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Abstract

The combination of Neural Architecture Search (NAS)
and quantization has proven successful in automatically
designing low-FLOPs INT8 quantized neural networks
(QNN). However, directly applying NAS to design accurate
QNN models that achieve low latency on real-world devices
leads to inferior performance. In this work, we identify that
the poor INT8 latency is due to the quantization-unfriendly
issue: the operator and configuration (e.g., channel width)
choices in prior art search spaces lead to diverse quan-
tization efficiency and can slow down the INT8 inference
speed. To address this challenge, we propose SpaceEvo, an
automatic method for designing a dedicated, quantization-
friendly search space for each target hardware. The key
idea of SpaceEvo is to automatically search hardware-
preferred operators and configurations to construct the
search space, guided by a metric called Q-T score to quan-
tify how quantization-friendly a candidate search space
is. We further train a quantized-for-all supernet over our
discovered search space, enabling the searched models to
be directly deployed without extra retraining or quantiza-
tion. Our discovered models, SEQnet, establish new SOTA
INT8 quantized accuracy under various latency constraints,
achieving up to 10.1% accuracy improvement on ImageNet
than prior art CNNs under the same latency. Extensive ex-
periments on real devices show that SpaceEvo consistently
outperforms manually-designed search spaces with up to
2.5× faster speed while achieving the same accuracy.

1. Introduction
INT8 Quantization[27, 19, 10, 3] is a widely used tech-

nique for deploying DNNs on edge devices by reducing 4×
in model size and memory cost for full-precision (FP32)
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Figure 1. INT8 quantized model error distributions (EDF) of dif-
ferent NAS search spaces. We propose to search quantization-
friendly search space for each hardware, which yields significantly
better INT8 model populations than SOTA search spaces.

models. However, prior art DNN models achieve only
marginal speedup from INT8 quantization (in Fig. 2(a)), the
still high latency after quantization making them difficult to
deploy in latency-critical scenarios. Designing models that
achieve high accuracy and low latency after quantization be-
comes the important but challenging problem.

Neural Architecture Search (NAS) is a powerful tool for
automating efficient quantized model design [36, 39, 12,
37, 6]. Recently, OQAT [32] and BatchQuant [1] achieve
remarkable search efficiency and accuracy by adopting a
two-stage paradigm. The first stage trains a weight-shared
quantized supernet assembling all candidate architectures
in the search space. This allows all the sub-networks (sub-
nets) to simultaneously reach comparable quantized accu-
racy as when trained from scratch individually. The sec-
ond stage uses typical search algorithms to find subnets with
best quantized accuracy under different FLOPs constraints.
This approach avoids the need to retrain each subnet for ac-
curacy evaluation, greatly improving the search efficiency.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Though promising in optimizing model FLOPs, we iden-
tify a significant challenge when directly applying two-
stage NAS to low quantized latency scenarios. This is due
to the quantization-unfriendly search space issue, where
prior art search spaces can unexpectedly impede INT8 la-
tency. Consequently, since INT8 quantization yields only a
marginal speedup, we are forced to search for small-sized
models to fulfill latency criteria, which can unfortunately
restrict NAS to find better quantized models for edge de-
vices. Then, a question naturally arise: Can we design a
quantization-friendly search space, allowing NAS to dis-
cover larger and superior models that meet the low INT8
latency requirements?

We start by conducting an in-depth study to understand
the factors that determine INT8 quantized latency and how
they affect search space design. Our study shows: (1)
both operator type and configurations (e.g., channel width)
greatly impact the INT8 latency; Improper selections can
slow down the INT8 latency. For instance, Squeeze-and-
Excitation (SE) [16] and Hardswish [14] are widely-used
operators in current search spaces as it improves accuracy
with little latency introduced. However, their INT8 infer-
ence speeds are slower than FP32 inference on Intel CPU
(Fig. 3(a)), because the extra costs (e.g., data transforma-
tion between INT32 and INT8) introduced by quantization
outweigh the latency reduction by INT8 computation. (2)
The quantization efficiency varies across different devices,
and the preferred operator types can be contradictory.

The above study motivates us to design specialized
quantization-friendly search spaces for each hardware,
rather than relying on a single, large search space as seen
in SPOS [12] for all hardware, which provides different op-
erator options per layer. This is because two-stage NAS re-
quires the search space to adhere to a specific condition for
training the supernet, wherein each layer must utilize a fixed
operator. Our study indicates significant variations in opti-
mal operators across different hardware. Thus, customizing
the search space for each hardware is crucial for optimal
results. However, designing such specialized quantization-
friendly search spaces for various edge devices presents a
significant challenge, requiring expertise in both AI and
hardware domains, as well as many trial and error attempts
to optimize accuracy and INT8 latency for each hardware.

