework, but with
a specific focus on the segmentation task due to its central
role in visual perception. Thus this work unifies diverse seg-
mentation data including semantic segmentation, instance
segmentation, part segmentation, and even those for spe-
cial scenarios like aerial images. Additionally, we design a
random coloring scheme that forces the model to reference
contextual information to complete the assigned task but not

collapse into the multi-task solution. As segmentation tasks
and datasets have less variability than depth/pose estimation,
it is easier to share internal structures for effective training
of in-domain tasks, while maintaining the generalization
capability to out-of-domain segmentation tasks.

3. Approach

SegGPT is a special version of Painter [50] framework
which enables to segment everything with a generalist
Painter, thus the name of our model, SegGPT. The Painter
framework redefines the output space of vision tasks as “im-
ages” and unifies different tasks, e.g., depth estimation, se-
mantic segmentation, instance segmentation, keypoint detec-
tion and image restoration, into the same image inpainting
problem. Given an input image, prediction is to inpaint
the desired but missing output “image”. The training is to
randomly mask the task output images and reconstruct the
missing pixels.

To maintain the simplicity and generality, we make no
modifications to the architecture and loss function, i.e., a
vanilla ViT [15] and a simple smooth-ℓ1 [19] loss, but design
a new random coloring scheme in in-context training for
better generalization capability, as illustrated in Figure 2.

3.1. In-Context Coloring

In the traditional framework of Painter, the color space
for each task is pre-defined, resulting in the solution col-
lapse into multi-task learning. For example, for semantic
segmentation, a set of colors is pre-defined, and each seman-
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tic category is assigned a fixed color. Similarly, in instance
segmentation, the color of an instance object is assigned ac-
cording to its location categories, i.e., the number of colors
equals the number of spatial locations, resulting in the model
only relying on the color itself to determine the task, rather
than using the relationships between segments.

To address this limitation, we propose a random coloring
scheme for in-context coloring. We begin by randomly sam-
pling another image that shares a similar context with the
input image, such as the same semantic category or object
instance. Next, we randomly sample a set of colors from
the target image and map each color to a random one. This
results in a re-coloring of the corresponding pixels. As a
result, we get two pairs of images, which are defined as an
in-context pair. In addition, we introduce the mix-context
training method which trains the model using mixed exam-
ples. This involves stitching together multiple images with
the same color mapping. The resulting image is then ran-
domly cropped and resized to form a mixed-context training
sample. By doing so, the model learns to focus on the con-
textual information of the image rather than just relying on
specific color information to determine the task.

Such unification allows us to utilize all segmentation
datasets in a consistent way, only varying the data sampling
strategy depending on the specific task. We define differ-
ent contexts according to different data types. For semantic
segmentation, we randomly sample the categories. For in-
stance segmentation, object instances are sampled in random
numbers. The different views of the same image, e.g., trans-
formed by a set of augmentations, are treated as the images
in context. In the implementation, the sampling is all about
colors, e.g., the same color refers to either the same category
or the same instance.

3.2. Context Ensemble

Once the training is finished, its full power can be un-
leashed during inference. SegGPT enables arbitrary segmen-
tation in context, e.g., with an example of a single image
and its target image. The target image can be of a single
color (excluding the background), or multiple colors, e.g.,
segmenting several categories or objects of interest in one
shot. Specifically, given an input image to be tested, we
stitch it with the example image and feed it to SegGPT to
get the corresponding in-context predictions.

To serve a more accurate and concrete context, multiple
examples can be used. For instance, several examples of the
same semantic category, or the previous frames in a video,
can be employed. To efficiently leverage multiple examples
for a SegGPT model, we propose two context ensemble ap-
proaches, as illustrated in Figure 3. One is called Spatial

Ensemble, multiple examples concatenated in n × n grid
and then sub-sampled to the same size as a single example.
This approach is in line with the intuition of in-context col-

SegGPT

SegGPT

Feature Ensemble

…

Spatial Ensemble

Figure 3: Illustration of our proposed context ensemble
strategies for multi-example inference: the spatial ensemble
(top) and the feature ensemble (bottom). The spatial en-
semble strategy involves stitching multiple example images
together and resizing them to the input resolution. The fea-
ture ensemble strategy averages features of the query image
after each attention layer so that the query image aggregates
all the reference examples.

oring and the semantic information of multiple examples
can be in-context extracted with almost no additional cost.
Another approach is Feature Ensemble. Multiple exam-
ples are combined in the batch dimension and computed
independently except that features of the query image are
averaged after each attention layer. In this way, the query
image gathers information about multiple examples during
inference.

