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Abstract

Generating accurate pseudo-labels under the supervi-
sion of image categories is a crucial step in Weakly Su-
pervised Semantic Segmentation (WSSS). In this work, we
propose a Mat-Label pipeline that provides a fresh way to
treat WSSS pseudo-labels generation as an image matting
task. By taking a trimap as input which specifies the fore-
ground, background and unknown regions, the image mat-
ting task outputs an object mask with fine edges. The in-
tuition behind our Mat-Label is that generating trimap is
much easier than generating pseudo-labels directly under
weakly supervised setting. Although current CAM-based
methods are off-the-shelf solutions for generating a trimap,
they suffer from cross-category and foreground-background
pixel prediction confusion. To solve this problem, we de-
velop a Double Decoupled Class Activation Map (D2CAM)
for Mat-Label to generate a high-quality trimap. By draw-
ing on the idea of metric learning, we explicitly model class
activation map with category decoupling and foreground-
background decoupling. We also design two simple yet ef-
fective refinement constraints for D2CAM to stabilize opti-
mization and eliminate non-exclusive activation. Extensive
experiments validate that our Mat-Label achieves substan-
tial and consistent performance gains compared to current
state-of-the-art WSSS approaches.

1. Introduction

Semantic segmentation is a fundamental task in com-
puter vision that aims to assign pixel-level semantic labels
to objects in an image. In the last decade, the boom in
deep neural networks has facilitated the rapid development
of deep learning based semantic segmentation methods [3].
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Figure 1. The schematic diagram of the pseudo-labels genera-
tion pipeline based on the common CAM and our Mat-Label. The
black line is the training phase workflow, and the blue line is the
inference phase workflow, and the red line is the loss calculation.

However, fully supervised semantic segmentation models
rely on expensive and time-consuming pixel-level annota-
tions. Therefore, weakly supervised semantic segmentation
(WSSS) has attracted increasing attention, as it is trained
only by inexpensive annotations (e.g. scribbles [31], bound-
ing box [9], or image-level [47] labels). In this work, we
focus on WSSS based on image-level labels, which aims to
use only object category labeling supervision and is consid-
ered to be the cheapest yet most challenging setting.

Most of existing image-level WSSS methods usually
adopt a pipeline containing the following three sequential
steps: i) generating pseudo-labels through class activation
maps, e.g. CAM [47]; ii) refining the pseudo-labels as seg-
mentation ground truth masks; iii) training the segmenta-
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tion network under pseudo ground truth masks supervision.
Since the quality of the generated pseudo-labels in the first
step has a great impact on the final segmentation results,
many CAM-based variants [47, 40, 23] have tried to gener-
ate better pseudo-labels under the supervision of only im-
age category labels. However, the generation of complete
and edge-accurate pseudo-labels is still unsatisfactory and
challenging for existing CAM-based methods.

As a technique ignored by the current WSSS approaches,
image matting [29] aims to utilize the input priori informa-
tion (i.e. trimap that specifies the foreground regions, back-
ground regions, and unknown regions) to predict the prob-
ability that each pixel belongs to the foreground object (i.e.
alpha matte α). There are two reasons that motivate us to
explore the use of image matting to generate WSSS pseudo-
labels. First, the alpha matte derived from image matting
gives high response to foreground objects and low response
to backgrounds, so the region of the object can be easily de-
termined. In addition, alpha matte has more complete ob-
ject activation and accurate edge representation than com-
mon CAM [47], as shown in Figure 1 and Figure 2. With
the above attractive properties, alpha matte can be used as
an available form of pseudo-labels. Second, it is difficult to
obtain complete and accurate activation of objects through
CAM [47] by relying on image category labels alone, but it
is much easier to construct the trimap priori required for im-
age matting. Specifically, trimap only needs to distinguish
the foreground from the background as much as possible
and marks the uncertain regions as unknown.

