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Abstract

With the overwhelming trend of mask image modeling led
by MAE, generative pre-training has shown a remarkable
potential to boost the performance of fundamental models
in 2D vision. However, in 3D vision, the over-reliance on
Transformer-based backbones and the unordered nature of
point clouds have restricted the further development of gen-
erative pre-training. In this paper, we propose a novel 3D-to-
2D generative pre-training method that is adaptable to any
point cloud model. We propose to generate view images from
different instructed poses via the cross-attention mechanism
as the pre-training scheme. Generating view images has
more precise supervision than its point cloud counterpart,
thus assisting 3D backbones to have a finer comprehension
of the geometrical structure and stereoscopic relations of
the point cloud. Experimental results have proved the su-
periority of our proposed 3D-to-2D generative pre-training
over previous pre-training methods. Our method is also ef-
fective in boosting the performance of architecture-oriented
approaches, achieving state-of-the-art performance when
fine-tuning on ScanObjectNN classification and ShapeNet-
Part segmentation tasks. Code is available at https:
//github.com/wangzy22/TakeAPhoto.

1. Introduction

Nowadays, pre-training fundamental models with self-
supervised mechanisms has witnessed a thriving develop-
ment in the computer vision community, given its low re-
quirement in data annotation and its high transferability to
downstream applications. Self-supervised pre-training aims
to fully exploit the statistical and structural knowledge from
abundant annotation-free data and empowers the fundamen-
tal models with robust representation ability. In 2D vision,
self-supervised pre-training has shown strong potential and
achieved remarkable progress on diverse backbones in var-
ious downstream tasks. Successful pre-training strategies
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Figure 1: Principle illustration of 3D-to-2D generative
pre-training. The photograph module explicitly encodes
pose condition into 3D features from the backbone, and
the 2D generator decodes pose-conditioned features into
different view images.

in 2D domain such as contrastive learning [19, 7] and mask
modeling [18, 3] have also been adopted to 3D point cloud
analysis [58, 30, 23] in recent research.

However, the pre-training paradigm hasn’t become the
prevailing trend in 3D learning and architectural design is
still the mainstream to reach a new state-of-the-art perfor-
mance, which is considerably different from the dominant
status of pre-training in 2D domain. In object-level analy-
sis, generative pre-training inspired by MAE [18] has been
studied thoroughly, but their performances still lag behind
architecture-based methods like PointNeXt [35]. Two fac-
tors mainly contribute to the inferior status of generative pre-
training in 3D learning. Since point clouds are unordered
sets of point coordinates, there is no direct and precise su-
pervision like one-to-one MSE loss between generated point
clouds and their corresponding ground truth. Chamfer Dis-
tance supervision for point clouds only calculates a rough
set-to-set matching and its imprecision has been widely dis-
cussed in [24, 50, 20]. Additionally, existing advanced gen-
erative pre-training methods in object analysis are limited to
the Transformer-based backbone, and fail to be extended to
other sophisticated point cloud models.

To alleviate the aforementioned problems, we propose a
3D-to-2D generative pre-training method for point cloud
analysis that has higher preciseness in supervision and
broader adaptation to different backbones. Instead of re-
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constructing point clouds as previous literature [30, 60], we
propose to generate view images of the input point cloud
given the instructed camera poses. This is similar to taking
photos of a realistic object from different perspectives to
fully present its structure or internal relations. Therefore, we
name our model Take-A-Photo, in short TAP. More specifi-
cally, we propose a pose-dependent photograph module that
utilizes the cross-attention mechanism to explicitly encode
pose conditions with 3D features from the backbone. Then a
2D generator decodes pose-conditioned features into view
images that are supervised by rendered ground truth images.
The principle illustration of TAP is shown in Figure 1. In
the pose-dependent photograph module, we do not provide
detailed projection relations from 3D points to 2D pixels,
thus the cross-attention layers are encouraged to learn by
themselves what those view images look like conditioned on
given poses. Since the projection layout, part occlusion rela-
tion, faces colors that represent light reflections are largely
distinct among view images, the proposed 3D-to-2D genera-
tive pre-training is a challenging pretext task that obliges 3D
backbone to gain higher representation ability of geometrical
knowledge and stereoscopic relations.

We conduct extensive experiments on various backbones
and downstream tasks to verify the effectiveness and su-
periority of our proposed 3D-to-2D generative pre-training
method. When pre-trained on synthetic ShapeNet [6] and
transferred to real-world ScanObjectNN [45] classification,
TAP brings consistent improvement to different backbone
models and successfully outperforms previous point cloud
generative pre-training methods based on Transformers back-
bone. With PointMLP [27] as the backbone, TAP achieves
state-of-the-art performance on ScanObjectNN classification
and ShapeNetPart [56] part segmentation among methods
that do not include any pre-trained image or text model. We
also conduct thorough ablation studies to discuss the archi-
tectural design of the TAP model and verify the individual
contribution of each component.