In this paper, we propose SpaceEvo, a novel method for
automatically designing specialized quantization-friendly
search space for each hardware. The search space is com-
prised of hardware-preferred operators and configurations,
enabling the search of larger and better models with low
INT8 latency. With the discovered search space, we lever-
age two-stage quantization NAS to train a quantized-for-all
supernet, and utilize evolution search [4] to find best quan-
tized models under various INT8 latency constraints. Our
approach addresses three key challenges: (1) What is the

definition of a quantization-friendly search space in terms
of both quantized accuracy and latency? (2) How to auto-
matically design a search space without human expertise?
(3) How to handle with the prohibitive cost caused by qual-
ity evaluation of a candidate search space?

To address the first challenge, we propose a latency-
aware Q-T score to quantify the effectiveness of a candidate
search space, which measures the INT8 accuracy-latency
quality of top-tier subnets in a search space. The behind
intuition is that the goal of NAS is to search top subnets
with better accuracy-latency tradeoffs.

Then, we introduce an evolutionary-based search algo-
rithm that can effectively search a quantization-friendly
search space with highest Q-T score. Searching a search
space involves discovering a collection of model population
that contains billions of models, which is challenging and
easily introduce complexity. To address this challenge, we
propose to factorize and encode a search space into a se-
quence of elastic stages, which have flexible operator types
and configurations. Through this design, the task of search
space design is then simplied to find a search space with the
optimal elastic stages, so that existing search algorithms can
be easily applied. Specifically, we design a stage-wise hy-
perspace to include many candidate search spaces and lever-
age aging evolution [30] to perform random mutations of
elastic stages for search space evolution. The evolution is
guided by maximizing the Q-T score.

Finally, estimating the quality score (Q-T score) of a
search space involves a costly training process for evalu-
ating the accuracy of sub-networks, which presents a sig-
nificant obstacle for our evolutionary algorithm. Naively
adopting a two-stage NAS approach, training a supernet for
each candidate search space [8, 7], is prohibitively expen-
sive, taking of thousands GPU hours. To address this is-
sue, we draw inspiration from block-wise knowledge dis-
tillation [26, 22] and propose a block-wise search space
quantization scheme. This scheme trains each elastic stage
separately and rapidly estimates a model’s quantized accu-
racy by summing block-level loss with a quantized accuracy
lookup table, as shown in Fig. 5. This significantly reduces
the training and evaluation costs, while providing effective
accuracy rankings among search spaces. We summarize our
contributions as follows:

• We study the INT8 quantization efficiency on real-world
edge devices and find that the choices of operator types
and configurations in a quantized model can significantly
impact the INT8 latency, leaving a huge room for design
optimization of quantized models.

• We propose SpaceEvo to automatically design a
hardware-dedicated quantization-friendly search space
and leverage two-stage quantization NAS to produce su-
perior INT8 models under various latency constraints.
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• We present three innovative techniques that enable the
first-ever efficient and cost-effective evolution search to
explore a search space comprising billions of models.

• Extensive experiments on two real-world edge devices
and ImageNet demonstrate that our automatically de-
signed search spaces significantly surpass manually-
designed search spaces. Our discovered models, SE-
Qnet, establish the new state-of-the-art INT8 quantized
accuracy-latency tradeoffs. For instance, SEQnet@cpu-
A4, achieves 80.0% accuracy on ImageNet, which is
3.3ms faster with 1.8% higher accuracy than FBNetV3-
A. Moreover, SpaceEvo delivers superior tiny models,
achieving up to 10.1% accuracy improvement over Shuf-
fleNetV2x0.5 (41M FLOPs, 4.3ms).

2. Related Works
Quantization has been widely used for efficiency in de-
ployment. Extensive efforts can be classified into post-
training quantization (PTQ) [27, 2] and quantization-aware
training (QAT) [19, 24, 10, 3]. QAT generally outperforms
PTQ in quantizing compact DNNs to 8bit and very low-
bit (2, 3, 4bit) by finetuning the quantized weights. De-
spite their success, traditional quantization methods focus
on minimizing accuracy loss for a given pre-trained model,
but ignore the real-world inference efficiency.
NAS for Quantization. Early works [36, 39, 12, 37, 6]
formulates mixed-precision problem into NAS to search
layer bit-width with a given architecture. Recently, [32, 1]
train a quantized-for-all supernet to search both architecture
and bit-width. The searched models can be directly evalu-
ated with comparable accuracy to train-from-scratch. How-
ever, little attention is paid on optimizing quantized latency
on real-world devices. Through searching quantization-
friendly search space, our discovered quantized models can
achieve both high accuracy and low latency.
Search Space Design. Starting from [5], the manually-
designed MBConv-based space becomes the dominant in
most NAS works [5, 4, 41, 35]. RegNet [29] is the first to
present standard guidelines to optimize a search space by
each dimension. Recently, [17, 28, 23, 40, 8, 7] propose to
shrink to a better compact search space by either pruning
unimportant operators or configurations. However, these
works focus on optimizing the accuracy and little attention
is paid on quantization-friendly search space design. Our
work is the first lightweight solution towards this direction.

