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Abstract

Recent video recognition models utilize Transformer mod-
els for long-range spatio-temporal context modeling. Video
transformer designs are based on self-attention that can
model global context at a high computational cost. In
comparison, convolutional designs for videos offer an ef-
ficient alternative but lack long-range dependency mod-
eling. Towards achieving the best of both designs, this
work proposes Video-FocalNet, an effective and efficient
architecture for video recognition that models both local
and global contexts. Video-FocalNet is based on a spatio-
temporal focal modulation architecture that reverses the
interaction and aggregation steps of self-attention for bet-
ter efficiency. Further, the aggregation step and the in-
teraction step are both implemented using efficient con-
volution and element-wise multiplication operations that
are computationally less expensive than their self-attention
counterparts on video representations. We extensively ex-
plore the design space of focal modulation-based spatio-
temporal context modeling and demonstrate our parallel
spatial and temporal encoding design to be the optimal
choice. Video-FocalNets perform favorably well against the
state-of-the-art transformer-based models for video recog-
nition on five large-scale datasets (Kinetics-400, Kinetics-
600, SS-v2, Diving-48, and ActivityNet-1.3) at a lower
computational cost. Our code/models are released at
https://github.com/TalalWasim/Video-FocalNets.

1. Introduction
State-of-the-art video recognition methods have been sig-

nificantly influenced by Convolutional Neural Networks
(CNNs) since the introduction of Alexnet [36]. Initially
2D [30, 48, 55] and later 3D [7, 19, 63] CNNs achieved
better performance on both small-scale [37, 57] and large-
scale [6, 20, 31] video recognition benchmarks. With their
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Figure 1: Accuracy vs Computational Complexity trade-off
comparison: We show the performance of Video-FocalNets
against recent methods for video action recognition. Accu-
racy is compared on the Kinetics-400 [31] dataset against
GFLOPs/view. Our Video-FocalNets perform favorably
compared to their counterparts across a range of model sizes
(Tiny, Small, and Base).

local connectivity and translational equivariance properties,
CNNs have a better inductive bias especially useful for learn-
ing on small datasets. However, CNNs are limited in their
ability to model long-range dependencies due to their lim-
ited receptive field. On the other hand, Vision Transform-
ers (ViTs) [13] offer long-range context modeling and have
been quite effective for image classification [13, 45, 46]
and video recognition [2, 4, 47, 75]. ViTs are based on the
self-attention [65] mechanism originally proposed in Natural
Language Processing (NLP) that encodes minimal inductive
biases and can model both short- and long-range dependen-
cies. This allows ViTs to better generalize to large datasets,
as shown by recent results on major video recognition bench-
marks [6, 20, 31] where they have out-performed their CNN
counterparts. However, ViTs come at a high computational
and parameter cost [76].

Video recognition requires both short-range and long-
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range spatio-temporal dependencies to be accurately mod-
eled in order to achieve high performance. However, existing
methods demonstrate a trade-off between efficiency and per-
formance. While CNNs are more efficient and suited for
short-range information modeling, they are limited in their
representation learning capabilities for long-range dependen-
cies and larger datasets. ViTs resolve these issues but at
an increased parametric complexity and high computational
cost. The high complexity originates from the dual-step
self-attention operation that first performs a query-key inter-
action, followed by an aggregation over the context values.
The query-key interaction requires the computationally ex-
pensive step of calculating token-to-token attention scores
via dot-product since the queries and keys do not contain
information about the surrounding context (they are simply
linear projections of the input tokens). In this context, this
work seeks to optimize efficiency and performance while
modeling both local and global contexts in videos.

We present an effective and efficient architecture for video
recognition named Video-FocalNet (Fig. 1). Video-FocalNet
proposes a spatio-temporal focal modulation architecture
that reverses the steps of the self-attention operation for
better efficiency. This architecture is inspired by focal mod-
ulation [76] for image recognition and extends it to videos
by independently aggregating the surrounding spatial and
temporal context for each token into spatial and temporal
modulators, followed by fusing them with the queries in
the interaction step. The aggregation is based on a hierar-
chical contextualization step using a stack of depthwise and
pointwise convolutions for the spatial and temporal branches,
respectively, followed by a gated aggregation that enables
modeling both short- and long-range dependencies. The ag-
gregation step (based on depthwise/pointwise convolutions)
and the interaction step (based on element-wise multipli-
cation) are both computationally less expensive than their
self-attention counterparts i.e., query-key interactions and
query-value aggregation via matrix multiplications.