In conclusion, the contributions of our paper can be sum-
marized as follows: (1) We propose TAP, the first 3D-to-2D
generative pre-training method that is adaptable to any point
cloud model. TAP pre-training helps to exploit the potential
of point cloud models on geometric structure comprehen-
sion and stereoscopic relation understanding. (2) We pro-
pose a Photograph Module where we derive mathematical
formulations to encode pose conditions as query tokens in
cross-attention layers. (3) TAP surpasses previous gener-
ative pre-training methods on the Transformers backbone
and achieves state-of-the-art performance on ScanObjectNN
classification and ShapeNetPart segmentation.

2. Related Work
Point Cloud Analysis. Point cloud analysis is a fundamen-
tal and important task in the realm of 3D vision. Current

literature has developed two principal methodologies to ex-
tract structural representations from 3D point clouds, namely
point-based and voxel-based methods. Point-based meth-
ods [32, 33, 48, 44, 35, 27] process unordered points di-
rectly, introducing various techniques for local information
aggregation. Existing point-based methods can be catego-
rized into three types: SetAbstraction-based [32, 33, 35],
DynamicGraph-based [48], and Attention-based [57, 58, 30,
23, 60], all of which focus on modeling the relationships be-
tween points. Owing to their exceptional ability to effectively
preserve fine-grained geometric information, point-based
methods are frequently employed for object-level tasks. On
the other hand, voxel-based methods [28, 21, 39] partition
the 3D space into ordered voxels and employ 3D convolu-
tions for feature extraction. Voxel-based methods are primar-
ily based on SparseConvolution [10, 16], which enables effi-
cient convolution operations in 3D space through sparse con-
volutions. In exchange for faster processing speeds, voxel-
based methods sacrifice their capacity to capture detailed
local structures, making them more suitable for large-scale
scene-level tasks rather than object-level tasks.

Point Cloud Pre-training. Pre-training has always been a
focal point of research in the field of deep learning. Gener-
ally speaking, we usually distinguish pre-training methods
based on the amount of annotation required, namely full-
supervised pre-training [14, 59, 5], weakly-supervised pre-
training [43, 4, 53], and unsupervised pre-training [19, 7, 8].
Among these methods, unsupervised pre-training has be-
come the most popular approach, mainly due to its excellent
transferability across tasks and its notable advantage of not
relying on labeled data. Numerous researchers have pro-
posed a variety of pretext tasks for unsupervised pre-training.
Based on the type of pretext task employed, there are two
prevailing pretext tasks for unsupervised pre-training. The
first is contrastive learning, as exemplified by MoCo [19] and
SimCLR [7]. The other method entails utilizing generative
tasks to restore the data from partially or disrupted inputs,
such as MAE [18] and BEiT [3].

Inspired by pre-training strategies in the image domain,
there are more and more unsupervised pre-training meth-
ods being proposed for point cloud pre-training. PointCon-
trast [54] embraces the principle of contrastive learning,
whereas PointBERT [58] and PointMAE [30] integrate re-
construction pretext tasks. However, existing generative-
based pre-training methods for point clouds only consider
a single modality. In this paper, we propose a cross-modal
generative-based pre-training strategy to achieve more effec-
tive pre-training.

Cross-Modal Learning. Recently, cross-modal learning has
been a popular research topic, aiming at learning from multi-
ple modalities such as images, audio and point clouds. It has
the potential to enhance the performance of various tasks,
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Figure 2: The pipeline of TAP pre-training method. We design a query generator to encode pose conditions and implement
cross-attention layers to transform 3D point cloud features F3d to 2D view image features F2d according to pose instruction.
The predicted pose-dependent view image from 2D generator is supervised by ground truth view image via MSE loss.

including visual recognition, speech recognition, and point
cloud analysis. A variety of methods have been proposed
for cross-modal learning, including multi-task learning [11],
conditional generation [40], pre-training [34, 13] and tun-
ing [49, 55].

In the realm of point cloud analysis, much previous
work has explored this learning paradigm. Some litera-
ture leverages 2D data for 3D point cloud analysis, such
as MVTN [17], MVCNN [42] and CrossPoint [2], prov-
ing that the multi-view images and the correspondence be-
tween images and points can be helpful for the 3D object
understanding. Another line of the research, such as Im-
age2Point [55] and P2P [49] take effort to adapt the models
from 2D vision into 3D point cloud analysis, fully exploiting
the relationship of 2D and 3D understanding. In this paper,
we continue this learning paradigm in 3D vision domain,
and for the first time propose the cross-modal generative
pre-training scheme for point cloud models.