Different from the existing prompt ensemble methods
in NLP [28, 23] that ensemble prediction logits of multiple
prompts and visual prompting method [3] that ensembles
multiple prompts in horizontal and vertical layouts in visual
tasks, our proposed Feature Ensemble enables to in-
teract at intermediate features, which allows our model to
leverage any number of prompts and to model the temporal
relationships in videos.

3.3. In-Context Tuning

SegGPT is capable of adapting to a unique use case with-
out updating the model parameters. As shown in Figure 4,
we freeze the whole model and initialize a learnable image
tensor as the input context. Only this learnable image ten-
sor is updated during the training. The rest of the training
remains the same, e.g., the same loss function. After the
tuning, we take the learned image tensor out and use it as
a plug-and-play key for a specific application. For exam-
ple, given a dataset with a fixed set of object categories,
e.g., ADE20K, we could train a customized prompt for this
dataset, while there is no harm to the generality of the model.
Or, we could optimize a prompt image for a specific scene,
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Figure 4: Illustration of in-context tuning on different task
specifications. For in-context tuning, we freeze the whole
pre-trained model and only optimize the learnable image
tensor which serves as the input context. We can perform the
in-context prompt tuning on the specific datasets (ADE-20K
semantic segmentation), specific scenes (your apartment),
and even specific characters (Bert’s face).

e.g., your apartment, or a specific character, e.g., Bert’s face.
This opens up opportunities for a broad range of applica-
tions. Different from [2] that performs visual prompt tuning
on CLIP for image classification via padding 30 pixels as
the prompt, ours is for general-purpose segmentation and we
naturally have an image interface for visual prompting.

4. Experiment
4.1. Training Data

Our approach uses a diverse set of segmentation datasets,
including part, semantic, instance, panoptic, person, retinal-
vessel, and aerial-image segmentation. Unlike previous
methods that relied on handcrafted label merging to combine
different types of segmentation datasets, our method offers a
unified perspective that eliminates the need for additional ef-
fort or adjustment on the datasets. In particular, our approach
does not require any modifications to either the architecture
or training pipeline when adding an extra dataset.
ADE20K [59] provides segmentation labels for 150 seman-
tic categories, with a total of 25K images, including 20K
training images, 2K validation images, and 3K testing im-
ages.
COCO [34] is a widely used visual perception dataset that
supports instance segmentation, semantic segmentation and
panoptic segmentation. It contains 118K training images and
5K validation, with 80 “things” and 53 “stuff” categories.
PASCAL VOC [16] is a classic object recognition dataset.
We use the augmented segmentation version which provides
annotations of 20 categories on 10582 training images.
Cityscapes [12] focuses on the scene understanding of the
street views. We use the 2954 training images with semantic
segmentation annotations of 19 categories.

LIP [30] focuses on the semantic understanding of the per-
son. We use the 30385 training images with segmentation
labels of 19 human part categories.
PACO [42] is a newly released dataset that provides anno-
tations for the parts and attributes of common objects. We
process and use the 41807 training images with part annota-
tions.
CHASE DB1 [18], DRIVE [44], HRF [6] and STARE [22]
provide annotations for retinal vessel segmentation. We aug-
ment the high-resolution raw images with random cropping.
iSAID [53] and loveDA [48] focus on semantic understand-
ing in aerial images, with 23262 and 2520 training images
for 15 and 6 semantic categories respectively.

