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Figure 1: Nerfbusters. Rendering NeRFs at novel views far away from training views can result in artifacts, such as floaters or bad
geometry. These artifacts are prevalent in in-the-wild captures (a) but are rarely seen in NeRF benchmarks, because evaluation views are
often selected from the same camera path as the training views. We propose a new dataset of in-the-wild captures and a more realistic
evaluation procedure (b), where each scene is captured by two paths: one for training and one for evaluation. We also propose Nerfbusters,
a 3D diffusion-based method that improves scene geometry and reduces floaters (c), significantly improving upon existing regularizers in
this more realistic evaluation setting.

Abstract

Casually captured Neural Radiance Fields (NeRFs) suf-
fer from artifacts such as floaters or flawed geometry when
rendered outside the input camera trajectory. Existing eval-
uation protocols often do not capture these effects, since
they usually only assess image quality at every 8th frame of
the training capture. To aid in the development and eval-
uation of new methods in novel-view synthesis, we propose
a new dataset and evaluation procedure, where two camera
trajectories are recorded of the scene: one used for train-
ing, and the other for evaluation. In this more challenging
in-the-wild setting, we find that existing hand-crafted regu-
larizers do not remove floaters nor improve scene geometry.
Thus, we propose a 3D diffusion-based method that lever-
ages local 3D priors and a novel density-based score dis-
tillation sampling loss to discourage artifacts during NeRF
optimization. We show that this data-driven prior removes
floaters and improves scene geometry for casual captures.

*Denotes equal contribution

1. Introduction

Casual captures of Neural Radiance Fields (NeRFs) [20]
are usually of lower quality than most captures shown in
NeRF papers. When a typical user (e.g., a hobbyist) cap-
tures a NeRFs, the ultimate objective is often to render a
fly-through path from a considerably different set of view-
points than the originally captured images. This large view-
point change between training and rendering views usu-
ally reveals floater artifacts and bad geometry, as shown
in Fig. 1a. One way to resolve these artifacts is to teach
or otherwise encourage users to more extensively capture
a scene, as is commonly done in apps such as Polycam1

and Luma2, which will direct users to make three circles at
three different elevations looking inward at the object of in-
terest. However, these capture processes can be tedious, and

1https://poly.cam/
2https://lumalabs.ai/
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furthermore, users may not always follow complex capture
instructions well enough to get an artifact-free capture.

Another way to clean NeRF artifacts is to develop algo-
rithms that allow for better out-of-distribution NeRF ren-
derings. Prior work has explored ways of mitigating arti-
facts by using camera pose optimization [38, 13] to handle
noisy camera poses, per-image appearance embeddings to
handle changes in exposure [15], or robust loss functions to
handle transient occluders [32]. However, while these tech-
niques and others show improvements on standard bench-
marks, most benchmarks focus on evaluating image quality
at held-out frames from the training sequence, which is not
usually representative of visual quality at novel viewpoints.
Fig. 1c shows how the Nerfacto method starts to degrade as
the novel-view becomes more extreme.

In this paper, we propose both (1) a novel method for
cleaning up casually captured NeRFs and (2) a new eval-
uation procedure for measuring the quality of a NeRF that
better reflects rendered image quality at novel viewpoints.
Our proposed evaluation protocol is to capture two videos:
one for training a NeRF, and a second for novel-view evalu-
ation (Fig. 1b). Using the images from the second capture as
ground-truth (as well as depth and normals extracted from a
reconstruction on all frames), we can compute a set of met-
rics on visible regions where we expect the scene to have
been reasonably captured in the training sequence. Follow-
ing this evaluation protocol, we capture a new dataset with
12 scenes, each with two camera sequences for training and
evaluation.

We also propose Nerfbusters, a method aimed at im-
proving geometry for everyday NeRF captures by improv-
ing surface coherence, cleaning up floaters, and removing
cloudy artifacts. Our method learns a local 3D geometric
prior with a diffusion network trained on synthetic 3D data
and uses this prior to encourage plausible geometry during
NeRF optimization. Compared to global 3D priors, local
geometry is simpler, category-agnostic, and more repeat-
able, making it suitable for arbitrary scenes and smaller-
scale networks (a 28 Mb U-Net effectively models the dis-
tribution of all plausible surface patches). Given this data-
driven, local 3D prior, we use a novel unconditional Den-
sity Score Distillation Sampling (DSDS) loss to regularize
the NeRF. We find that this technique removes floaters and
makes the scene geometry crisper. To the best of our knowl-
edge, we are the first to demonstrate that a learned local 3D
prior can improve NeRFs. Empirically, we demonstrate that
Nerfbusters achieves state-of-the-art performance for casual
captures compared to other geometry regularizers.