3. 3D-to-2D Generative Pre-training

3.1. Preliminary: Generative Pre-training

Generative pre-training is a fundamental branch of pre-
training methods that aims at reconstructing integral and
complete data given partial or disrupted input. Mathemat-
ically, suppose x is a sample from raw data with no anno-
tation. The pre-processing step T (·) either erases part of x
randomly or splits x into pieces and intermingles them to get
x̃ = T (x). The generative pre-training model M is designed
to restore from those broken input x̂ = M(T (x)) and the
training loss function is designed to measure the reconstruc-
tion distance L = D(x̂, x). In point cloud object analy-
sis, earlier generative pre-training methods propose various
pretext tasks as T , including deformation [1], jigsaw puz-
zles [41] and depth projection [47] to produce disarrayed or
partial point clouds. Recently, inspired by MAE [18] in the
image domain, generative pre-training in 3D domain mainly
focuses on implementing random masking as T and utilizing

Transformers model as M for reconstruction [58, 30, 23, 60].
The reconstruction distance D is usually measured by the
classical l2 Chamfer Distance:

D(x̂, x) =
1

|x̂|
∑
a∈x̂

min
b∈x

∥a−b∥22+
1

|x|
∑
b∈x

min
a∈x̂

∥a−b∥22 (1)

Besides Chamfer Distance between point clouds, some meth-
ods also exploit feature distance between latents [58] or
occupancy value distance [23] as the loss function.

The exact reason why generative pre-training would help
enhance the representation ability of backbone models still
remains an open question. However, abundant experimental
results have conveyed that predicting missing parts according
to known parts demands high reasoning ability and global
comprehension capacity of the model. What’s more, gen-
erative pre-training is more efficient and suitable for point
cloud object analysis than contrastive pre-training, given that
contrastive pre-training typically requires a large amount of
training data to avoid trivial overfitting solutions but there
has always been a data-starvation problem in point cloud
object research field.

3.2. Overall Pipeline

Different from the aforementioned generative pre-training
methods that focus on uni-modal point cloud reconstruction,
we propose a novel cross-modal pre-training approach of
generating view images from instructed camera poses.

The overall architecture of our proposed TAP pre-training
model is depicted in Figure 2. Our model takes as an input
point cloud P ∈ RN×3, where N is the number of points
in the input point cloud. The basic building block of TAP
mainly consists of: 1) a 3D Backbone that extracts 3D ge-
ometric features F3d ∈ Rn×C3d , where n is the number of
downsampled center points and C3d is the geometric feature
dimension; 2) a pose-dependent Photograph Module that
takes as inputs F3d and pose matrix R ∈ R3×3, and predicts
view image features FR

2d ∈ Rh×w×C2d conditioned on R,
where h,w are height and width of predicted view image
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feature map; 3) an 2D Generator that decodes FR
2d into an

RGB image IRgen ∈ RH×W×3, where H,W are height and
width of the output view image.

As we place no restriction on F3d, the 3D Backbone can be
arbitrarily chosen and adopted. Therefore, our TAP is more
flexible and compatible than existing generative pre-training
methods that are limited to Transformer-based architecture.
Experimental results in Section 4 will later verify that TAP
brings consistent improvement to all kinds of point cloud
models. The technical designs of the pose-dependent Photo-
graph Module will be thoroughly discussed in Section 3.3.
The 2D Generator consists of four Transpose Convolution
layers to progressively upsample image resolution and de-
code RGB colors of each pixel.

3.3. Photograph Module

Architectural Design. As illustrated in Figure 2, we lever-
age cross-attention mechanism from Transformers [46] to
build our pose-dependent Photograph Module.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

where dk is the scaling factor, and Q,K, V are quries, keys
and values matrix. More specifically, we design a Query
Generator Φ to encode camera pose conditions into query
tokens: Q = Φ(R) ∈ Rhw×C2d . We also design a Memory
Builder Θ to construct K and V from 3D geometric features:
K = V = Θ(F3d) ∈ Rm×C2d , where m is the number of
memory tokens. The output sequence of the cross attention
layers will be rearranged from hw × C2d to h × w × C2d,
forming the predicted view image features FR

2d .
During the cross-attention calculation process, we do

not explicitly provide any projection clues of which 3D
points would project to which 2D pixel. Instead, the Pho-
tograph Module learns by itself how to arrange unordered
3D feature points to ordered 2D pixel grids, purely based
on semantic similarities between 3D geometric features and
our delicately-designed queries that reveal pose information.
Since one sample will only have one set of memory tokens in
3D space but its view images from different poses are quite
distinct from each other, learning to predict precise view
images from instructed poses in a data-driven manner is not
a trivial task. Therefore, during the end-to-end optimization
process, the 3D backbone is trained to have a stronger per-
ception of the object’s overall geometric structure and gain
a higher representative ability of the stereoscopic relations.
In this way, our proposed 3D-to-2D generative pre-training
would help exploit the potential and enhance the strength of
3D backbone models.

Query Generator. The query generator Φ is designed to
encode pose condition R into 2D grid of shape h × w. In
object analysis, common practice is leveraging parallel light

shading to project 3D objects onto 2D grids, and pose matrix
R here is used to rotate objects into desired angles before
projection. Therefore, each 2D grid actually represents an
optical line that starts from infinity, passes through 3D ob-
jects and ends at the 2D plane. As a consequence, we choose
the direction and the origin points that the optical line goes
through as the delegate of the query grid.