4.2. One-Shot Training Details

Our approach for segmentation tasks utilizes a general
interface, where we emphasize that we only train one gen-
eralist model with a mixture of datasets, and evaluated this
model on diverse benchmarks. Following [50], we use a
Vision Transformer (ViT-L) encoder [15], which has 307M
parameters. We use a pre-trained checkpoint from [50] as
the initialization. We employ an AdamW optimizer [25] and
a cosine learning rate scheduler, with a base learning rate
1e−4. Weight decay is set to 0.05. The batch size is 2048.
We train for 9K iterations, with a warm-up period of 1.8K
iterations. We use a set of data augmentations including ran-
dom resize cropping, color jittering, and random horizontal
flipping. The size of a single input image is 448× 448.

4.3. Qualitative Results

To demonstrate the capability of our SegGPT in an intu-
itive perspective, we visualize the task output of the selected
images with the specialized task prompts, shown in Figure 1
and Figure 5. These two figures include a wide range of
segmentation tasks, such as arbitrary part/object segmen-
tation with varied granularities, text segmentation, video
object segmentation without videos in training, and close-set
instance/semantic segmentation with learnable prompt tun-
ing. Figure 6 presents more visualizations on video object
segmentation of YouTube-VOS 2018 dataset. From these
visualizations, SegGPT demonstrates the ability to make
highly accurate predictions across a wide range of tasks,
while maintaining super flexibility in the task definition.

4.4. Comparison with Specialist Methods

Few-shot semantic segmentation. We evaluate the per-
formance of SegGPT, on two settings of few-shot seman-
tic segmentation: in-domain on COCO-20i/PASCAL-5i,
and out-of-domain on FSS-1000. Table 1 shows the re-
sults of example-based semantic segmentation on COCO-
20i/PASCAL-5i. For a fair comparison, we also evaluate
specialist models on in-domain categories marked by *. Our
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Earth

Ernieyellow cubescubes

one of the Twelve Apostles multiple arbitrary parts

Figure 5: More visualizations. For each sample, the orange box □ on the left displays the example/prompt image and its
corresponding mask, while the blue box □ on the right shows the input image and the resulting mask output. The mask is
visualized via the bright region attached to the image. SegGPT can perform arbitrary object/part segmentation (cubes, yellow
cubes, Ernie, one of the Twelve Apostles, earth, multiple arbitrary parts), video object segmentation without videos in training,
and close-set instance segmentation on COCO with learnable prompt tuning.

Figure 6: Qualitative results of video object segmentation on YouTube-VOS 2018.

results indicate that SegGPT can achieve comparable or sig-
nificantly better performance than recently published state-
of-the-art specialist models on these two benchmarks. Note
that the prior art FPTrans trains separate models with dif-
ferent shots. Furthermore, SegGPT surpasses the generalist
Painter [50] by a considerable margin.

Table 2 presents the results of few-shot semantic segmen-
tation on FSS-1000 with out-of-domain categories. Com-
pared to specialist models trained on FSS-1000, SegGPT ex-
hibits highly competitive performance. Notably, our model

is not trained on the FSS-1000 dataset at all, yet still achieves
remarkable results, demonstrating its effectiveness.
Video object segmentation. Video object segmentation
(VOS) is a task that segments a particular object in video
frames. In this work, we focus on the semi-supervised VOS
setting and evaluate our proposed method, SegGPT, on the
validation split of three datasets: YouTube-VOS 2018 [56],
DAVIS 2017 [41], and the recently release challenging
benchmark MOSE [14]. We use two metrics commonly
used in VOS for evaluation: the J score and the F score,
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method venue
COCO-20i PASCAL-5i

one-shot few-shot one-shot few-shot
specialist model
HSNet [39]

ICCV’21
41.2 49.5 66.2 70.4

HSNet* 41.7 50.7 68.7 73.8
VAT [21]

ECCV’22
41.3 47.9 67.9 72.0

VAT* 42.9 49.4 72.4 76.3
FPTrans [57]

NeurIPS’22
47.0 58.9 68.8 78.0

FPTrans* 56.5 65.5 77.7 83.2
generalist model
Painter CVPR’23 32.8 32.6 64.5 64.6
SegGPT this work 56.1 67.9 83.2 89.8

Table 1: Quantitative results on COCO-20i and PASCAL-5i of example-based semantic segmentation. * indicates that the
categories in training cover the categories in testing.

method venue mIoU
one-shot few-shot

trained on FSS-1000
DAN [47] ECCV’20 85.2 88.1
HSNet [39] ICCV’21 86.5 88.5
SSP [17] ECCV’22 87.3 88.6
VAT [21] ECCV’22 90.3 90.8
DACM [54] ECCV’22 90.8 91.7
not trained on FSS-1000
Painter CVPR’23 61.7 62.3
SegGPT this work 85.6 89.3

Table 2: Quantitative results on few-shot semantic segmen-
tation on FSS-1000. SegGPT achieves remarkable results
although not trained on FSS-1000.

and we evaluate our results with official evaluation servers
or tools.