Motivated by the above discussions, we propose a
pseudo-labels generation pipeline called Mat-Label, which
treats WSSS pseudo-labels generation as an image mat-
ting task, as shown in Figure 1 (b). Since the quality of
trimap has a great impact on the final alpha matte [29],
how to obtain a high-quality trimap with good foreground-
background division under image category supervision only
becomes the most urgent challenge for our Mat-Label to
solve. The off-the-shelf solution is to use the classical
CAM [47] or its variants to build the trimap. However,
there are two common flaws often exist with these CAM-
based works: 1) The foreground region is incompletely ac-
tivated, or the background region is over-activated; 2) Some
foreground object pixels are classified in the wrong cate-
gory. The flaw 1) is caused by the lack of unawareness
and modeling of foreground and background in existing
CAM-based methods, while the flaw 2) is due to the non-
exclusive activation [7] of different classes during the train-
ing of the multi-label classifier. These two flaws prevent
existing CAM-based methods from constructing a trimap
with good foreground-background division.

To alleviate the above two flaws, we can generate
class activation maps by explicitly modeling the fore-
ground and background, inspired by recent approaches [35,

27, 41, 42] to model background in weakly supervised
learning. However, these previous methods are designed
to model category-independent background regions (e.g.
sky, grass, and sea) and are not competent to category-
dependent WSSS pseudo-labels generation task. There-
fore, we develop a Double Decoupled Class Activation
Map (D2CAM) to construct a high-quality trimap for our
Mat-Label pipeline, in which we design a new class ac-
tivation map learning strategy with both category decou-
pling and foreground-background decoupling to accommo-
date the WSSS task. On the one hand, we set category-
separated classification ground truth to optimize the class
activation map for each category individually, as shown
in Figure 1 (b). On the other hand, we design a special
foreground-background decoupled learning that is different
from previous approaches, drawing on the idea of triplet
loss [10] in metric learning. Specifically, we encourage the
classification vector obtained from the foreground region to
be close to the ground truth, while the classification vector
from the background region is far from the ground truth to
obtain a better foreground-background division and thus al-
leviate the flaw 1). In addition, we design two simple yet
effective class activation map refinement constraints to sta-
bilize the optimization process and mitigate the flaw 2) by
suppress non-exclusive activation, respectively. The main
contributions of this work are summarized as follows:

• We propose an interesting and promising WSSS
pseudo-labels generation pipeline called Mat-Label,
which is the first solid baseline to treat WSSS pseudo-
labels generation as an image matting task;

• We develop a Double Decoupled Class Activation Map
(D2CAM) to generate category-dependent trimap with
good foreground-background division for Mat-Label;

• We explicitly model class activation map with category
decoupling and foreground-background decoupling by
constructing category-separated classification ground
truth and drawing on the idea of metric learning;

• We design two simple but effective refinement con-
straints for class activation map training to stabilize
optimization and eliminate non-exclusive activation.

Extensive experiments validates that our Mat-Label
pipeline substantially achieves the state-of-the-art perfor-
mance of WSSS on both PASCAL VOC 2012 and MS
COCO 2014 datasets.

2. Related Work
Pseudo-labels Generation for WSSS. Extracting a
CAM [47] has been the standard step for generating pseudo-
initial masks in WSSS. However, focuses on the most dis-
criminative parts of the object, resulting in an incomplete
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mask since it’s trained for classification. Thus, several
CAM-based variants have been developed to address this
issue. Erasure-based approaches [14, 20, 46, 44] use itera-
tive erasure strategies that retain erased features to prevent
the classification network from focusing only on discrim-
inative object parts. SEC [18] proposes three principles,
i.e., seed, expand, and constrain, to refine CAMs, which are
followed by many other works. Some methods [40, 23] ag-
gregate different contexts by introducing feature maps from
different locations or layers to obtain a larger activation re-
gion. ReCAM [7] reactivates the converged CAM with bi-
nary cross-entropy loss using softmax cross-entropy loss.
L2G [17] gives an online local-to-global knowledge transfer
framework for high-quality object attention mining. More
recently, ESOL [30] provide an extension and contraction
scheme for deformable convolution-based offset learning to
obtain a more complete class activation map. In this work,
we propose a new image matting based pseudo-labels gen-
eration pipeline that clearly differs from the above methods.
Pseudo-labels Refinement for WSSS. The generated
pseudo-labels are usually further enhanced by refinement
steps [15, 1, 16, 24]. Despite the rapid development of re-
finement labeling methods, they still rely on good initial la-
bels. If the initial mask prediction yields incorrect activa-
tion regions, applying the refinement step will cover more
inaccurate regions. Experimental results show that our Mat-
Label cascades with these refinement steps excite more ex-
citing performance, due to the better initialization provided.
Image Matting. The image matting algorithms [29] em-
ploy the user input as an additional priori to precisely sep-
arate a foreground object for image editing and composit-
ing purposes. The trimap is the most common priori infor-
mation, which provides information about the foreground,
background, and unknown regions. Image matting algo-
rithms use the priori information provided by trimap to infer
the probability that a location region belongs to the fore-
ground. Traditional image matting methods [29, 5] and
deep learning based image matting methods [34, 36] have
been well-developed and applied in the past decade. In this
work, we treat WSSS pseudo-labels generation as an image
matting task for the first time. What’s even more significant
is that we reveal the potential of combining WSSS with im-
age matting, which can provide inspiration for future work.
Background Modeling in Weakly Supervised Learning.
Background modeling has been shown to improve the per-
formance of weakly supervised learning in other scopes be-
sides WSSS pseudo-labels generation. Background-aware
pooling(BAP) [35] is a background-aware pooling strat-
egy for WSSS with bounding box annotations. Specifi-
cally, it uses the region outside the ground truth bound-
ing box as the background context for objects in the inner
box. Lee et al. [27] propose two background-aware losses
to suppress the localization scores of background frames