Before deriving formulations of optical lines for each grid,
let us first revisit the parallel light shading process for better
comprehension. Given 3D coordinates x = (x, y, z) of a
point cloud P and pose matrix R, rotation is first performed
to align the object to the ideal pose position:

x′ = (x′, y′, z′) = Rx (3)

Then we just omit the final dimension z′ and evenly split the
first two dimensions (x′, y′) into 2D grids (u, v):

u =
x′ − x0

gh
+ oh, v =

y′ − y0
gw

+ ow (4)

where (x0, y0) is the minimum value of (x′, y′), (gh, gw)
is the grid size, (oh, ow) is the offset value to place the
projected object at the center of the image. 0 ≤ u ≤ h −
1, 0 ≤ v ≤ w − 1 and (u, v) is a sampled pixel coordinate
from the 2D grid.

Now let us begin to derive formulations of the optical line
that passes through the query grid. We only know (u, v) for
each grid and we want to reversely trace which 3D points
(x, y, z) are on the same optical line during parallel light
projection. According to Eq. 4:

x′ = ghu+ x0 − oh = Ψh(u)

y′ = gwv + y0 − ow = Ψw(v)
(5)

If we denote A = R−1 and Aij as the element at ith row
and jth column, then according to Eq. 3:

x = A11Ψh(u) +A12Ψw(v) +A13z
′ = Ωx(u, v) +A13z

′

y = A21Ψh(u) +A22Ψw(v) +A23z
′ = Ωy(u, v) +A23z

′

z = A31Ψh(u) +A32Ψw(v) +A33z
′ = Ωz(u, v) +A33z

′

(6)
According to the definition of line’s parametric equation,
Eq. 6 represents a line passing through the origin point
O : (Ωx(u, v),Ωy(u, v),Ωz(u, v)) with optical line direc-
tion d = (A13, A23, A33), where Ωx,Ωy,Ωz are xyz coor-
dinates of O and their formulations are conditioned on u, v.
Therefore, we concatenate the coordinate of origin point O,
normalized direction d† = d/∥d∥2 and normalized position
(u/h, v/w) as positional embedding together to be the initial
state of our query. A multi-layer-perceptron (MLP) module
is later leveraged to map the 8-dim initial query to higher
dimensional space.

Memory Builder. The memory builder takes F3d as input to
prepare for initial state of K,V in cross-attention layers. We
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first concatenate aligned 3D coordinate P3d with 3D features
to enhance the geometric knowledge of F3d:

F̂3d = MLP(cat(F3d, P3d)) (7)

Additionally, we initialize a learnable memory token Tpad as
the pad token and concatenate it with F̂3d to obtain the initial
state of K,V . The reason for concatenating a learnable
pad token Tpad is that there are white background areas on
the projected image (as shown in Figure 2). As F3d only
encodes foreground objects, we further need a learnable pad
token to represent background regions. Otherwise, the cross-
attention layers will be confused to learn how to combine
foreground tokens into background features and this will
inevitably diminish the pre-training effectiveness.

3.4. Objective Function

We perform per-pixel supervision with Mean Squared
Error (MSE) loss between generated view image IRgen and
ground truth image IRgt , aligned by camera pose R. For
simplicity, we will omit R in later formulations. As the
background of the rendered ground truth images is all white
and reveals little information, we further design a compound
loss to balance the weight between foreground regions and
background regions:

L(Igen, Igt) = wfgDfg + wbgDbg (8)

Dk(Ikgen, I
k
gt) =

1

HW

∑
h,w

(Ikgen(h,w)− Ikgt(h,w))
2 (9)

where k = fg (foreground), bg (background) and wfg, wbg

are loss weights for foreground and background, respec-
tively. Such per-pixel supervision is more precise than the
ambiguous set-to-set Chamfer Distance introduced in Eq. 1.

4. Experiments
In this section, we first introduce the setups of our pre-

training scheme. Then we evaluate our pre-training method
on various point cloud backbones by fine-tuning them on
different downstream tasks, such as point cloud classification
on ModelNet and ScanObjectNN datasets, and part segmen-
tation on the ShapeNetPart dataset. Finally, we provide
in-depth ablation studies for the architectural design of our
proposed TAP pre-training pipeline.

4.1. Pre-training Setups

Data Setups To align with previous research practices [58,
30, 54], we choose ShapeNet [6] that contains more than
50 thousand CAD models as our pre-training datasets. We
sampled 1024 points from each 3D CAD model to form the
point clouds, consistent with previous work. Since ShapeNet
does not provide images for each point cloud, we use the

Table 1: Classification results on the ScanObjectNN
dataset. We report the overall accuracy (%). The results
with † are reproduced by PointNeXt [35] repository.

Method OBJ BG OBJ ONLY PB T50 RS

Hierarchical Models with TAP Pre-training
†DGCNN [48] - - 86.1

+ TAP - - 86.6 (+0.5)
†PointNet++ [33] - - 86.2

+ TAP - - 86.8 (+0.6)
†PointMLP [27] - - 87.4

+ TAP - - 88.5 (+1.1)

Standard Transformers with Generative Pre-training

w/o pre-training [46] 79.86 80.55 77.24
OcCo [47] 84.85 85.54 78.79
Point-BERT [58] 87.43 88.12 83.07
MaskPoint [23] 89.30 88.10 84.30
Point-MAE [30] 90.02 88.29 85.18
TAP (Ours) 90.36 89.50 85.67

rendered image from 12 surrounding viewpoints generated
by MVCNN [42]. During our pre-training, the models are
exclusively pre-trained with the training split following the
practice of previous work [58].