3. On-device Quantization Efficiency Analysis
To understand what factors lead to quantization-

unfriendly issue, we conduct a comprehensive study on two
widely-used edge devices equipped with high-performance
inference engine: an Intel CPU device supported with
VNNI instructions and onnxruntime [25] (Intel CPU) and

Figure 2. INT8 latency and speedups (annotated) for SOTA mod-
els. FLOPs and FP32 latency are not good indicators of INT8 la-
tency; Compact models have very limited INT8 speedup (∼1.5×).

a Pixel 4 phone CPU with TFLite 2.7 [11] (Pixel 4). Note
that we follow existing practices [42, 34, 38] to measure the
latency. We reveal key observations as follows:
Observation 1: FP32 latency and FLOPs are not good in-
dicators of INT8 latency.

To deploy on edge devices, a common belief is that a
compact model with low FLOPs or FP32 latency is pre-
ferred than a larger model. However, Fig. 2 shows that
neither of them is a good indicator of INT8 latency. In
Fig. 2(b), a very large model (ResNet18) can be even faster
than a compact model (EfficientNet-B0) after quantization.
Moreover, the recent SOTA compact models searched by
OFA [4] and AttentiveNAS [35] all have marginal INT8
speedups, suggesting that optimizing FLOPs and FP32 la-
tency can not lead to lower INT8 latency.
Observation 2: The choices of operators’ types and config-
urations greatly impact the INT8 latency.

The prior art search spaces adopted in recent two-stage
NAS works are MobileNetV2 or MobileNetV3 based chain-
structures, where each search space comprises a sequence
of blocks (stages). The block type is fixed to the MBConv
and is allowed to search from a handcraft range of hyper-
parameter configurations including kernel size, expansion
ratio, channel width and depth, which are designed with hu-
man wisdom. For instance, many works [5, 35] observe
that edge-regime CNNs prefer deeper depths and narrower
channels, and manually set small channel numbers but large
depths in the search space.

However, we find that many block type and configuration
choices in current search spaces unexpectedly slow down
the INT8 latency. We first study the operator type impact
in Fig. 3(a). SE and Hardswish are lightweight operators
in edge-regime search spaces, but their INT8 inference be-
comes slower on Intel CPU. Compared to Conv, DWConv
can greatly reduce the FLOPs, but it benefits less from INT8
quantization. The root cause is that quantization introduces
extra cost, such as (1) data transformation between INT32
and INT8 [34], and (2) additional computation caused by
scaling fators and zero points [20]. If the operator has low
data-reuse-rate, such as the activation functions (Hswish),
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Figure 3. (a) The choice of operator type leads to significantly
different quantized speedup. (b) Conv1x1 speedups with various
channel numbers. Config: HW=28, Cout=4xCin(expand=4).

the extra cost may outweigh the latency reduction by the
low-bit computation. For high data-reuse operators (Conv),
this cost is amortized and thus achieve large speedup [34].

Besides the operator type, the configuration choices also
determine the quantization efficiency. Fig. 3(b) shows the
speedups of Conv1×1 under various channel widths. Re-
sults show that small channel widths in OFA search space
cannot benefit well from quantization. This is because the
additional quantization cost has a large impact when the
channel width is small, limiting the latency acceleration. In
contrast, SpaceEvo can automatically design a search space
with larger channel widths for better efficiency.
Observation 3: Quantization-friendly settings are diverse
and contradictory across devices.

In Fig. 3, we also observe that the quantization-friendly
operators are different and can be contradictory on diverse
devices. For instance, Swish achieves a 2× speedup on
Pixel 4, but it is a quantization-unfriendly operator on CPU
with a 0.8× slowdown. The reason is that quantization
speedups are highly dependent on the inference engines and
hardware [34, 21]. Intel VNNI supports the VPDPBWSD
hardware instruction [18], which fuses three instructions
into one to speedup INT8 computation. Without VNNI,
INT8 hardly gains speedup on Intel CPUs. Moreover, the
implementations in inference engines have to fully utilize
hardware instructions for latency reduction. For example,
onnxruntime does not implement a quantization kernel for
Hardswish. Even on a VNNI-supported CPU, the use of
Hardswish in a quantized model slows down the latency.

The need for hardware specialized search space. The
above observations suggest that there is no single structure
(block types in a model) that is optimal for quantization
on all hardware. This poses a challenge for the two-stage
NAS paradigm, as the supernet training requires all mod-
els in the search space to share an isomorphic structure. To
address this issue, our work proposes to design a special-
ized quantization-friendly search space for each hardware.
Each search space is tailored to the unique characteristics of
the hardware and includes an optimal structure with elastic
depths, widths, and kernel sizes.

4. Methodology
4.1. The Core Design Concept

In this section, we present our methodology for automat-
ically designing a specialized quantization-friendly search
space for any target hardware. Different from architecture
search, where the goal is to find the single best model from
the space, we aim to discover a model population that con-
tains billions of accurate and INT8 latency-friendly archi-
tectures. We draw inspiration from the neural architecture
search process and propose to use an evolutionary search al-
gorithm to explore such a quantization-friendly model pop-
ulation. To achieve this, we introduce SpaceEvo, which is
built on the following three techniques.