in weakly supervised action localization. BAS [41] im-
proves the performance of weakly supervised object local-
ization by suppressing the activation values of background
regions. C2AM [42] models class-agnostic background re-
gions for the refinement of WSSS labels by introducing
contrastive learning. Note that C2AM [42] is used to re-
fine the WSSS labels rather than generate the pseudo-labels,
so it is not the direct competitor of our work but can be
used together. In general, our D2CAM for generating
trimap in Mat-Label has the following significant dif-
ferences compared to the above methods: 1) Existing
methods aim to model category-independent background,
i.e. the regions (e.g. sky, grass, and sea) that do not contain
any category of objects. In contrast, our D2CAM models
category-dependent background, e.g. for “person” category,
“bicycle” around the “person” should also be considered as
background regions, so the problem we face is more chal-
lenging; 2) Our D2CAM introduces the concept of triplet
loss [10] for the first time to model both foreground and
background regions in a unified form; 3) Our D2CAM de-
signs two refinement constraints that can further improve
the quality of foreground-background modeling; 4) Existing
methods are developed for other weakly supervised tasks
and cannot be directly applied to pseudo-labels generation
for WSSS. To the best of our knowledge, our D2CAM is
the first WSSS method to construct class activation maps
by foreground-background modeling, while C2AM [42]
can only yield category-independent background maps for
pseudo-labels refinement and can not competently generate
category-dependent class activation maps.

3. Methodology
In this work, we propose a pseudo-labels generation

pipeline named Mat-Label to obtain high-quality pseudo
masks using only image category labels. The core idea of
our Mat-Label is to treat the WSSS pseudo-labels genera-
tion as an image matting task [29].

3.1. Preliminaries

Image matting [29] is one of the fundamental tasks in
computer vision and is mainly used to accurately separate
foreground objects. A natural RGB image can be repre-
sented as a linear combination of foreground F ∈ RH×W×3

and background B ∈ RH×W×3 with alpha matte α ∈
RH×W as follows:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1)

where H , W denotes the height and the width of the im-
age respectively, while i ∈ [H × W ] denotes the pixel in-
dex. α can be considered as the probability that a pixel
belongs to the foreground object, so it can be naturally used
as a pseudo-label. In image matting, estimating the opac-
ity value α only based on the given image I is a highly
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Figure 2. The pipeline of our Mat-Label. White pixels in (d) represent the foreground region, black pixels in (d) represent the background
region, and the gray pixels in (d) represent the unknown region. It can be seen that our D2CAM (c) has a more complete and accurate
foreground-background division than vanilla CAM [47] (b).

ill-posed problem, and additional priori information (e.g.
trimap, scribble, background image, etc.) is required, in
which trimap is the most common as it contains the fore-
ground, background, and unknown regions (shown in Fig-
ure 2 (d)). Generally speaking, the trimap for image mat-
ting needs to have the following two properties: First, the
trimap is category-dependent, i.e., each category of ob-
jects in one image has its own trimap, since image matting
can only handle the foreground-background binary classi-
fication problem. Second, the trimap has an accurate de-
lineation of foreground and background regions, which
serves as important prior information for performing image
matting.