Architecture Setups We conduct experiments on var-
ious point cloud encoders, including PointNet++ [33],
DGCNN [48], PointMLP [27] and Transformers [58] for
point cloud object classification. During the pre-training
stage, the photograph module takes encoded point cloud
features and pose conditions as inputs to generate a 32×
downsampled view image feature map of size 7 × 7 from
a specific viewpoint. Then the 2D generator progressively
upsamples the image feature map to decode RGB view im-
ages of size 224 × 224. We do not alter the architecture
of the point cloud backbone since the photograph module
and the 2D generator are exclusively used during the pre-
training phase and are dropped during the fine-tuning stage.
In our experiment, the photograph module is a six-layer
cross-attention block, with attention layer channels limited
to 256 to enhance efficiency. During the pre-training task on
ShapeNet, we utilized four simple transpose convolutions to
upsample the reconstructed 2D feature map and predict the
RGB value for each pixel.

Implementation Details The experiments of TAP pre-
training and finetuning on various downstream tasks are
implemented with PyTorch [31]. We utilize AdamW [26] op-
timizer and the CosineAnnealing learning rate scheduler [25]
to pre-train the point cloud backbone for 100 epochs. We set
the initial learning rate as 5e−4 and weight decay as 5e−2.
In our experiment, we train various point cloud backbones
with 32 batch sizes on a single Nvidia 3090Ti GPU. The
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Table 2: Results comparisons with previous methods on
the ScanObjectNN and ModelNet40 datasets. The model
parameters number (#Params) and overall accuracy (%) are
reported. † denotes our reproduced results of PointMLP on
the ModelNet40 dataset. Methods with ∗ introduce extra
knowledge from pre-trained image models or pre-trained
vision-language models. We do not compete with them for
fair comparison and only list them for reference.

Method #Params (M) ScanObjectNN ModelNet40

Supervised Learning Only

PointNet [32] 3.5 68.0 89.2
PointNet++ [33] 1.5 77.9 90.7
Transformer [46] 22.1 77.24 91.4
DGCNN [48] 1.8 78.1 92.9
PointCNN [22] 0.6 78.5 92.2
DRNet [36] - 80.3 93.1
SimpleView [15] - 80.5±0.3 93.9
GBNet [37] 8.8 81.0 93.8
PRA-Net [9] 2.3 81.0 93.7
MVTN [17] 11.2 82.8 93.8
RepSurf-U [38] 1.5 84.3 94.4
PointMLP [27] 12.6 85.4±0.3 93.5†

PointNeXt [35] 1.4 87.7±0.4 93.7

Transformers with Pre-training

OcCo [47] 22.1 78.8 92.1
Point-BERT [58] 22.1 83.1 93.2
MaskPoint [23] 22.1 84.3 93.8
Point-MAE [30] 22.1 85.2 93.8
Point-M2AE [60] 15.3 86.4 94.0

With Pre-trained Image Model

ACT [13]∗ 22.1 88.2 93.7
I2P-MAE [61]∗ - 90.1 93.7
ReCon [34]∗ 44.3 90.6 94.1

Our Proposed TAP Pre-training

PointMLP + TAP 12.6 88.5 94.0

drop path rate of the cross-attention layer is set to 0.1. The
foreground and background loss weights wfg, wbg are set to
20 and 1. The detailed architecture of our simple 2D genera-
tor is: TConv(256, 128, 5, 4) → TConv(128, 64, 3, 2) →
TConv(64, 32, 3, 2) → TConv(32, 3, 3, 2), where TConv
stands for Transpose Convolution and the four numbers
in the tuple denotes (Cin, Cout,Kernel,Stride) respectively.
During the fine-tuning stage, we perform a learning rate
warming up for point cloud backbones with 10 epochs, and
keep other settings unchanged for a fair comparison.

4.2. Downstream Tasks

In this section, we report the experimental results of var-
ious downstream tasks. We follow the previous work to
conduct experiments of object classification on real-world
ScanObjectNN and synthetic ModelNet40 datasets. We also
verify the effectiveness of our pre-training method on the

Figure 3: The visualization results of our proposed 3D-
to-2D generative pre-training. The first row displays view
images generated by our TAP pre-training pipeline and the
second row shows ground truth images. Our TAP can pro-
duce view images with appropriate shapes and reflection
colors, demonstrating its ability in capturing geometric struc-
ture and stereoscopic knowledge.

part segmentation task with the ShapeNetPart dataset.