First, we need a metric that quantifies how quantization-
friendly a candidate search space is. We define a Q-T
score that is efficiently measured by top-tier subnets’ INT8
accuracy-latency (Sec. 4.2).

Second, existing evolutionary search algorithms are de-
signed for searching a single model architecture rather than
a large search space encompassing billions of architectures.
we propose a novel approach that we call the ”elastic stage.”
By factorizing the search space into a sequence of elas-
tic stages ((Sec. 4.3), we enable traditional aging evolution
methods, such as the aging evolution [30], to be directly
applied to search the space (Sec. 4.4).

Third, searching a search space with a maximum Q-T
score can be prohibitively costly since the corresponding
supernet must be trained from scratch for accuracy evalu-
ation. We propose a block-wise search space quantization
scheme to significantly reduce the training cost(Sec. 4.5).

4.2. Search Space Quality Score
Latency-aware space quality of Q-T score. Before space
search, we need a score to quantify how quantization-
friendly a search space is, which serves as the search ob-
jective. Since our ultimate goal is to search the best quan-
tized models from the searched space, we treat a space
with good quality if its top-tier subnets achieve optimal
quantized accuracy under latency constraints T . Due to
the fact that real-world applications usually have differ-
ent deployment requirements, we use multiple INT8 la-
tency constraints to measure a space’s quality. For search
space A and a set of quantized latency constraints T1,...,n,
we treat every constraint equally important, and define Q-
T score as the sum of each constraint: Q(A, T1,...,n)=
Q(A, T1)+Q(A, T2)+..., Q(A, Tn), Q(A, Ti) is defined as:

Q(A, Ti) = Eα∈A,LAT (α)≤Ti
[Accint8(α)] (1)

where α denotes a top-tier (best searched) subnet in A and
Accint8(α) is its top-1 quantized accuracy evaluated on Im-
ageNet validation set, LAT (α) predicts the quantized la-
tency on target device.
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Figure 4. (a) We simplify space search into model search process; (b) Illustration of our hyperspace. A sampled search space is encoded
by a sequential elastic stages. Contents in blue are searched: an elastic stage can search its block type and channel number list.

However, it’s non-trivial to obtain the top-tier subnets
from a candidate search, as if often involves an expensive
full architecture search process. We adopt a zero-cost pol-
icy. Specifically, we randomly sample 5k subnets and select
top 20 that under the latency constraints as the top-tier mod-
els to approximate the expectation term. The top 20 subnets
are rapidly identified through the use of an accuracy look-
up-table and a quantized latency predictor (Sec. 4.5).

4.3. Elastic Stage and Problem Formulation
We observe that existing two-stage NAS adopt a chain-

structured search space [4, 41, 35], which can be factorized
as a sequence of STEM, HEAD and N searchable stages.
Each stage defines a range of configurations c (e.g., kernel
size, channel width, depth) for a specific block type b, and
allows NAS to find the optimal architecture settings.
Elastic stage. Without loss of generality, we define a stage
structure in a search space as elastic stage Eb,c, which has
elastic configurations c for a fixed block b. Suppose a search
space A has N stages, it can be modularized as:

A = STEM ◦ E1
b,c, ... ◦ EN

b,c ◦HEAD (2)

For instance, the search space in OQAT [32] and
BatchQuant [1] can be factorized as 6 elastic stages and
STEM (first Conv) and a classification head. Each elastic
stage represents a set of configuration choices for the MBv3
block. Through the definition of elastic stage, we can sim-
ply use Eq. (2) to denote the contents of a model popuation.
Problem definition. Operator type b and configuration c are
two crucial objectives when searching quantization-friendly
search space. Through the definition of elastic stage, the
task of space search can be simplified to find a search space
with optimal elastic stages, which has a similar goal with
neural architecture search. We formulate our problem as:

A(E1
b,c ◦ E2

b,c ◦ ... ◦ EN
b,c)

∗ = argmax
Ei

b,c∈Hi

Q(A(E1
b,c ◦ E2

b,c ◦ ... ◦ EN
b,c), T )

(3)
where A(·) denotes the search space, and Ei

b,c is the ith

elastic stage of A(·). H denotes the hyperspace which cov-
ers all possible search spaces. Q is the Q-T score for mea-
suring a search space’s quality.

As illustrated in Fig. 4(a), given the constraints T (i.e.,
a set of targeted quantized latency), SpaceEvo aims to find
the optimal elastic stages (E1

b,c ◦E2
b,c ◦ ... ◦EN

b,c)∗ from the
1st to N th stage for A∗ that has the maximum Q-T score:
the top-tier quantized models can achieve best accuracy un-
der the constraint T . The constraint T can be the quan-
tized latency under any bits. In this work, we focus on the
latency of INT8 quantized models, because INT8 quanti-
zation is widely supported by real-world edge devices and
can achieve real speedup. Other lower bits typically require
specific hardware (e.g., FPGA) to get the latency.