SegGPT performs video object segmentation by convert-
ing the first frame and its object mask to in-context coloring
examples. When testing a current frame, we use its previous
K frames (if have) for constructing multiple examples. Ob-
ject masks for these frames have been predicted and stored by
a queue. After multiple examples are constructed, Feature
Ensemble (describe in Section 3.2) is applied and the pre-
diction result will be stored for the next frame. We evaluate
our model on several benchmarks, and the results are pre-
sented in Table 3. Despite not being specifically trained for
the task, our approach achieves competitive results with the
specialist models trained on these datasets. For instance,
on YouTube-VOS 2018 [56], our method outperformed the
task-specific approach AGAME [24] and AGSS [33] by
clear margins. On the challenging MOSE benchmark which
focuses on complex scenes, SegGPT even performs compara-
bly with the state-of-the-art method RDE [29]. HODOR [1]
can also achieve favorable results in video object segmenta-
tion without using video data for training, but it remains a

specialist model tailored for the task.

4.5. Ablation Study

Here we ablate two context ensemble strategies, namely
spatial and feature ensemble. Results are shown in Table 4a.
Our findings reveal that the spatial ensemble approach per-
forms well on FSS-1000 dataset but experiences a perfor-
mance drop on DAVIS 2017. We attribute this to the fact
that the spatial ensemble employs the sub-sampling on the
examples. Notably, FSS-1000 dataset has a lower image res-
olution (224×224) compared to the high-resolution DAVIS
dataset (640×480), and therefore, sub-sampling does not
result in significant information loss for FSS-1000. While,
we observe that feature ensemble can reduce this informa-
tion loss on sub-sampling, and achieve significantly better
performance on DAVIS 2017.

We also ablate the number of frames in DAVIS 2017,
as shown in Table 4b. As the number of frames increases,
the performance initially improves before reaching a point
of diminishing returns. In particular, we observe that the
optimal performance is achieved when using 8 frames.

4.6. In-Context Tuning

In-context tuning enables to customize a unique appli-
cation with a set of data samples. For example, to tune a
prompt for a specific dataset, scene, or even a person. Specif-
ically, we define the task prompt as the learnable tensors,
freeze the whole model, and then use the same training loss
to optimize the task prompts. Here, we conduct in-context
tuning on the challenging ADE20K semantic segmentation
and COCO panoptic segmentation. We evaluate SegGPT
with learnable prompts on the corresponding benchmarks.

Results on ADE20K semantic segmentation are shown
in Table 5. Our model SegGPT achieves competitive per-
formance with specialist models like RefineNet. However,
compared to the generalist Painter, our approach shows a
10.3 point drop in mIoU. This observation can be explained
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method venue
YouTube-VOS 2018 [56] DAVIS 2017 [41] MOSE [14]

G Js Fs Ju Fu J&F J F J&F J F

with video data
AGAME [24] CVPR’19 66.0 66.9 - 61.2 - 70.0 67.2 72.7 - - -
AGSS [33] ICCV’19 71.3 71.3 65.5 75.2 73.1 67.4 64.9 69.9 - - -
STM [40] ICCV’19 79.4 79.7 84.2 72.8 80.9 81.8 79.2 84.3 - - -
AFB-URR [31] NeurIPS’20 79.6 78.8 83.1 74.1 82.6 74.6 73.0 76.1 - - -
RDE [29] CVPR’22 83.3 81.9 86.3 78.0 86.9 86.1 82.1 90.0 48.8 44.6 52.9
SWEM [35] CVPR’22 82.8 82.4 86.9 77.1 85.0 84.3 81.2 87.4 50.9 46.8 54.9
XMem [11] ECCV’22 86.1 85.1 89.8 80.3 89.2 87.7 84.0 91.4 57.6 53.3 62.0
without video data
HODOR [1] CVPR’22 - - - - - 77.5 74.7 80.2 - - -
Painter CVPR’23 24.1 27.6 35.8 14.3 18.7 34.6 28.5 40.8 14.5 10.4 18.5
SegGPT this work 74.7 75.1 80.2 67.4 75.9 75.6 72.5 78.6 45.1 42.2 48.0