We extensively explore various design configurations for
optimal spatio-temporal context modeling with focal modu-
lation. Our analysis shows that the proposed parallel spatial
and temporal focal modulation design offers the best perfor-
mance and is suitably efficient compared to other sequential
designs. We introduce a family of Video-FocalNet architec-
tures (tiny, small, and base) based on spatio-temporal focal
modulation and demonstrate their favorable performance
compared to state-of-the-art transformer-based methods on
video recognition at a lower computational cost. Our major
contributions are summarized as follows:

• We tackle the challenge of effective spatio-temporal
modeling for video recognition. To solve this chal-
lenge, we propose a video-focal modulation block that
is able to use computationally efficient depthwise and
pointwise convolutions through a hierarchical context

aggregation design for local-global context modeling.

• We explore various design choices for spatio-temporal
focal modulation and propose a parallel design for spa-
tial and temporal encoding that optimizes for both per-
formance and computation cost as shown in Fig. 5.

• We achieve state-of-the-art performance on three major
benchmarks: Kinetics-400 [31], Kinetics-600 [5] and
Something-Something-v2 [20], surpassing comparable
methods in literature by 0.6%, 1.2% and 0.6% respec-
tively. Also, we outperform previous works on the rela-
tively smaller Diving-48 [41] and ActivityNet-1.3 [24]
datasets. We achieve an optimal trade-off between ac-
curacy and computation cost as shown in Fig. 1.

2. Related Work
Video Recognition: Early methods in video recogni-

tion are feature-based [34, 38, 66]. However, with the
startling success of 2D CNNs [23, 36, 56, 62] on Ima-
genet [12], they were also introduced to the task of video
recognition [30, 48, 55]. Later, after the release of large-
scale datasets, such as Kinetics [31], the 3D CNN-based
methods were introduced [7, 19, 63]. These were much
more effective in modeling spatio-temporal relations and
outperformed 2D CNN-based methods. However, the com-
putational cost for these 3D CNN-based methods was quite
prohibitive. Therefore, various variants of the 3D CNNs
were introduced [14, 17, 18, 40, 44, 53, 58, 60, 64, 72],
which decreased computation cost and improved perfor-
mance. With the success of the Vision Transformer [13]
for image recognition, they were also introduced to video
recognition. The first methods in this area used a combina-
tion of Vision Transformers and CNNs [35, 69, 70], includ-
ing transformer blocks to model the longer range context.
Later advancements then introduced fully transformer based
architectures [2, 4, 16, 42, 47, 51, 75, 83], which outper-
formed all previous methods across multiple benchmarks.
Recently, a new method [39] has been proposed, combining
CNNs and ViTs, which achieves comparable performance to
state-of-the-art fully transformer-based methods.

Global Context Modeling: Due to the localized na-
ture of 2D CNNs, global context modeling was lacking
in pure 2D CNN-based computer vision methods. Self-
attention [65] was introduced to model long-range depen-
dencies for visual inputs. However, self-attention comes at
a high computation cost due to the required matrix multi-
plications. Various approaches have been introduced to ad-
dress this problem. These include local window based atten-
tion [10, 45, 46, 50, 52, 77, 81], along with variants that add
global tokens to model global information [1, 3, 29, 49, 79].
To reduce the computation cost, some methods used compu-
tationally efficient patterns for attention such as strided [8]
and axial [27] patterns, as well as attention computed along
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the channel dimension rather than the token dimension [15].
Other methods also combined convolution and self-attention
for local and global modeling [21, 43, 71, 74]. Various
methods for linearizing self-attention were also investigated,
including the projection of token dimensions [33, 68], factor-
izing the softmax-attention kernel [9, 54, 73]. Using CNNs,
a new method for modeling global context, termed focal
modulation [76], has been proposed recently. To model
local and global information, focal modulation employs hi-
erarchical context aggregation to combine information from
increasing sizes of receptive fields.

3. Methodology
Let us assume a video input is encoded to produce a

feature representation Xst ∈ RT×H×W×C with T frames,
H ×W spatial resolution, and C channels respectively. To
obtain the spatio-temporal context enriched representation
yi ∈ RC for a given token (query) xi ∈ RC in the input
spatio-temporal feature map Xst, it is necessary to perform
an interaction between the query and its neighboring spatial
and temporal tokens, and then aggregate the resulting infor-
mation over the surrounding spatio-temporal contexts. To
effectively model a spatio-temporal input, it is important to
encode both short-range and long-range dependencies for
the enriched context modeling for videos.

Self-attention [65] which is used in state-of-the-art video
recognition methods [2, 4, 16, 47, 51, 75, 83], uses a First
Interaction, Last Aggregation (FILA) process which involves
initially calculating the attention scores through the query
and key interaction T1, followed by aggregation M1 over
the contexts as shown in Eq. 1.

yi = M1(T1(xi,Xst),Xst). (1)

Since the query and keys during the interaction process
are simple linear projections of the input feature map, self-
attention involves computationally expensive token-to-token
attention score calculation through query-key interactions
because individual keys do not contain information about
the surrounding context.