4.4. Searching the Search Space
We now describe our evolutionary search algorithm that

solves the problem in Eq. (3).
Hyperspace design. Analogous to NAS, hyperspace H
defines which search space a search algorithm might dis-
cover. Defining a hyperspace to cover many candidate
search spaces for space search is a second-order problem
for NAS, which can easily introduce high complexity. For-
tunately, we can easily construct a large hyperspace through
search space modularization in Eq. (2).

We construct a large hyperspace in Fig. 4, in which a
search space can be encoded by N=6 sequential elastic
stages along with STEM and HEAD. We search the follow-
ing two dimensions for an elastic stage:

• Block (operator) type b: MBv1 [15], MBv2 [31],
MBv3 [14], residual bottleneck [13], residual bottleneck
with SE, FusedMB [33] and FusedMB with SE. Conv is
the major operator in residual bottleneck and FusedMB,
thus they are quantization-friendly blocks; the efficiency
of MB blocks relies on the device. For example, DWConv
and SE are less quantization-efficient on Intel CPU.

• Output channel width list cout. In Sec. 3, we observe
that quantized models can better utilize hardware under
a larger channel number setting. However, directly in-
creasing the channel numbers will also lead to longer la-
tency. Therefore, we search the optimal stage-wise chan-
nel width list cout: {w∗

min, ..., w
∗
max}, which provides

better channel width choices for final INT8 model search.
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Specifically, as described in Fig. 4(b), we define a wide
range of [wmin, wmax] by enlarging the channel widths
in existing search spaces, and allow each elastic stage to
choose a subset of cout from [wmin, wmax].

Besides channel widths, other configuration dimensions
(e.g., kernel size) also impact a model’s quantized latency.
However, searching all dimensions leads to a large amount
of choices in one stage, which exponentially enlarges the
hyperspace size. Fortunately, other dimensions usually have
a small space (e.g., kernel size selects from {3,5,7}). It’s
easy to find the optimal value for a model in the final NAS
process. Therefore, we follow existing practices to con-
figure the choices of kernel size, depth, and expand ratios.
Our final searched INT8 model architectures SEQnet sug-
gest that the optimal quantization-friendly kernel sizes and
expand ratios are chosen. For example, kernel size of 3×3
brings more INT8 latency speedups for DWConv, and it is
the dominate kernel size choice in DWConv related blocks.

Suppose that a stage has m choices of channel widths,
there would be 7 (operator types) ×m candidates for each
stage. In total, for a typical search space with N = 6 stages,
the hyperspace has ∼109 candidate search spaces, which is
extremely large and poses challenges for efficient search.
Evolutionary space search. The structure of hyperspace is
similar to a typical model search space in NAS [12], so we
can easily apply existing NAS search algorithms. Taking
this advantage, we leverage aging evolution [30] to search
the large hyperspace. We first randomly initialize a popu-
lation of P search spaces, where each sampled space is en-
coded as (E1

b,c ◦E2
b,c ◦ ... ◦EN

b,c). Each individual is rapidly
evaluated with Q-T score. After this, evolution improves the
initial population in mutation iterations. At each iteration,
we sample S random candidates from the population and
select the one with highest score as the parent. Then we
alternately mutate the parent for block type and widths to
generate two children search spaces. For instance, suppose
the ith stage Ei

b,c is selected for mutation, we first randomly
modify its block type and produce Ei

b∗,c for child 1, then we
mutate the widths and produce Ei

b,c∗ for child 2. We eval-
uate their Q-T scores and add them to current population.
The oldest two are removed for next iteration. After all iter-
ations finish, we collect all the sampled space and select the
one with best score as the final search space.

4.5. Efficient Search Space Quality Evaluation
We now address the efficiency challenge caused by Q-

T score evaluation. The most accurate evaluation is to get
accuracy by training a supernet (search space) from scratch
and measure latency on target device. However, it’s im-
practical to conduct large-scale search due to the prohibitive
cost. For example, it costs more than 10 days to train a su-
pernet on 8 V100 GPUs [41]. To reduce the cost, we build
an accurate INT8 latency predictor by nn-Meter [42], then

Figure 5. We adopt block-wise knowledge distillation to reduce
search space quality evaluation cost. We add two linear transfor-
mation layers (Conv 1x1) to match teacher’s feature map widths.

we introduce block-wise quantization scheme.
Block-wise knowledge distillation (BKD) is firstly pro-
posed in DNA [22] and then further improved in
DONNA [26]. It originally uses block-wise representation
of existing models (teacher) to supervise a corresponding
student model block. This technique can provide a relative
accuracy ranking of all possible models without requiring
them to be trained from scratch. In our work, we extend
BKD to supervise the training of all elastic stages (each con-
tains a large amount of blocks).