3.2. Mat-Label

Our Mat-Label aims to treat the pseudo-labels genera-
tion of WSSS as an image matting task, and Figure 2 il-
lustrates the pipeline of our Mat-Label. In the pipeline, we
need to train the network to generate trimap with clearly
distinguishable foreground and background regions under
the supervision of image category labels only. One available
option is to generate a trimap for each category using the
class activation map derived by CAM [47]. Unfortunately,
there are foreground over-activations and under-activations
in CAM [47] that prevent a good division of foreground and
background, as shown in Figure 2 (b).

To automatically construct high-quality trimap, we pro-
pose a Double Decoupled Class Activation Map (D2CAM)
that explicitly models foreground and background regions
for each category to alleviate the pixel category confusion
and foreground-background confusion problems that exist
in CAM-based [47] methods. Instead of adopting the com-
mon paradigm of obtaining the class activation map by
multiplying the FC layer weights with the feature map,
we model the class activation map explicitly through well-

designed losses. The details of D2CAM will be given
in Section 3.2.1. In addition, the process of converting
D2CAM’s class activation map into trimap and eventually
generating pseudo-labels will be described in Section 3.2.2.

3.2.1 Generate trimap via our D2CAM

Motivation. To obtain class activation map with good fore-
ground and background division to generate high quality
trimap, we propose Double Decoupled Class Activation
Map (D2CAM) that is significantly different from existing
CAM-based methods [47]. Specifically, we promote cate-
gory decoupling and foreground-background decoupling to
optimize the class activation map.
Network Architecture. The detailed network architecture
of our D2CAM is shown in Figure 3. Generally, given an
input image I ∈ RH×W×3, the neural network finally out-
puts a category prediction vector Ŷ ∈ RN for the classi-
fication. Here H , W are the height and width of the im-
age, while N denotes the number of categories in datasets.
Unlike CAM [47] to implicitly optimizes class activation
map, we use a lightweight generator φ(·) to explicitly pre-
dict class activate map, which consists of a single 3×3 con-
volutional layer and a sigmoid activation function layer.
Inspired by [49, 41], the classification backbone network
is divided into two sub-networks N1 and N2 to optimize
the class activation map, as shown in Figure 3. The sub-
network N2 includes the last two layers of the classification
network, and N1 includes other previous network layers.
First, N1 extracts the image features by successive convo-
lutional and down-sampling layers to obtain the feature map
F ∈ R 1

8H× 1
8W×C , with C is the number of channels in the

feature map. Specifically, it can be defined as follows:

F = N1(I). (2)
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Figure 3. The details of our D2CAM. We divide the classification network into two parts N1 and N2, while the feature map F is the output
of N1. φ(·) is the generator of the class activation map, while Mfg and Mbg refer to the foreground and background class activation
maps, respectively. H and W represent the length and width of the input image, while N represents the number of object categories. The
white boxes show schematic of the loss functions’ principles. Y c is the category decoupling ground truth constructed by us.

Then, the feature map F is fed into φ(·) to export the
foreground class activation map Mfg ∈ R 1

8H× 1
8W×N ,

with N is the number of object categories. This means that
each channel of Mfg corresponds to a specific category.
We further inverse Mfg to obtain the background class ac-
tivation map Mbg ∈ R 1

8H× 1
8W×N . The vector Ŷ for multi-

category classification is obtained by direct input of F into
N2. Different from existing background modeling meth-
ods [49, 35, 41, 42], we promote modeling the category-
dependent foreground and background regions separately
for each category in the image. Specifically, for a given
category of objects, any other category of objects and nat-
ural backgrounds (e.g. sky, grass, and sea) are all grouped
into background regions.

In the training phase, we select specific corresponding
channels from Mfg and Mbg for subsequent optimiza-
tion according to the ground truth of image category la-
bels. Thus, we can obtain category decoupling class acti-
vate maps Mc

fg and Mc
bg c ∈ C, where set C means the

serial number of the category contained in the image. We
can then obtain the category decoupled prediction vectors
by the following operation:

Ŷ c
fg = N2(F ⊗Mc

fg), c ∈ C; (3)

Ŷ c
bg = N2(F ⊗Mc

bg), c ∈ C, (4)

where c denotes a specific class of objects contained in
the image and ⊗ denotes the element-wise product. Here
Ŷ c
fg and Ŷ c

bg contain the context of the category-dependent
foreground and background, respectively. Unlike the pre-
vious approaches of pure background modeling [49, 35,

41, 42], we need to model both foreground and back-
ground regions to achieve category-dependent foreground-
background modeling. Here we propose a double decou-
pled learning that models category-dependent foreground
and background regions uniformly, drawing on the idea of
triplet loss [10], as shown in Ld2 of Figure 3.