We implement our evaluation procedure and Nerfbusters
method in the open-source Nerfstudio repository [35]. The
code and data can be found at https://ethanweber.
me/nerfbusters.

Figure 2: Evaluation protocols. Current evaluation of NeRFs
(e.g., MipNeRF 360) measures render quality at every 8th frame
of the captured (training) trajectory, thus only testing the model’s
ability to render views with small viewpoint changes. In contrast,
we propose a new evaluation protocol, where two sequences are
captured of the same scene: one for training and one for evalua-
tion. Please see the supplementary material for plots showing the
training and evaluation sequences for various NeRF datasets, in-
cluding our proposed Nerfbuster Dataset.

2. Related Work

Evaluating NeRFs in-the-wild. Early works in neu-
ral rendering [18], including NeRF [20], established an
evaluation protocol for novel view synthesis, where ev-
ery 8th frame from a camera trajectory is used for evalu-
ation. Most follow-up works have adapted this protocol and
demonstrated impressive results on forward-facing scenes
in LLFF [19], synthetic scenes [20], or 360 scenes [2, 29].
In these datasets, the training and evaluation views share
camera trajectories, thus the methods are evaluated only for
small viewpoint changes, as illustrated in Fig. 2. In con-
trast, we propose to record two camera trajectories, one
for training and one for evaluation. ?? compares existing
datasets (synthetic scenes [20], LLFF [19], MipNeRF 360
[2], and Phototourism [11]) with the proposed Nerfbuster
dataset. We visualize the training and evaluation poses for
each scene and quantify the difficulty of each dataset by
computing the average rotation and translation difference
between evaluation images and their closest training im-
ages. We find that viewpoint changes are very limited, and
the proposed Nerfbuster dataset is much more challeng-
ing. Recently, Gao et al. [8] revisited the evaluation pro-
cess for dynamic NeRFs, also highlighting shortcomings in
dynamic NeRF evaluation. NeRFs for extreme viewpoint
changes and few-shot reconstruction have been explored on
ShapeNet [4], DTU [10], and CO3D [29], where a few or
just a single view is available during training. These works
focus on the generalization and hallucination of unseen re-
gions, and either assume a category-specific prior [45, 43]
or focus on simple scenes [43]. In contrast, our casual cap-
tures setting assumes that a 10 − 20 second video is avail-
able at training time, better reflecting how people capture
NeRFs. We then evaluate fly-throughs with extreme novel
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views on an entirely different video sequence, as illustrated
in Fig. 2.

Diffusion models for 3D. Recently, several works have
proposed the use of diffusion models for 3D generation or
manipulation [27, 37, 22, 41]. These approaches can be di-
vided into (1) methods that distill priors from existing 2D
text-to-image diffusion models into a consistent 3D repre-
sentation [27, 37], and (2) methods that train a diffusion
model to explicitly model 3D objects or scenes [22]. These
directions are complementary, where the former benefits
from the sheer size of image datasets, and the latter from
directly modeling 3D consistency. DreamFusion [27] pro-
poses Score Distillation Sampling (SDS), where the text-
guided priors from a large text-to-image diffusion model
can be used to estimate the gradient direction in optimiza-
tion of a 3D scene. We take inspiration from the SDS opti-
mization procedure but instead adapt it to supervise NeRF
densities in an unconditional manner, directly on 3D density
values. As the underlying model, we train a 3D diffusion
model on local 3D cubes extracted from ShapeNet [4] ob-
jects. We find the distribution of geometry (surfaces) within
local cubes is significantly simpler than 2D natural images
or global 3D objects, reducing the need for conditioning
and high guidance weights. To the best of our knowledge,
we are the first to suggest a learned 3D prior for category-
agnostic, unbounded NeRFs.