Fig. 5 illustrates the BKD process. In the first step, we
use EfficientNet-B5 as the teacher, and separately train each
elastic stage to mimic the behavior of corresponding teacher
block by minimizing the NSR loss [26] between their output
feature maps. Specifically, the ith stage receives the output
of (i − 1)th teacher block as the input and is optimized to
predict the output of ith teacher block with NSR loss. Since
an elastic stage contains many blocks with different chan-
nel widths, we add two learnable linear transformation lay-
ers at the input and output for each elastic stage to match
teacher’s feature map shape. Moreover, we adopt sandwich
rule [41] to sample four paths to improve the training effi-
ciency. Each elastic stage is firstly trained for 5 epochs and
then performed 1 epoch LSQ+ [3] for INT8 quantization.
Accuracy lookup table. In the second step, we construct
a INT8 accuracy lookup table to reduce the evaluation cost.
Specifically, we evaluate all possible blocks in each elastic
stage and record their NSR losses on the validation set in the
lookup table. The quantized loss of a model is estimated
by summing up the NSR loss of all its blocks by rapidly
looking up each elastic stages from the table. We inverse
the measured loss to approximate the quantized accuracy
for Q-T score evaluation.

In our work, the BKD and lookup table construction can
be sped up in a parallel way and finished in 1 day, which
amounts a one-time cost before aging evolution search.

5. Evaluation
Setup. We evaluate our method on ImageNet-1k dataset [9]
and two popular edge devices. The INT8 latency constraints
are {8, 10, 15, 20, 25} ms for Intel CPU, and {15, 20, 25,
30, 35} ms for Pixel4. For each device, we search 5k search
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Figure 6. Best searched INT8 models with comparison to state-of-
the-art NAS search spaces. Our searched spaces are proven to be
the most quantization-friendly for the target device.

spaces in total and return the one with highest Q-T score.
The population size P is 500 and sample size S is 125.

Once SpaceEvo discovers a quantization-friendly search
space for the target device, we train a quantized-for-all
supernet. We start by pretraining a full-precision super-
net without quantizers on ImageNet for 360 epochs. We
adopt the sandwich rule and inplace distillation in Big-
NAS [41]. Then, we perform quantization-aware training
(QAT) on the trained supernet for 50 epochs, which follows
the same training protocol (i.e., sandwich rule and inplace
distillation). We use LSQ+ as the QAT algorithm for bet-
ter quantized accuracy. To derive INT8 model for deploy-
ment, we use the evolutionary search in OFA [4] to search
5k models for various given INT8 latency constraints. We
list out detailed training settings in supplementary materi-
als. In the following, we refer to the two searched spaces
as SpaceEvo@CPU and SpaceEvo@Pixel4, the searched
model families are SEQnet@cpu and SEQnet@pixel4.

5.1. The Effectiveness of SpaceEvo
Comparison with SOTA search spaces. To demonstrate
the high-performance of our searched spaces, we com-
pare with prior art manually-designed search spaces includ-
ing: (1) MobileNetV3 search space that is adopted in two-
stage quantization NAS OQAT [32] and BatchQuant [1];
(2) ProxylessNAS and AttentiveNAS search spaces that
achieve superior performance on mobile devices; and (3)
ResNet50 search space proposed by OFA that is a handcraft
quantization-friendly space on our two devices. For fair
comparison, we use one supernet training and QAT receipt
for all search spaces. We conduct evolutionary search to
compare the best-searched models from each search space.
We use the random seed of 0. For all experiments, search
space is the only difference.

Fig. 6 compares the best searched INT8 models
from different search spaces. SpaceEvo@CPU and
SpaceEvo@Pixel4 consistently deliver superior quantized
models than state-of-the-art search spaces. Under the same
latency, the best quantized models from SpaceEvo@cpu
significantly surpass the existing state-of-the-art search

Figure 7. Search space design under diverse INT8 latency con-
straints. SpaceEvo (6-25 ms) delivers superior tiny INT8 models.

Figure 8. Search cost measured on 8 Nvidia V100 GPUs.

spaces with +0.7% to +3.8% (+0.4% to +3.2% on Pixel4 )
higher accuracy. Moreover, our search space is the only one
that is able to deliver superior quantized models under both
extremely low (only∼5ms) and large latency constraints.
SpaceEvo under diverse latency constraints. We exten-
sively study the effectiveness of SpaceEvo under different
latency constraints. Specifically, we perform space search
under two tight constraints of {10, 15, 20, 25, 30}ms and
{6, 10, 15, 20, 25}ms on Pixel4. The results are shown
in Fig. 7. Our proposed method can handle the diverse la-
tency requirements and produce high-quality spaces. As
expected, the searched spaces under 10-30ms and 6-25ms
have much more low-latency quantized models.

To further verify the effectiveness of these low-latency
models, we compare with existing SOTA tiny models. Sig-
nificantly, even under the extremely low latency constraints
of 6-25 ms, our searched space delivers very competitive
tiny quantized models. Compared to the smallest model
ShuffleNetV2x0.5, we can achieve +10.1% higher accuracy
under the same latency of 4.3 ms.
Search cost. As depicted in Fig. 8, our algorithm,
SpaceEvo, is designed to be lightweight and suitable for
real-world usage, requiring only 25 GPU hours to search
a space of 5000 iterations. This remarkable speed is mainly
due to our block-wise search space quantization scheme,
which significantly reduces the cost of search space quality
evaluation. In comparison, Fig. 8 demonstrates that training
each search space from scratch without this scheme would
consume an impractical 1200k GPU hours.