Loss Functions. To perform weakly supervised training us-
ing only image categories, we use the common multi-label
cross-entropy loss as the classification loss (Lcls). More im-
portantly, we design three losses to optimize the class acti-
vation map Mfg through double decoupling learning (Ld2)
and refinement constraints (Lma and Loe).

1) Double Decoupled Learning. First, we achieve cate-
gory decoupling by optimizing each channel (each channel
corresponds to a specific category) of the class activation
map individually, i.e. each Mc

fg and the corresponding Ŷ c
fg

contains only one category of objects. Then, we adopt a
double decoupling loss Ld2 to achieve category decoupling
and foreground-background decoupling learning for class
activation map. Specifically, we construct the one-hot en-
coding Y c (only the c category is assigned to 1, and others
are assigned to 0) as the ground truth of the c-th decoupling
category. Inspired by the triplet loss [10] in metric learning,
we design Ld2 to make Ŷ c

fg and Y c closer, while make Ŷ c
fg

and Y c more distant in metric space. To accommodate the
classification task, we use the softmax cross-entropy loss
(Lsce) but not the cosine distance adopted by the triplet loss
[10] as a metric between classification prediction vectors.
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Hence, Ld2 is defined as:

Ld2 =
1

|C|
∑
c∈C

ReLu(1−βLsce(Ŷ
c
bg, Y

c)+Lsce(Ŷ
c
fg, Y

c)),

(5)
where β is a weighting factor to adjust the effect of Lsce,
which is empirically set to 0.1. The ReLu function guar-
antee that the loss is positive. Ld2 encourages Mfg to
include foreground object regions, while Mbg to exclude
foreground object regions, making the class activation map
have a good foreground-background division.

2) Refinement constraints. We also design two simple
yet effective refinement constraints to further improve the
quality of the class activation map Mfg .

First, we find that if Mfg contains a too large area, Ld2

will also drop low, so it is necessary to impose a constraint
on the area of the Mfg in order to avoid such a locally
optimal solution. To obtain a more compact foreground
region, a common choice is to directly minimize the area
of Mfg (i.e. Larea in Eq. 7), as in [30, 41]. However,
we find that such an area constraint is in contradiction with
Lsce(Ŷ

c
fg, Y

c) term of Ld2 obviously and can cause a ten-
dency to be suboptimal during optimization, i.e. one loss
is over-optimized, but the other loss is under-optimized. To
alleviate this problem, we propose a flexible margin-wise
area loss Lma to stably optimize the area of the foreground
region without affecting the optimization of other losses.
Specifically, the margin-wise area loss Lma can be defined
as:

Lma = ReLu(Larea −m) + λLarea (6)

where

Larea =
1

|C|
∑
c∈C

H∑
i

W∑
j

Mc
fg(i, j). (7)

Here m is the margin threshold, and the foreground area
larger than m is fully optimized, empirically set to 0.2. The
λ is the weight of the area constraint when the foreground
area ratio is smaller than m in order to provide a continuous
area constraint throughout the optimization process, which
is empirically set to 0.05. Specifically, the loss weight of
Larea is (1 + λ) when the sample foreground area ratio for
more than m and the weight is λ when the area ratio less
than m. During the training, Ld2 can be well optimized
together with Lma and constrained to each other but without
interrupted.

Second, we propose an overlap elimination loss (Loe)
to alleviate the conflicts that exist between different cate-
gories of class activation maps. This conflict is caused by
the non-exclusive activation [7] of the multi-label classifier
and leads to the misclassification of foreground objects pix-
els. Specifically, Loe aims to reduce the overlapping regions
between different class activation maps shown in Figure 4,

“bicycle” Class Activation Map “person” Class Activation Map

Figure 4. Schematic diagram of Loe. The red boxes indicate the
overlapping region of the “bicycle” and “person” class activation
maps.

which is defined as:

Loe =
H∑
i

W∑
j

ReLu

((∑
c∈C

Mc
fg(i, j)

)
− 1

)
. (8)

Notice that after summing the class activation maps, only
the overlapping regions will have activation values greater
than 1, and we reduce the overlapping regions by penalizing
the regions greater than 1.