Data-driven local 3D priors. Approaches for learn-
ing 3D geometry can be divided into local and global ap-
proaches, where global approaches reason about the entire
scene, and local approaches decompose the scene into local
surface patches. We learn a prior over local geometric struc-
tures, as local structures are simple, category-agnostic, and
more repeatable than global structures [3, 21]. DeepLS [3]
proposes to decompose a DeepSDF [26] into local shapes,
and finds that this simplifies the prior distribution that the
network learns. Similarly, AutoSDF [21] learns a local 3D
prior and tries to learn the distribution over a 3D scene with
an autoregressive transformer. We are inspired by their ap-
proach, but use a diffusion model rather than a VQ-VAE
[28, 36], and show that the learned prior can be used to reg-
ularize NeRF geometry.

Regularizers in NeRFs. Our work can be seen as a reg-
ularizer for NeRFs. Most existing regularizers are hand-
crafted priors that encourage smoothness and discourage
non-empty space. Plenoxels [7] proposed a Total-Variation
(TV) in 3D that penalizes the large changes between neigh-
boring voxels. TV has also been applied in 2D rendered im-
ages in RegNeRF [25] and on the basis of factorized plenop-
tic fields [5, 6]. Plenoctrees [42] proposed a sparsity loss
that penalizes densities from randomly queried 3D locations
in space. This sparsity loss removes densities unnecessary
in explaining the training views. To avoid penalizing all
densities equally, MIP-NeRF 360 [2] proposes a distortion

Figure 3: Evaluation capture. Here we show the data used in our
evaluation protocol. The evaluation trajectory is a separate capture
that is held out during optimization of the NeRF. Individual com-
ponents shown here are further described in Sec. 3.

loss on accumulated weights that encourages surfaces to be
sharp. Concurrent and most similar to our work, Diffu-
sionRF [41] proposes a data-driven RGB-D diffusion prior.
The method trains a diffusion model on synthetic RGB-D
examples and uses the learned prior to regularize a NeRF. In
contrast to the proposed local 3D diffusion prior, operating
in 2.5D comes with several disadvantages, namely 1) oc-
clusions are not modeled, 2) the joint distribution of RGB-
D images is more complex than that of 3D occupancy (and
as a result requires more data for generalization), 3) unlike
a 3D diffusion model, it is not by definition 3D-consistent,
i.e., the view consistency has to come from the NeRF rather
than the regularizer.

3. Evaluation Procedure
We propose an evaluation protocol that captures two

videos, one for training and one for evaluating a NeRF.
Training videos should be around 10 − 20 seconds which
are indicative of what a user might do when prompted to
scan an object or scene. Anything longer than this may re-
duce the appeal and practicality of using NeRFs. The sec-
ond video represents the novel view that a user may wish to
render. The second video is only used as ground truth and
does not change how users currently interact with NeRFs.
We record 12 scenes (two videos each) in this way to con-
struct our Nerfbusters Dataset. All videos were taken with
a hand-held phone to approximate the casual capture setup.

Evaluating on casual captures. The steps to create
our evaluation data can be boiled down to the following
straightforward steps:

1. Record a video to train a NeRF (training split)
2. Record a second video with a viewpoint change (eval-

uation split)
3. Extract images from both videos and run SfM on all

images
4. Train a “pseudo ground truth” model on both splits and

save depth, normal, and visibility maps for the evalua-
tion split.

5. Train your proposed method on the training split and
evaluate with the evaluation split images and their
pseudo ground truth maps.
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In Fig. 3, we show an evaluation image and its visi-
bility, depth, and normal maps. The pseudo ground truth
is high quality since it has been trained together with the
first video. The visibility map is computed by taking the
depth map, back-projecting each pixel into a 3D point, and
then counting how many times that 3D point is seen from
a training viewpoint. This dataset with associated visibil-
ity masks and processing code can be found at https:
//ethanweber.me/nerfbusters.

Masking valid regions. Rendering extreme novel views
exposes part of the scene that was not captured in the train-
ing views. As most existing NeRFs are not designed to
hallucinate completely unseen views, we only evaluate re-
gions observed in the train capture trajectories using visi-
bility masks. More specifically, we mask out regions that
are either (1) not seen by any training views (i.e., where
the visibility map is zero) or (2) are predicted to be too far
away (i.e., predicted depth > distance threshold). We set
this threshold to two times the largest distance between any
two camera origins in both the training and evaluation splits.
In the Nerfstudio codebase, this corresponds to a value of 2
because camera poses are scaled to fit within a box with
bounds (-1,-1,-1) and (1,1,1).