4.2.1 Object Classification

Main Results. To evaluate the effectiveness of our proposed
TAP, we implement it with various point cloud architectures,
including classical baselines such as PointNet++, DGCNN,
and PointMLP, as well as widely used Standard Transform-
ers backbone for existing generative pre-training methods.
We follow the common practice to experiment our model on
three variants of the ScanObjectNN dataset: 1) OBJ-ONLY:
cropping object without any background; 2) OBJ-BG: con-
taining the background and object; 3) PB-T50-RS: adopting
various augmentations to the objects. We reported the results
comparing with existing pre-training methods in Table 1.

As shown in the upper part of the table, we pre-
train the graph-based architecture DGCNN, set-abstraction-
based architecture PointNet++, and MLP-based architecture
PointMLP with TAP, and observe consistent improvements
across models. The results strongly convey that our pro-
posed TAP can be successfully applied to various types of
point cloud models and the proposed novel 3D-to-2D gen-
erative pre-training is effective regardless of the backbone
architecture. Considering that nearly all existing generative
pre-training methods are specially designed for Transformer-
based architecture, our TAP is much superior in its wider
adaptation and higher flexibility. Additionally, we also pro-
vide a detailed and fair comparison with previous work by
implementing TAP with the Standard Transformers archi-
tecture in the lower part of the table, where no hierarchical
designs or inductive bias is included. Our TAP outperforms
previous pre-training methods in all three split settings, pro-
viding strong evidence that our 3D-to-2D generative pre-
training strategy can also benefit attention-based architec-
tures and surpass uni-modal generative pre-training competi-
tors. It is worth noting that although TAP and many previous
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Table 3: Part segmentation results on the ShapeNetPart dataset. We report the mean IoU across all part categories mIoUC ,
the mean IoU across all instances mIoUI , and the IoU for each category.

Methods mIoUC mIoUI aero bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table

Supervised Representation Learning Only

PointNet [32] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [33] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [48] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
PointMLP [27] 84.6 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3
KPConv [44] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

Transformers with Uni-modal Generative Pre-training

Point-BERT [58] 84.1 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
Point-MAE [30] 84.2 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
MaskPoint [23] 84.4 86.0 84.2 85.6 88.1 80.3 91.2 79.5 91.9 87.8 86.2 95.3 76.9 95.0 85.3 64.4 76.9 81.8
Point-M2AE [60] 84.9 86.5 – – – – – – – – – – – – – – – –

Our Proposed 3D-to-2D Generative Pre-training

PointMLP+TAP 85.2 86.9 84.8 86.1 89.5 82.5 92.1 75.9 92.3 88.7 85.6 96.5 79.8 96.0 85.9 66.2 78.1 83.2

pre-training approaches have significantly improved the per-
formance of Transformers in point cloud tasks, increasing
the accuracy from 77.24 to 85.67, they still lag far behind
advanced point cloud networks such as PointMLP. There-
fore, TAP’s applicability to various models is an important
characteristic that would benefit future research.

Comparisons with Previous Methods. To clearly demon-
strate the high performance of our proposed TAP pre-training
in object classification tasks, we compare TAP with exist-
ing methods on both synthetic ModelNet and real-world
ScanObjectNN (the hardest PB-T50-RS variant) datasets in
Table 2. We categorize existing methods into two types: (1)
architecture-oriented methods, which focus on developing
novel model architectures for 3D point clouds and do not in-
volve any pre-training techniques, and (2) pre-training meth-
ods, which pay more attention to the pre-training strategy and
whose backbone model are mostly limited to Transformer-
base architecture. It’s worth noticing that methods marked
with an asterisk (∗) incorporate additional knowledge from
pre-trained image models or pre-trained vision-language
models. To ensure a fair and unbiased comparison, we re-
frain from directly comparing our method with these ap-
proaches. However, we include them in the listing for refer-
ence purposes, acknowledging their existence and potential
relevance in related research.

From the experimental results, we can see that accom-
panied by PointMLP backbone model, our proposed TAP
pre-training achieves the best classification accuracy on
ScanObjectNN and ModelNet40 among existing models
(with no pre-trained knowledge from image or language like
P2P [49]), demonstrating the effectiveness of our approach
and validating the superiority of our 3D-to-2D cross-modal
generative pre-training method over previous generative pre-
training methods. Moreover, we also note that our proposed
method has brought higher performance improvements on
the ScanObjectNN dataset than on ModelNet40. This may

be attributed to the reason that the cross-modal generative
pre-training has enhanced the network’s ability to understand
point clouds from different views, which is beneficial for a
more robust understanding of the real-scan data with more
noise and disturbance in the ScanObjectNN dataset.

Visualization Results. Figure 3 shows the visualization re-
sults of TAP. The first row shows the generated view images
while the second row displays the ground truth images for
reference. The TAP method can successfully predict the ac-
curate shape of the object and the RGB colors that represent
light reflections in rendered images. Therefore, TAP is capa-
ble of capturing the geometric structure of 3D objects and
reasoning occlusion relations from specific camera poses.