3.2.2 Generate Pseudo-labels

In this section, we describe how to generate pseudo-labels
from the class activation map derived from D2CAM. First,
we transform the class activation map Mfg obtained by
Section 3.2.1 into a trimap T ∈ RH×W by setting two
thresholds εfg and εbg . Specifically, trimap T is generated
as follows:

T (i, j) =


1 (foreground) Mfg(i, j) ≥ εfg

0 (background) Mfg(i, j) ≤ εbg

0.5 (unknown) εbg(i, j) < Mfg < εfg

,

(9)
where i ∈ RH and j ∈ RW . Then, we input the obtained
trimap T and image I into the image matting algorithm
KNN matting [5] for solving alpha matte α, and use al-
pha matte α as the pseudo-label. In addition, as a common
option, our method can cascade some refinement methods
(e.g. DenseCRF [19] and IRN [1]) to obtain higher quality
pseudo-labels.

In fact, our Mat-Label pipeline has only two additional
hyperparameters, i.e. εfg and εbg , than the pure CAM-
based solution [47]. The clear distinction between fore-
ground and background regions in our D2CAM (Figure 2
(c)) leads to a robust and insensitive selection of εfg and
εbg . We empirically set εfg and εbg to 0.75 and 0.2, respec-
tively.
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4. Experiments
4.1. Experimental Setup

Experiments are conducted on two publicly available
and popular datasets, PASCAL VOC 2012 [11] and MS
COCO 2014 [32]. The PASCAL VOC 2012 dataset in-
cludes 20 foreground and background categories. It has
three subsets: training, validation, and test, with 1464,
1449, and 1456 images, respectively. Following previous
works [23, 25, 45, 7, 30], we also used the augmented train
set with 10,582 training images provided by [12]. The MS
COCO 2014 dataset has 80 foreground categories and one
background category, including approximately 82K train-
ing images and 4K validation images. Note that during
the training phase, we use only the image-level category
labels of both datasets for supervision, which is the most
challenging setting in WSSS. During the testing phase, we
evaluate our method on 1,449 validation images and 1,456
test images from the PASCAL VOC dataset, as well as on
40,504 validation images from the MS COCO dataset with
ground truth segmentation masks. According to convention,
the mean intersection-over-union (mIoU) [33] is used as the
evaluation metric.

4.2. Implementation Details

Training. Following [1, 25, 45, 30], we use ResNet-50 [13]
as the classification network backbone (N1 and N2 in Sec-
tion 3.2.1). The total loss Ltotal definition is Ltotal =
Lcls + γ1Ld2 + γ2Lma + γ3Loe, where γ1, γ2 and γ3 are
0.5, 2 and 0.5 , respectively. Inspired by [41], we truncate
the gradients of N1 and N2 in the computation of Ld2 to al-
low the network to focus on optimizing the generator φ(·).
Our D2CAM is implemented based on PyTorch and runs
on a PC with a single Nvidia RTX A6000 GPU with the
batch size 16. We deploy the SGD optimizer with an initial
learning rate 6e−3 and decays according to the polynomial
schedule. We train 8 and 12 epochs on PASCAL VOC and
MS COCO datasets, respectively.
Evaluation. Following [1, 25, 7, 30], multi-scale class
activation maps {0.5, 1.0, 1.5, 2.0} are averaged and
then output. The common refinement algorithms Dense-
CRF [19] and IRN [1] are used as the initial label post-
processing and run with default parameters. As in the pre-
vious works [7, 30], we retrain the IRN according to the
original settings using the initialized pseudo-labels we gen-
erated. For the final semantic segmentation step, we use the
PyTorch implementation of DeepLab-v2-ResNet1011.

4.3. Quality of Pseudo-labels

Table 1 reports the mIoU scores of our Mat-Label and its
variants compared with recent WSSS pseudo-labels gener-
ation methods on the PASCAL VOC 2012 train set [11].