Coverage. Because we mask out pixels by both visibil-
ity [8] and depth, we report “coverage” which is the percent
of evaluated pixels within the visible regions, commonly
reported in depth completion [44, 39, 40]. For example,
removing all densities and predicting infinite depth would
result in zero coverage.

Image quality and geometry metrics. We use masked
versions of PSNR, SSIM, and LPIPS for image quality. We
also report on depth (MSE and mean abs. disparity differ-
ence) and normals (mean and median degrees, and the per-
cent of valid pixels with normals < 30 degrees). We report
averages for all images in the Nerfbusters Dataset in Sec. 5.

4. Nerfbusters
Our method consists of two steps. First, we train a diffu-

sion model to denoise local 3D cubes. This model is trained
on synthetic data and learns a prior over local 3D shapes.
Second, we apply this local prior to real 3D scenes repre-
sented by NeRFs. We do this by querying densities in local
cubes in the scene and using a novel Density Score Distil-
lation Score (DSDS) loss to regularize our implicit scene
representation. This prior improves reconstructions in re-
gions with sparse supervision signals and removes floaters.
Fig. 5 provides an overview of our pipeline.

4.1. Data-driven 3D prior

Following the recent process in the context of denoising
generative diffusion models [33, 34, 24, 30, 27], we for-
mulate our generative model as a denoising diffusion prob-
abilistic model (DDPM) [9], which iteratively denoises a

Figure 4: Training data for Nerfbusters diffusion model. Given
a mesh, we extract local cubes scaled 1−10% of the mesh size. We
voxelize these cubes with resolution 323, and augment them with
random rotations and random dilation. We illustrate each step with
renderings of depth and normals from three cubes. The synthetic
scenes from Shapenet offer a high variety in local cubes, contain-
ing both flat surfaces, round shapes, and fine structures.

voxelized 32× 32× 32 cube x of occupancy. Our diffusion
model ϵθ is trained with

LDiff = ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥22 (1)

where t ∼ U(0, 1000), ϵ ∼ N (0, I) and ᾱ follows a
linear schedule that determines the amount of noise added at
timestep t. We implement our diffusion model as a small 3D
U-Net [31] with three downsampling layers that double the
number of channels per downsampling. We train the model
on synthetic 3D cubes from ShapeNet and find that a small
U-Net with only 7.2 M parameters (28MB) is sufficient to
learn a local 3D prior over shapes.

4.2. Curate synthetic 3D cubes

We train our diffusion model on local cubes sampled
from ShapeNet [4], illustrated in Fig. 4. We sample a ran-
dom ShapeNet mesh and extract N local meshes at the
boundary with sizes between 1-10% of the mesh min and
max vertices. We voxelize these local meshes into cubes
with a resolution of 323. We then augment the cubes with
random rotations and dilation. This data processing pipeline
is fast and performed online during training to increase the
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Figure 5: Method overview. We learn a local 3D prior with a diffusion model that regularizes the 3D geometry of NeRFs. We use
importance sampling to query a 323 cube of NeRF densities. We binarize these densities and perform one single denoising step using a
pre-trained 3D diffusion model. With these denoised densities, we compute a density score distillation sampling (DSDS) that penalizes
NeRF densities where the diffusion model predicts empty voxels and pushes the NeRF densities above the target w where the diffusion
model predicts occupied voxels m = 1{x0 < 0}.

diversity of 3D cubes. We find that adjusting the thickness
of the surface with dilation rather than infilling the mesh is
faster and better defined for non-watertight meshes. Fig. 4
illustrates the large diversity in the local cubes—some con-
tain flat surfaces (bottom of the vase), round shapes (stem),
and fine structures (leaves).

4.3. Applying 3D prior in-the-wild

We represent a 3D scene with a Neural Radiance Field
(NeRF), [20] which takes a 3D point as input and outputs
color and density, and is trained with differentiable volume
rendering [20, 16]. We build on the Nerfacto model from
Nerfstudio [35] that combines recent progress in NeRFs in-
cluding hash grid encoding [23], proposal sampling [1], per-
image-appearance optimization [15], and scene contraction
[1]. Although Nerfacto has been optimized for in-the-wild
image captures, it still reveals floaters when rendered from
novel views. To address these issues, we leverage the pre-
trained Nerfbusters diffusion model. We propose a novel
sampling strategy that samples cubes from non-empty re-
gions and a Density Score Distillation Sampling (DSDS)
loss that distills the diffusion prior into the NeRF. As a re-
sult, our approach yields better scene geometry.