4.2.2 Part Segmentation

Performing dense prediction is always a more challeng-
ing task compared with classification. In this section, we
evaluate the local distinguishability of our proposed TAP
pre-training method, fine-tuning the pre-trained point cloud
model on the ShapeNetPart dataset for the part segmentation
task. Quantitative results are shown in Table 3. We imple-
ment PointMLP as the backbone model and compare our
TAP results with two mainstreams of previous literature. The
upper row displays classical architecture-oriented methods
that focus on network design and are trained from scratch.
The lower row shows members of the generative pre-training
family that rely on Transformer-based architectures.

According to results comparisons, our TAP pre-training
significantly improves the part segmentation performance
of the PointMLP backbone, increasing class mIoU by 0.6
and instance mIoU by 0.8. More importantly, our TAP pre-
training achieves state-of-the-art performance on both class
mIoU and instance mIoU, surpassing leading works in both
tracks. Specifically, TAP exceeds the performance of Point-
M2AE on instance mIoU by 0.4. This satisfactory perfor-
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mance serves as strong evidence to convey that our proposed
TAP pre-training is superior to previous uni-model genera-
tive pre-training mechanisms in dense prediction tasks. This
may be attributed to the factor that our supervision in 2D
with MSE loss is more precise than the ambiguous Chamfer
Distance in 3D reconstruction. Therefore, models with TAP
pre-training obtain more accurate comprehension of local
geometry and detail awareness, which contributes to mIoU
gain in dense prediction tasks. What’s more, TAP outper-
forms KPConv on instance mIoU by 0.5, demonstrating that
the proposed 3D-to-2D generative pre-training method can
fully exploit the potential of the point cloud model and help
it have a better perception of objects’ geometric structure. As
TAP is adaptable to any architecture, future improvements in
architectural design can also benefit from TAP pre-training.

4.2.3 Few-shot Classification

Following Point-BERT [58], we conduct few-shot classi-
fication with Standard Transformers on ModelNet40 [52]
dataset. As shown in Table 4, we report mean overall accu-
racy and standard deviation (mOA±std) on 10 pre-defined
data folders for each few-shot setting. The way and shot in
Table 4 specify the number of categories and the number of
training examples per category, respectively.

From the results, TAP achieves the highest mean over-
all accuracy across all few-shot settings when compared to
previous generative pre-training approaches. Furthermore,
TAP exhibits significantly lower standard deviations than
those reported in the existing literature for the majority of
few-shot settings, which signifies its robust performance and
consistent superiority. This indicates that TAP is not only
capable of achieving high mean overall accuracy but also
exhibits reliability and robustness across various few-shot
settings. Such stability is crucial in real-world applications,
where consistency and predictability are vital for practical
deployment.

4.3. Scene-level Dense Predictions

To assess the effectiveness of TAP in handling scene-
level dense prediction tasks, we carry out experiments on
more complicated scene-level object detection and seman-
tic segmentation on the ScanNetV2 [12] dataset. For the
object detection task, we adopt 3DETR [29] and pre-train
its encoder on the object-level dataset ShapeNet [6] with
TAP. Average precision at 0.25 and 0.5 IoU thresholds are
reported. Regarding semantic segmentation, we employ the
PointTransformerV2 [51](PTv2) model and pre-train it on
the ScanNetV2 dataset with TAP. We report mean IoU for
evaluation metric. It is worth mentioning that PTv2 repre-
sents the current state-of-the-art approach with open-source
code availability.

Based on the results presented in Table 5, TAP consis-

Table 4: Few-shot Classification with Standard Trans-
formers on ModelNet40 dataset. We report mean overall
accuracy and standard deviation on 10 pre-defined data fold-
ers for each setting. Best results are marked bold.

Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

w/o pre-training 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3

Point-BERT [58] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
MaskPoint [23] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
Point-MAE [30] 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0

TAP 97.3 ± 1.8 97.8 ± 1.7 93.1 ± 2.6 95.8 ± 1.0

Table 5: Scene-level object detection and semantic seg-
mentation on ScanNetV2 [12]. Average precision at 0.25
IoU thresholds (AP0.25) and 0.5 IoU thresholds (AP0.5) of
detection and mean Intersection-over-Union (mIoU) of se-
mantic segmentation are reported.

Method
Det (3DETR [29]) Seg (PTv2 [51])

AP0.25 AP0.5 mIoU

Baseline 62.1 37.9 72.4
+TAP 63.0 (+0.9) 41.4 (+3.5) 72.6 (+0.2)

tently enhances the performance of all baselines, thereby
showcasing its efficacy in tackling more intricate scene-level
dense prediction tasks. Remarkably, even with the encoder
solely pre-trained on an object-level dataset for scene-level
detection task, significant improvements are observed in
both AP0.25 and AP0.5 metrics. This suggests that the learned
representations from TAP effectively capture relevant infor-
mation and generalize well to complex scenes, even when the
pre-training data is limited to object-level collections. Such
generalization capabilities are valuable in scenarios where
obtaining large-scale fully annotated scene-level datasets
may be challenging or expensive.

4.4. Ablation Studies

To investigate the architectural design of our proposed
Photograph Module in TAP pre-training pipeline, we con-
duct extensive ablation studies on the ScanObjectNN dataset
with PointMLP as the backbone model.