Recently, a new encoding method, Focal modulation [76]
has been proposed, which follows an early aggregation pro-
cess by First Aggregation, Last Interaction (FALI) mecha-
nism. Essentially, both self-attention and focal modulation
involve the interaction and aggregation operations but differ
in the sequence of operation. In the case of focal modula-
tion, context aggregation M2 is performed first, followed
by the interaction T2 between the queries and the aggregated
features, as shown in Eq. 2.

yi = T2(M2(i,Xst),xi). (2)

The output of the aggregation is known as the modulator
which encodes the surrounding context for each query. Note

that the operator M2 in focal modulation is based on convo-
lutions, which are computationally more efficient compared
to M1 in self-attention. Similarly, the interaction operator
T2 is a simple element-wise multiplication, compared to the
token-to-token attention score computation in self-attention
which has quadratic complexity.

The focal modulation process given by [76] works well
on images by extracting the spatial context around a query
token. However, to model spatio-temporal information, both
the spatial and temporal contexts surrounding a single query
token have to be extracted. To achieve this we propose
our architecture, Video-FocalNets which explicitly models
both intra-frame (spatial) and inter-frame (temporal) infor-
mation. Our approach aims to independently model the
spatial and temporal information by proposing a two-stream
spatio-temporal focal modulation block, in which one branch
learns spatial information and the other models the tempo-
ral information. By decoupling the spatial and temporal
branches, we are able to separately extract and aggregate
spatial and temporal context for each query token, generating
spatial and temporal modulators. These modulators are then
fused with the query tokens to build the final feature map.

Our design transfers the desirable qualities of late aggre-
gation in focal modulation to the video tasks. Particularly,
Focal Modulation is performed for each target token with
the context centered around it, hence it is translationally
invariant. It also decouples the queries from the context
around them, allowing the queries to preserve fine-grained
information, while the coarser context surrounding it is ex-
tracted. Focal modulation uses a hierarchical-gated aggrega-
tion method, to aggregate information across multiple levels
of granularity. This allows for modeling both short- and
long-range dependencies within a video while improving
computational and parameter efficiency.

We now present our approach on spatio-temporal focal
modulation in Sec. 3.1, specifying the Hierarchical Contex-
tualization and Gated Aggregation processes for videos in
Sec. 3.1.1 and Sec. 3.1.2, respectively. For consistency, we
maintain the same terminology as proposed in [76]. Finally,
we outline our network architecture variants in Sec. 3.2.

3.1. Spatio-Temporal Focal Modulation

To model the spatial and temporal dimensions, we pro-
pose a two-stream spatio-temporal focal modulation block.
The overall architecture is presented in Fig. 2 and the de-
sign of the spatio-temporal focal modulation is presented in
Fig. 3. We validate its effectiveness via detailed ablations and
comparisons with alternate design choices in Sec. 4.3. For
an input spatio-temporal feature map Xst ∈ RT×H×W×C ,
the two-stream spatio-temporal encoding process involves
independent aggregations along the spatial and temporal di-
mensions, followed by a joint interaction with the queries,
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Figure 2: (a) The overall architecture of Video-FocalNets: Following [46, 76, 77], we define a four-stage architecture,
with each stage comprising a patch embedding and a number of Video-FocalNet blocks. The total number of blocks is L,
with stages one, two, three, and four having L/6, L/6, L/2, and L/6 blocks respectively. (b) Single Video-FocalNet block:
Similar to the transformer blocks [65], we replace self-attention with Spatio-Temporal Focal Modulation.

Figure 3: The Spatio-Temporal Focal Modulation layer:
We design a spatio-temporal focal modulation block that
independently models the spatial and temporal informa-
tion. The input is first projected using linear layers to
produce queries, spatial/temporal feature maps, and spa-
tial/temporal gates. Then through hierarchical contextualiza-
tion (Ms/Mt) and gated aggregation (Gs/Gt), the spatial
and temporal modulators are produced. These then interact
with the query tokens through element-wise multiplication
operation ( ) to form the final spatio-temporal feature map.

as shown in Eq. 3.