Importance sampling cubes. Since the NeRF repre-
sents a density field, we can query voxelized cubes in 3D
space at any size, location, and resolution. For an efficient
sampling of the location of the 3D cubes, we propose to
store a low-resolution occupancy grid of either accumula-
tion weights or densities. We sample the location of the
3D cubes from the distribution of this low-resolution occu-
pancy grid. Storing accumulation weights in the occupancy
grid yields cubes sampled mostly on frequently seen sur-
faces. Whereas, storing densities in the occupancy grid en-
ables sampling of occluded regions. In practice, we clamp
densities to one, to avoid a few densities dominating the

sampling probability. We apply an exponential moving av-
erage (EMA) decay on the grid to update the occupancy
grid when floaters are deleted. This importance sampling
method comes with almost no added cost since we store the
densities or weights along the rays already used for volume
rendering, and use a small 203 occupancy grid. Following
the sampling of a cube center location, we proceed to sam-
ple cubes of resolution 323 and 1-10% of the scene.

Density Score Distillation Sampling (DSDS). Our dif-
fusion model is trained on discretized synthetic data in
{−1, 1} indicating free or occupied space, respectively.
NeRF densities, on the other hand, are in [0,∞), where
low densities indicate free space and larger densities mean
more occupied space. In practice, we observe that densi-
ties less than 0.01 are mostly free space, whereas occupied
space have density values ranging from [0.01, 2000]. We
propose a Density Score Distillation Sampling (DSDS) loss
that handles the domain gap between the densities without
exploiting gradients.

Given a cube of NeRF densities σ, we discretize the den-
sities xt = 1 if σ > τ else −1 at time t, where τ is a hyper-
parameter that decides at what density to consider a voxel
for empty or occupied. The Nerfbusters diffusion model
then predicts the denoised cube x0. The timestep t is a hy-
perparameter that determines how much noise the diffusion
model should remove and can be interpreted as a learning
rate. In practice, we choose a small t ∈ [10, 50]. With the
denoised cube x0, we penalize NeRF densities that the dif-
fusion model predicts as empty or increase densities that the
diffusion model predicts as occupied with

LDSDS =
∑
i

miσi + (1−mi)max(w − σi, 0) (2)

where m = 1{x0 < 0} is a mask based on the de-
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Figure 6: Qualitative results. NeRFs suffer from floaters and bad geometry when rendered away from training views. Our proposed
diffusion prior fills holes (first rows), removes floaters (second and fifth row), and improves geometry (all). Please see the supplementary
material for video results on our evaluation splits.
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Figure 7: Visibility loss. Our visibility loss enables stepping be-
hind or outside the training camera frustums. We accomplish this
by supervising densities to be low when not seen by at least one
training view. Other solutions would be to store an occupancy
grid [23] or compute ray-frustum intersection tests during render-
ing. Our solution is easy to implement and applicable to any NeRF.

noised predictions. We penalize densities where the diffu-
sion model predicts emptiness and increase densities where
the model predicts occupancy. w is a hyperparameter that
determines how much to increase the densities in occupied
space. The max operator ensures that no loss is applied if
an occupied voxel already has a density above w. Similar to
SDS [27, 37], the DSDS loss distills the diffusion prior with
a single forward pass and without backpropagating through
the diffusion model.

Why not just... use a differentiable function to convert
densities to the valid range of the diffusion model, then
compute the SDS loss [27, 37], and then backpropagate
through the activation function? This would require a func-
tion s : σ → xt to map s(0) = −1, s(τ) = 0, and
s(2τ) = 1, where τ is the crossing value where densi-
ties begin to be occupied. A scaled and shifted sigmoid
function or a clamped linear function satisfies these require-
ments, but both have very steep gradients in some regions
and no gradients in other regions, resulting in issues when
backpropagating. In contrast, DSDS has gradients for any
density predicted to be empty or occupied. In practice, we
set τ = w = 0.01 meaning our method deletes densities at
points predicted to be empty and otherwise leaves the points
unconstrained for the NeRF RGB loss to freely optimize.

Why not just... use accumulated weights, which are in the
range [0, 1]? Weights are more well-behaved than densities
but more expensive to compute as they require shooting a
ray through the scene, evaluating and accumulating the den-
sities along a ray. This results in significantly more func-
tion calls, but more fundamentally, requires one to specify a
view from which to shoot the rays. This limits the diffusion
prior to improving regions that are visible regions from the
chosen view. A similar issue arises when using 2D or 2.5D
priors [25, 41], where they may not regularize occluded re-
gions unless viewpoints are chosen in a scene-specific way.