Photograph Module Architectural Designs. In Photograph
Module, we implement cross-attention layers to generate
view image feature maps conditioned on pose instruction.
We believe that letting the module learn by itself how to
rearrange 3D point features in 2D grids will enhance the
representation ability of the 3D backbone. Therefore, we
conduct ablation studies to verify this hypothesis. As shown
in Table 6a, we implement Model A1 with no attention lay-
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Table 6: Ablation studies on Photograph module in TAP pre-training pipeline. We choose PointMLP as the backbone model and
conduct ablation studies on the ScanObjectNN dataset from two aspects: overall architectural designs and query designs. In Table(a), we
first investigate the effectiveness of cross-attention design compared with direct projection (Model A1) and direct project with self-attention
(Model A2). Then we analyze the influence of the different number of attention layers and feature channels in Model B and Model C. Finally,
we discuss whether pad token in memory builder is beneficial in Model D. In Table(b), we conduct further experiments to compare different
approaches for query designing: (1) Using learnable query based on the given viewpoints (Model E) or use mathematical formulations
derived in Eq. 6. (2) The information we need when we mathematically encode pose information into init query status: (i) Origin: the
coordinate of origin point O that the optical line passes through. (ii) Direction: The normalized direction of the optical line. (iii) PE: The
position embedding for each grid.

(a) Overall Architectural Designs.

Model Attention Type LayerNum. Channels Mem.Pad Acc.(%)

A1 None – 256 ✗ 87.6 (-0.9)
A2 SelfAttn 6 layers 256 ✗ 87.8 (-0.7)

B CrossAttn 2 layers 256 ✓ 87.9 (-0.6)
C CrossAttn 6 layers 512 ✓ 87.8 (-0.7)
D CrossAttn 6 layers 256 ✗ 88.3 (-0.2)

TAP CrossAttn 6 layers 256 ✓ 88.5

(b) Query Designs.

Model Query Type Origin Direction PE Acc.(%)

E Learnable ✗ ✗ ✗ 87.5 (-1.0)

F1 Formula ✗ ✓ ✓ 86.5 (-2.0)
F2 Formula ✓ ✗ ✗ 87.8 (-0.7)
F3 Formula ✓ ✓ ✗ 88.0 (-0.5)
F4 Formula ✓ ✗ ✓ 88.1 (-0.4)

TAP Formula ✓ ✓ ✓ 88.5

ers, directly projecting 3D feature points to 2D grids based
on Eq. 3 and Eq. 4. This results in a much simpler pre-
training task, as the projection relation has been directly told.
Additionally, in Model A2, we add self-attention layers after
explicit projection to help the model capture longer-range
correlations. Pose knowledge is encoded as a pose token that
is concatenated to projected grids, similar to the CLS token
in classification Transformers. According to quantitative re-
sults comparison with TAP that implements cross-attention
layers, fine-tuning results of pre-training methods in A1 and
A2 version show inferiority. Therefore, the cross-attention
architecture we designed to entirely LEARN the projection
relation is the most suitable choice for the proposed 3D-to-
2D generative pre-training.

What’s more, we discuss the number of cross-attention
layers, the dimension of feature channels and whether to
concatenate pad token in memory builder in Model B,C,D.
According to the results, more cross-attention layers show
stronger representation ability, while too large channel num-
ber will lead to performance decrease caused by over-fitting.
The performance gain from Model D to TAP also verifies
that the pad token design in the memory builder is essential.

Query Generator Designs. In the query generator, we de-
rive the mathematical formulation of the optical lines passing
through 2D grids. We propose to concatenate the coordi-
nate of origin point O, normalized direction d† and position
embedding (u/h, v/w) as the initial state of queries. In
Table 6b, we first compare this mathematical design with
totally learnable queries that takes pose matrix R as input
and implements MLP layers to predict query for each grid.
As shown in Model E, learnable queries cannot satisfactorily
encode pose information, while our derived formulation for
query construction is both clearer in physical meaning and

more competitive in fine-tuning accuracy.
In ablation F1 to F4, we progressively discuss the three

components of query generation. Quantitative comparison
with TAP verifies that every component is indispensable for
query generation, where coordinates of origin points are of
the most importance.

5. Conclusions
In this paper, we have proposed a novel 3D-to-2D genera-

tive pre-training method TAP that is adaptable to any point
cloud model. We implemented the cross-attention mecha-
nism to generate view images of point clouds from instructed
camera poses. To better encode pose conditions and gener-
ate physically meaningful queries, we derived mathematical
formulations of optical lines. The proposed TAP pre-training
had higher preciseness in supervision and broader adaptation
to different backbones, compared with directly reconstruct-
ing point clouds in previous methods. Experimental results
conveyed that the TAP pre-training can help the backbone
models better capture the structural knowledge and stereo-
scopic relations. Fine-tuning results of TAP pre-training
achieve state-of-the-art performance on ScanObjectNN clas-
sification and ShapeNetPart segmentation, among methods
that do not include any pre-trained image or text models. We
believe the cross-modal generative pre-training paradigm
will be a promising direction for future research.
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