5.2. The Effectiveness of Discovered INT8 Models
In this section, we demonstrate that our searched spaces

deliver state-of-the-art quantized models. We compare with
two strong baselines: (1) prior art manually-designed and
NAS-searched models; and (2) quantization-aware NAS. For
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Table 1. ImageNet results compared with SOTA quantized models
on two devices. ∗: latency compared to FP32 inference.

(a) Results on the Intel VNNI CPU with onnxruntime
Model Acc% CPU Latency Acc% FLOPsINT8 INT8 speedup∗ FP32

MobileNetV3Small 66.3 4.4 ms 1.1× 67.4 56M
SEQnet@cpu-A0 74.7 4.4 ms 2.0× 74.8 163M

MobileNetV2 71.4 7.3 ms 2.2× 72.0 300M
ProxylessNAS-R 74.6 8.8 ms 1.8× 74.6 320M

OQAT-8bit 74.8 9.8 ms 1.8× 75.2 214M
MobileNetV3Large 74.5 10.3 ms 1.5× 75.2 219M

OFA (#25) 75.6 11.2 ms 1.5× 76.4 230M
SEQnet@cpu-A1 77.4 8.8 ms 2.4× 77.5 358M

APQ-8bit 73.6 15.0 ms 1.5× 73.6 297M
AttentiveNAS-A0 76.1 15.1 ms 1.4× 77.3 203M

OQAT-8bit 76.3 14.9 ms 1.7× 76.7 316M
EfficientNet-B0 76.7 18.1 ms 1.6× 77.3 390M

SEQnet@cpu-A2 78.5 14.1 ms 2.4× 78.8 638M

APQ-8bit 74.9 20.0 ms 1.5× 75.0 393M
OQAT-8bit 76.9 19.5 ms 1.6× 77.3 405M

AttentiveNAS-A1 77.2 22.4 ms 1.4× 78.4 279M
AttentiveNAS-A2 77.5 22.5 ms 1.3× 78.8 317M
SEQnet@cpu-A3 79.5 18.9 ms 2.6× 79.6 981M

FBNetV2-L1 75.8 25.0 ms 1.2× 77.2 325M
FBNetV3-A 78.2 27.7 ms 1.3× 79.1 357M

SEQnet@cpu-A4 80.0 24.4 ms 2.4× 80.1 1267M
(b) Results on the Google Pixel 4 with TFLite

Model Acc% Pixel4 Latency Acc% FLOPsINT8 INT8 speedup∗ FP32

MobileNetV3Small 66.3 6.4 ms 1.3× 67.4 56M
SEQnet@pixel4-A0 73.6 5.9 ms 2.1× 73.7 107M

MobileNetV2 71.4 16.5 ms 1.9× 72.0 300M
ProxylessNAS-R 74.6 18.4 ms 1.8× 74.6 320M

MobileNetV3Large 74.5 15.7 ms 1.5× 75.2 219M
APQ-8bit 74.6 14.9 ms 2.0× 74.4 340M
OFA (#25) 75.6 14.8 ms 1.7× 76.4 230M
OQAT-8bit 75.8 15.2 ms 1.9× 76.2 287M

AttentiveNAS-A0 76.1 15.2 ms 2.0× 77.3 203M
SEQnet@pixel4-A1 77.6 14.7 ms 2.2× 77.7 274M

APQ-8bit 75.1 20.0 ms 1.9× 75.1 398M
OQAT-8bit 76.5 20.4 ms 1.8× 76.8 347M

AttentiveNAS-A1 77.2 21.1 ms 2.0× 78.4 279M
AttentiveNAS-A2 77.5 22.7 ms 2.0× 78.8 317M

SEQnet@pixel4-A2 78.3 19.4 ms 2.3× 78.4 402M

FBNetV2-L1 75.8 26.7 ms 1.5× 77.2 325M
OQAT-8bit 77.0 29.9 ms 1.7× 77.2 443M
FBNetV3-A 78.2 30.5 ms 1.5× 79.1 357M

SEQnet@pixel4-A3 79.5 30.8 ms 2.1× 79.5 591M

EfficientNet-B0 76.7 36.4 ms 1.7× 77.3 390M
SEQnet@pixel4-A4 79.9 35.5 ms 2.2× 80.0 738M

baseline (1), we collect official pre-trained FP32 check-
points and conduct LSQ+ QAT to get the quantized accu-
racy. The hyperparameter settings follow the original LSQ+
paper, except that we set a larger epoch of 10 to achieve bet-
ter accuracy. The latency numbers are measured on our de-
vices. For (2), we compare with strong baselines including
APQ [37] and OQAT [32]. Specifically, we limit APQ to
search for the fixed 8bit (INT8) models. Since OQAT has no
8bit supernet checkpoint, we follow the official source code
and conduct supernet QAT for 50 epochs. The final INT8
models are searched under the same INT8 latency predic-
tors for fair comparison.