4.4. Visibility Loss

Our proposed local 3D diffusion model improves scene
geometry and removes floaters, but it requires decent start-

Figure 8: Ablations results. Using a simple activation function
and SDS results in a not-well-behaved gradient signal, increasing
the number of floaters in the scene. Importance sampling more
effectively applies the 3D cube loss in space, cleaning up floaters
and improving the scene geometry.

ing densities since it operates locally and thus needs contex-
tual information to ground its denoising steps. To this end,
we propose a simple loss that penalizes densities at 3D loca-
tions that are not seen by multiple training views. We find
this simple regularizer effective in removing floaters from
regions outside the convex hull of the training views. We
define our visibility loss as

Lvis =
∑
i

V (qi)fσ(qi) (3)

where fσ(qi) = σi is the NeRF density at the 3D lo-
cation qi, and V (qi) = 1{

∑
j=1 vij < 1} indicates if the

location is not visible from any training views. We approx-
imate the visibility vij ∈ {0, 1} of the i’th 3D location in
the j’th training view with a frustum check. This approx-
imation does not handle occlusions, instead overestimates
the number of views a location is visible from. This loss
penalizes densities in regions not seen by training images.

In practice, we implement this by defining a single tight
sphere around our training images and render batches of
rays that shoot from a random location on the sphere sur-
face, through the center of the scene, and far off into the
distance. We render rays with Nerfacto and apply this loss
to the sampled points. Nerfacto uses a proposal sampler [2]
to importance sample around surfaces, so our loss is effec-
tive in quickly culling away any floating artifacts with high
density outside visible regions. See Fig. 7 for a qualitative
result where we render from behind training images.

5. Experiments in-the-wild

We follow our proposed protocol described in detail in
Sec. 3. We apply different regularizers as a post-processing
approach to clean up NeRFs and also run ablations on our
proposed method.

Implementation details. For each experiment, we use
the Nerfacto model within the Nerfstudio [35] codebase.
We turn off pose estimation for evaluation purposes and
then train Nerfacto for 30K iterations which takes up to half
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PSNR ↑ SSIM ↑ LPIPS ↓ Depth ↓ Disp. ↓ Mean ◦ ↓ Median ◦ ↓ % 30◦ ↑ Coverage ↑

Nerfacto Pseudo GT 25.98 0.8591 0.1019 0.0 0.0 0.0 0.0 1.0 0.893
Nerfacto 17.00 0.5267 0.3800 126.277 1.510 60.63 54.638 0.254 0.896
+ Visibility Loss 17.81 0.5538 0.3432 100.057 1.041 57.73 51.335 0.280 0.854
+ Vis + Sparsity [42] 17.81 0.5536 0.3445 92.168 1.145 57.77 51.399 0.280 0.854
+ Vis + TV [7] 17.84 0.5617 0.3409 74.015 0.382 61.93 56.164 0.242 0.843
+ Vis + RegNeRF [25] 17.49 0.5396 0.3585 182.447 1.200 59.39 53.267 0.268 0.858
+ Vis + DSDS (Ours) 17.99 0.6060 0.2496 54.453 0.114 54.77 47.981 0.295 0.630

Table 1: Quantitative evaluation. NeRFs suffer when rendered away from the training trajectories. Existing regularizers do not suffice to
improve the geometry. Nerfbusters learns a local 3D prior with a diffusion model, which removes floaters and improves the scene geometry.
Results are averaged across 12 scenes.

Cube sampling strategies
PSNR SSIM Disp. Mean ◦ Cov.

Uniform 14.61 0.4276 10.288 61.52 0.886
Densities σ 16.46 0.5086 0.081 49.21 0.606
Weights 15.86 0.4466 0.112 53.09 0.634

Activation functions
PSNR SSIM Disp. Mean ◦ Cov.

Clamp+SDS 12.53 0.2652 2.065 87.33 1.000
Sigmoid+SDS 12.53 0.2652 2.065 87.33 1.000
στ+DSDS 15.86 0.4466 0.112 53.09 0.634

Cube size range as % of scene
PSNR SSIM Disp. Mean ◦ Cov.