1https://github.com/kazuto1011/deeplab-pytorch

Table 1. Comparison of pseudo-labels quality (mIoU %) on PAS-
CAL VOC 2012 train set [11]. Here ∗ denotes the results of our
own implementation. The best results marked with bold.

Methods PASCAL VOC
Seed w/ CRF [19] w/ IRN [1]

CAM CV PR′16 [47] 48.0 − −
IRN CV PR′19 [1] 48.8 53.7 66.3
SC-CAM CV PR′20 [2] 50.9 − −
BES ECCV ′20 [4] 50.4 − 67.2
CONTA NeurIPS′20 [45] 48.8 − 67.9
CDA ICCV ′21 [38] 50.8 58.4 67.7
RIB NeurIPS′21 [22] 56.5 62.9 −
L2G CV PR′22 [17] 56.2 − −
ReCAM CV PR′22 [7] 54.8 60.4∗ 69.7∗

ESOL NeurIPS′22 [30] 53.6 61.4 68.7
D2CAM only 58.0 63.9 71.4
Mat-Label w/ ReCAM [7] 56.3 63.1 71.0
Mat-Label (ours) 62.3 65.8 72.9

Here, the Seed means initialized pseudo-labels, w/ CRF
means using DenseCRF [19] refinement, and w/ IRN means
using IRN [1] refinement. Ablation Study: D2CAM only
means that the pseudo-labels are generated directly using
the class activation map of our D2CAM, while Mat-Label
w/ ReCAM [7] means that the trimap is generated using the
recent ReCAM [7] to be applied to our Mat-Label pipeline.
Note that we have achieved significantly better performance
than the most recent ESOL [30] using only the D2CAM
(58.0% vs 53.6%). With the help of our Mat-Label pipeline,
ReCAM [7] has been significantly improved compared to
the original version (+1.5%, +2.7%, +1.3%). Our Mat-
Label obtained best results (62.3%, 65.8%, 72.9%) after ap-
plying the D2CAM specially designed for it, demonstrating
that our method is the current optimal choice for weakly
supervised trimap generation. Comparison Study: Both
in the quality comparison of the initial seed and the refined
pseudo-label, our Mat-Label surpasses the current state-of-
the-art methods with a large margin. Specifically, our opti-
mal results for Mat-Label exceed the recent ESOL [30] and
ReCAM [7] by 4.2% and 3.2%, respectively.

4.4. Weakly Supervised Semantic Segmentation

Table 2 and Table 3 report the segmentation performance
of the advanced WSSS methods on the PASCAL VOC
2012 [11] and MS COCO 2014 [32] datasets. Some of
these methods improve the pseudo-labels generation while
others refine the pseudo-labels, but they all use the same
segmentation network setup (DeepLab-V2 [3]) to evaluate
performance. Table 2 shows the mIoU score on PASCAL
VOC validation and test set under image category label (I.)
or image category label & saliency maps (I.+ S.) supervi-
sion. Following ESOL [30], we combine the saliency map
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(a) PASCAL VOC 2012 dataset (b) MS COCO 2014 dataset

Images
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Figure 5. Some qualitative results on the PASCAL VOC 2012 and MS COCO 2014 datasets. We can see that our method achieves accurate
final semantic segmentation results under image-level label supervision only.

Table 2. Comparison of the mIoU (%) with state-of-the-art ap-
proaches on PASCAL VOC 2012 validation and test sets. All the
segmentation results are based on the DeepLab-V2 [3].

Mthods Sup. Val (%) Test (%)
SEAM CV PR′20 [39] I. 64.5 65.7
SC-CAM CV PR′20 [2] I. 66.1 65.9
BES ECCV ′20 [4] I. 65.7 66.6
CONTA ECCV ′20 [45] I. 66.1 66.7
CDA ICCV ′21 [38] I. 66.1 66.8
OC-CSE ICCV ′21 [21] I. 68.4 68.2
RIB NeurIPS′21 [22] I. 68.3 68.6
AdvCAM TPAMI′22 [24] I. 68.1 68.0
VWL IJCV ′22 [37] I. 69.2 69.2
W-OoD CV PR′22 [26] I. 70.7 70.1
SIPE CV PR′22 [6] I. 68.8 69.7
RECAM CV PR′22 [7] I. 68.5 68.4
ESOL NeurIPS′22 [30] I. 69.9 69.3
D2CAM only I. 71.2 70.7
Mat-Label w/ ReCAM [7] I. 70.3 70.0
Mat-Label (ours) I. 73.0 72.7