Results. Table 1 summarizes comparison results. Re-

Figure 9. Q-T score effectiveness (Kendall’s τ ) on ranking search
space quality. We achieve a high space ranking correlation.

Table 2. Different space search methods and their best resulting
quantized models on Pixel4. Baseline is a SOTA mobile-friendly
AttentiveNAS space. ∗: the search dimension use the same set-
tings in AttentiveNAS.

Method Op Width Best quantized models
10ms 15ms 20ms 30ms 36ms

Baseline - - - 76.6 77.2 79.0 79.5
SpaceEvo-op search fix∗ 75.0 76.6 77.8 78.6 78.8

SpaceEvo-width fix∗ search 75.4 77.4 78.0 79.1 79.5
SpaceEvo search search 75.7 77.6 78.3 79.5 79.9

markably, our searched model family, SEQnet signifi-
cantly outperform SOTA efficient models and quantization-
aware NAS searched models, with higher INT8 quan-
tized accuracy, lower INT8 latency and better speedups.
Without finetuning, our tiny models SEQnet@cpu-A0 and
SEQnet@pixel4-A0 achieve 74.7% and 73.6% top1 ac-
curacy on ImageNet, which is 8.4% and 7.3% higher
than MobileNetV3-Small (56M FLOPs) while maintain-
ing the same level quantized latency. For larger models,
SEQnet@cpu-A4 (80.0%) outperforms FBNetV3-A with
1.8% higher accuracy while runs 3.3ms faster. In particu-
lar, to achieve the same level accuracy (i.e., around 77.2%),
AttentiveNAS-A1 has 22.4ms latency while SEQnet@cpu-
A1 (77.4%) only needs 8.8 ms (2.6 × faster). More impor-
tantly, our searched models can better utilize the INT8 hard-
ware optimizations: the latency speedups compared to full-
precision inference are all larger than 2×, and this leaves
room to search large-size models with higher accuracy.

5.3. Ablation Study
Q-T score effectiveness. Q-T score is crucial as it guides
the space evolution process. To evaluate its effectiveness,
we randomly sample 30 search spaces, and measure the
rank correlation (Kendall’s τ ) between their Q-T score and
their actual Pareto-frontier models’ accuracies. Specifically,
we use Intel CPU as the test device and set a same latency
constraints of {8, 10, 15, 20, 25}ms. For each sampled
space, we train it from scratch for 50 epochs, and conduct
evolutionary search to get the Pareto-frontier models’ ac-
curacies. As shown in Fig. 9, the Kendall’s τ between the
Q-T score and the actual Pareto-frontier models’ accuracies
is 0.8, which indicates a very high rank correlation.
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Ablation study on two search dimensions. In Sec. 3, we
conclude that operator type and configuration are two key
factors impacting INT8 latency, which serves as the two
search objectives of SpaceEvo. To verify the effectiveness,
we create two strong baselines based on the SOTA edge-
regime AttentiveNAS search space: (1) SpaceEvo-op: we
fix each elastic stage’s width to AttentiveNAS space, then
allow each elastic stage to search for the optimal operator;
and (2) SpaceEvo-width: we fix all elastic stages’ block
types to AttentiveNAS space, then search for the optimal
width. Table 2 reports the space comparison between dif-
ferent search methods on the Pixel4. By searching both op-
erator type and width, SpaceEvo finds the optimal search
space where its best searched quantized models achieve
the highest accuracy under all latency constraints. More-
over, even searching for one dimension, SpaceEvo-op and
SpaceEvo-width outperform the manually-designed Atten-
tiveNAS space under small latency constraints.
Search space design implications. We now summa-
rize our learned experience and implications for design-
ing quantization-friendly search spaces. We notice that the
searched spaces show different preferences when targeting
different devices: (i) All stages should use much wider
channel widths compared to existing manually-designed
spaces on the cpu, while only early stages prefer wider
channels on Pixel 4. (ii) Since SE and Swish are INT8
latency-friendly on mobile phones, so our auto-generated
search spaces for Pixel4 have many MBv3 stages. On In-
tel CPU, INT8 quantization slows down SE, Hardwish, and
Swish, making FusedMB and MBv2 the priority for search
spaces, with only the last two stages using MBv3. The de-
tails are provided in supplementary.

6. Conclusion
In this paper, we introduced SpaceEvo, the first to auto-

matically design a quantization-friendly space for target de-
vice, which delivers superior INT8 quantized models with
SOTA efficiency on real-world edge devices. Extensive ex-
periments on two popular devices demonstrate its effective-
ness compared to prior art manual-designed search spaces.
We plan to apply SpaceEvo to other hardware efficiency
such as energy-efficient search space design in the future.
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