1-20% 17.05 0.5005 0.083 54.87 0.600
10-20% 16.93 0.4884 0.090 50.78 0.640
1-10% 15.86 0.4466 0.112 53.09 0.634

Table 2: Ablation study. Ablation on the “garbage” scene for
different settings of using our 3D prior as a NeRF loss. Cube sam-
pling refers to uniformly sampling the entire scene versus impor-
tance sampling with accumulated weights or densities.

an hour. We then fine-tune from this checkpoint with differ-
ent regularizer methods. We compare the proposed method
with vanilla Nerfacto, Nerfacto with the proposed visibil-
ity loss, Nerfacto with our visibility loss and 3D sparsity
loss [42], 3D TV regularization [7], and 2D TV which is
RegNeRF [25]. Our implementations also use the distortion
loss [2] which is on by default with Nerfacto. All methods
are effective within the first 1K iterations of fine-tuning (∼4
minutes on an NVIDIA RTX A5000 for Nerfbusters), but
we train for 5K iterations. For the 3D baselines, we sample
40 323 cubes per iteration and for the 2D baseline RegN-
eRF, we render ten 322 patches. The usual NeRF recon-
struction loss is also applied during fine-tuning with 4096
rays per batch.

Results. Tab. 1 shows that visibility loss improves
vanilla Nerfacto across all quality metrics. Existing hand-
crafted regularizers do not improve upon this baseline. In
contrast, our learn local diffusion prior removes floaters and
improves the scene geometry, yielding state-of-the-art re-

Figure 9: Limitations. The proposed model only operates on den-
sities, which comes with some limitations. We find that it can-
not distinguish floaters from transparent objects (left). It does not
hallucinate texture and thus ends up removing regions that are oc-
cluded in all training views (right).

sults on these challenging casual captures. The proposed
method deletes floaters, and thus we find that it has lower
coverage than the baselines. ?? shows per scene results.
Fig. 6 shows a qualitative comparison of the methods for
both indoor and outdoor scenes. We find that our method
improves geometry by completing holes (see the chair in
the first row), removing floaters (see in front of century
plant in the second row and garbage truck in the fourth row),
and sharping geometry (see the under the bench in the third
row).

Ablations of our 3D prior on real data We ablate our
method on the “garbage” scene (Tab. 2). We find that the
cube sampling strategies (i.e., where to apply the diffu-
sion prior) are important, and using the proposed impor-
tance sampling with densities yields the best performance.
Fig. 8 compares uniform sampling with importance sam-
pling (using densities). Importance sampling samples less
empty space, and thus is more effective at cleaning up
floaters and scene geometry. We compare the proposed
DSDS loss against SDS with either a scaled and shifted
sigmoid or a clamped sigmoid that satisfies our require-
ments (see Sec. 4.3). We find the gradients do not flow
well through this activation function resulting in a distorted
scene with many floaters (see Fig. 8 left). We also ablate the
cube sizes used cubes size ranging from 1% to 20% of the
scene scale. We find that our method is relatively robust to
the cube sizes, yielding a trade-off between removing more
with larger cubes and removing less with smaller cubes.
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6. Conclusion and future work

Transparent objects. NeRFs are able to represent trans-
parent objects by assigning low densities to the transpar-
ent object. These transparent densities behave similarly to
floaters, and it requires semantic information to distinguish
the two. Since our local diffusion prior does not have se-
mantic information, it removes transparent objects as illus-
trated in the vase in Fig. 9.

Hallucinating texture. The proposed method cleans ge-
ometry but cannot edit texture, as our method operates on
densities. This means that we can remove regions that con-
tain floaters or fill holes, but we cannot colorize these re-
gions. We leave colorization and inpainting low-confidence
regions to future work, where 2D diffusion priors [27, 17]
or 3D-consistent inpainting [14, 12] may be relevant.

Conclusion. We propose a new evaluation procedure of
Neural Radiance Fields (NeRFs) that better encompasses
how artists, designers, or hobbyists use the technology. We
present a dataset with 12 captures recorded with two cam-
era trajectories each, one used for training and one for eval-
uation. We find that current hand-crafted regularizers are
insufficient when NeRFs are rendered away from the train-
ing trajectory. We propose a data-driven, local 3D diffusion
prior, Nerfbusters, that removes floaters and improves the
scene geometry. We have implemented our proposed evalu-
ation procedure and method in the widely adopted codebase
Nerfstudio and will release it for the benefit of the commu-
nity.
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