DSRG CV PR′18 [15] I.+S. 61.4 63.2
FickleNet CV PR′19 [23] I.+S. 64.9 65.3
NSROM CV PR′21 [43] I.+S. 70.4 70.2
EPS CV PR′21 [28] I.+S. 70.9 70.8
AdvCAM TPAMI′22 [24] I.+S. 71.3 71.2
ReCAM CV PR′22 [7] I.+S. 71.8 72.2
L2G CV PR′22 [17] I.+S. 72.1 71.7
RCA CV PR′22 [48] I.+S. 72.2 72.8
ESOL NeurIPS′22 [30] I.+S. 71.1 70.4
Mat-Label (ours) I.+S. 73.3 74.0

generated by NSROM [43] with our pseudo ground-truth
masks to supervise the segmentation network (I.+ S.). Ab-
lation Study: On both the PASCAL VOC 2012 and MS
COCO 2014 datasets, it can be seen that both of our non-
optimal variants achieve competitive segmentation perfor-

mance, and the performance lead is further extended when
the full Mat-Label is used. Comparison Study: In Ta-
ble 2, we can see that our method outperforms the most
recent ESOL [30] by 3.1% and 3.4% on the validation set
and test set, respectively. Our method achieved 73.3% and
74.0% mIoU scores in the PASCAL VOC 2012 validation
and test sets after imposing saliency map supervision, con-
sistently outperforming all other saliency map based meth-
ods. Table 3 illustrates the segmentation performance on
the MS COCO dataset compared with other state-of-the-
art approaches. Our method achieves the best result with
2.7% improvement compared to the second-best method
ReCAM [7]. In addition, Figure 5 presents some examples
of the final semantic segmentation results on both PASCAL
VOC 2012 and MS COCO 2014 datasets, demonstrating
that our results are close to the ground truth segmentation
masks.

Table 3. Comparison of the mIoU (%) with state-of-the-art ap-
proaches on MS COCO validation set

Methods Sup. Val (%)
IRN CV PR′19 [1] I. 41.4
ADL TPAMI′20 [8] I. 30.8
SEAM CV PR′20 [39] I. 32.8
CONTA NeurIPS′20 [45] I. 33.4
OC-CSE ICCV ′21 [21] I. 36.4
SIPE CV PR′22 [6] I. 40.6
ReCAM CV PR′22 [7] I. 42.9
ESOL NeurIPS′22 [30] I. 42.6
D2CAM only I. 44.0
Mat-Label w/ ReCAM [7] I. 43.8
Mat-Label (ours) I. 45.6

4.5. Ablation Study on D2CAM

Table 4 shows the ablation study results of our D2CAM
on the PASCAL VOC 2012 train set. It can be observed that
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higher quality class activation map (performance +5.7%
over the pure CAM [47]) is obtained when we impose Ld2

loss to introduce double decoupled learning. Note that after
applying Larea (Eq. 7), there is a performance degradation
due to falling into local optima. In contrast, our D2CAM
achieves the higher mIoU score after replacing Larea with
our proposed Lma (Eq. 6). Finally, the quality of the class
activation map is further improved by applying Loe later,
due to the imposition of constraints on the overlapping re-
gions between different categories.

Table 4. D2CAM ablation study on PASCAL VOC 2012 train set

Methods mIoU (%)
CAM [47] 48.0
Ld2 53.7
Ld2 + Larea 50.4
Ld2 + Lma 56.8
Ld2 + Lma + Loe 58.0

5. Conclusions

We propose an interesting and promising pipeline called
Mat-Label to treat WSSS pseudo-labels generation as the
image matting task. To achieve this goal, we propose a
double decoupled class activation map (D2CAM) for gen-
erating trimap with good foreground-background division
under weak supervision. Extensive experiments validate
that our Mat-Label significantly improves the quality of the
pseudo-label, exhibiting state-of-the-art performance both
on the PASCAL VOC 2012 and MS COCO 2014 datasets.
Furthermore, our D2CAM can independently outperform
the existing CAM-based WSSS methods. We hope that
our Mat-Label solution can shed new light on WSSS
pseudo-labels generation and other weakly supervised
tasks.
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