Table 3: Quantitative results of video object segmentation on YouTube-VOS 2018, DAVIS 2017, and MOSE. Notably, Painter
and SegGPT do not use any video data in training. Note that HODOR is a specialist model. G is the average score over “seen”
and “unseen” classes in YouTube-VOS 2018.

examples ensemble DAVIS 2017 FSS-1000
J&F J F mIoU FB-IoU

1 - 70.0 66.4 73.7 85.5 90.8
4 Spatial 61.9 58.0 65.8 89.3 93.5
4 Feature 74.7 71.6 77.7 87.8 92.4
8 Feature 75.6 72.5 78.6 89.8 93.8

(a)

DAVIS 2017
frames 1 4 8 12 16
J&F 70.0 74.7 75.6 74.8 74.6
J 66.4 71.6 72.5 71.6 71.4
F 73.7 77.7 78.6 77.9 77.8

(b)

Table 4: Ablation study on ensemble strategy (a) and the number of frames (b) in in-context inference. Spatial ensemble
approach performs well on FSS-1000 dataset but experiences a performance drop on DAVIS 2017. Feature ensemble achieves
better results due to no sub-sampling.

method venue mIoU
specialist model
FCN [36] CVPR’15 29.4
RefineNet [32] CVPR’17 40.7
DPT [43] ICCV’21 49.2
Mask2Former [10] CVPR’22 57.7
generalist model
Painter CVPR’23 49.9
SegGPT this work 39.6

Table 5: Results on ADE20K semantic segmentation.

by the introduction of a random color scheme, which makes
it more challenging for the model to use color as a simple
indicator of in-domain tasks. Instead, the model needs to
rely on context examples to determine the task, making op-
timization much more difficult. Similarly, Table 6 shows
the results of our SegGPT model on COCO panoptic seg-
mentation. Here, we again observe a 9.0 point drop in PQ
compared to the generalist Painter. Outperforming all spe-
cialist methods in specific benchmarks is not the purpose of
this work, and we believe there is much room to improve in

the future.

method venue PQ
specialist model
PanopticFPN [26] CVPR’19 40.3
SOLOv2 [51] NeurIPS’20 42.1
Mask2Former [10] CVPR’22 57.8
UViM [27] NeurIPS’22 45.8
generalist model
Painter CVPR’23 43.4
SegGPT this work 34.4

Table 6: Results on COCO panoptic segmentation.

5. Discussion and Conclusion
In this work, we present a generalist segmentation model,

showing how to design an appropriate training strategy to
fully leverage the flexibility of in-context visual learning.
Our model exhibits strong capabilities in handling both in-
domain and out-of-domain segmentation tasks, including
object instance, stuff, part, contour, text segmentation, etc.

This work is not without drawbacks. While our work
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introduces a new random coloring regime for better gener-
alization capability of in-context training, it also makes the
training task inherently more difficult, which may be the rea-
son for inferior performance in in-domain tasks with ample
training data, such as semantic segmentation on ADE20K
and panoptic segmentation on COCO.

Looking forward, we believe that our approach has the po-
tential to serve as a powerful tool for enabling more diverse
applications in image/video segmentation, by leveraging the
flexibility in task definition with in-context inference. Scal-
ing up model size is one avenue that we plan to pursue to
further improve performance. With larger models, more
complex patterns in the data can be captured, which may
lead to better segmentation results. However, this comes
with the challenge of finding more data. One potential solu-
tion is to explore self-supervised learning techniques. We
hope that our work will inspire the community to continue
exploring the potential of in-context learning in computer
vision. We remain optimistic that the best GPT-3 moment in
the vision field is yet to come.
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