yi = Tst(Ms(it,Xst,t),Mt(ihw,Xst,hw),xi), (3)

where Xst,t ∈ RH×W×C is a single spatial slice for the
temporal dimension t ∈ {1, ..., T}, while it is the spatial
location for the slice t ∈ {1, ..., T}. Similarly, Xst,hw ∈
RT×C is a single temporal slice for the spatial dimensions
h ∈ {1, ...,H} and w ∈ {1, ..., w}, while ihw is the tempo-
ral location. The operators Ms and Mt are based on the

depth-wise convolution and point-wise convolution opera-
tors respectively and Tst is an element-wise multiplication.
The spatio-temporal focal modulation process can therefore
be defined as follows:

yi = q(xi)⊙ms(it,Xst,t)⊙mt(ihw,Xst,hw), (4)

where q(·) is a query projection function and ⊙ is the
element-wise multiplication, ms(·) and mt(·) are context
aggregation functions, whose outputs are called spatial mod-
ulator and temporal modulator respectively. The formula-
tion of ms(·) and mt(·) involves two steps: Hierarchical
Contextualization and Gated Aggregation. The following
Sec. 3.1.1 and Sec. 3.1.2 talk about Spatio-Temporal Hi-
erarchical Contextualization and Spatio-Temporal Gated
Aggregation respectively.

3.1.1 Spatio-Temporal Hierarchical Contextualization

We first project the input spatio-temporal feature map Xst ∈
RT×H×W×C using two linear layers, producing Z0

s and Z0
t ,

as defined by Eq. 5.

Z0
s = fz,s(Xst) ∈ RT×H×W×C ,

Z0
t = fz,t(Xst) ∈ RT×H×W×C ,

(5)

where fz,s and fz,t are the spatial and temporal linear pro-
jection layers respectively. We then apply a series of L
depth-wise convolutions (DWConv) and point-wise convo-
lutions (PWConv) to the respective spatial and temporal
projected inputs Z0

s and Z0
t along the spatial and temporal

dimensions respectively. The outputs Zℓ
s and Zℓ

t , at each
focal level ℓ ∈ {1, ..., L}, are therefore given as:

Zℓ
s = f ℓ

a,s(Z
ℓ−1
s ) ≜ GeLU(DWConv(Zℓ−1

s )) ∈ RT×H×W×C ,

Zℓ
t = f ℓ

a,t(Z
ℓ−1
t ) ≜ GeLU(PWConv(Zℓ−1

t )) ∈ RT×H×W×C ,
(6)

where f ℓ
a,s(·) and f ℓ

a,t(·) are the spatial and temporal con-
textualization functions with GeLU [25] activation function.
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To obtain the global representation, a global average pool-
ing operation is performed along the spatial and temporal
dimensions on ZL

s and ZL
t respectively as shown in Eq. 7.

ZL+1
s = Avg-Pool(ZL

s ),

ZL+1
t = Avg-Pool(ZL

t ),
(7)

where Avg-Pool is the global average pool operator.

3.1.2 Spatio-Temporal Gated Aggregation

Next, we condense the respective spatial and temporal fea-
ture maps, Zℓ

s and Zℓ
t , into the respective spatial and tem-

poral modulators through a gating mechanism. We ob-
tain the respective spatial and temporal gating weights,
Gs = fg,s(Xst) ∈ RH×W×(L+1) and Gt = fg,t(Xst) ∈
RT×(L+1), using the linear projection layers fg,s and fg,t.
This is followed by a dot product between the feature maps
and their respective gates, as shown in Eq. 8.

Zout
s =

L+1∑
ℓ=1

Gℓ
s ⊙ Zℓ

s ∈ RH×W×C ,

Zout
t =

L+1∑
ℓ=1

Gℓ
t ⊙ Zℓ

t ∈ RT×C ,

(8)

where Zout
s and Zout

t are the single aggregated spatial and
temporal feature maps and Gℓ

s ∈ RH×W×1 and Gℓ
t ∈ RT×1

are slices of Gs and Gt respectively for the level ℓ. To
enable communication across different channels, another set
of linear layers, hs(·) and ht(·), are used to obtain the spatial
modulator (Ms = hs(Z

out
s ) ∈ RT×H×W×C ) and temporal

modulator (Mt = ht(Z
out
t ) ∈ RT×H×W×C) respectively.

Therefore, the spatio-temporal focal modulation process
defined by Eq. 4 can be rewritten as:

yi = q(xi)⊙ hs(

L+1∑
ℓ=1

gℓ
i,s · zℓ

i,s)⊙ ht(

L+1∑
ℓ=1

gℓ
i,t · zℓ

i,t) (9)

where zℓ
i,s/zℓ

i,t and gℓ
i,s/gℓ

i,t are the spatial/temporal visual
feature and spatial/temporal gating value at location i of
Zℓ

s/Zℓ
t and Gℓ

s/Gℓ
t respectively.

3.1.3 Design Variations

We further compare our proposed spatio-temporal focal mod-
ulation design against various other possible designs shown
in Fig. 4. This explorative study validates the proposed de-
sign to be the optimal one. The first design, (a), is a simple
extension of the spatial focal modulation to videos, which
passes each frame through the spatial encoder (which uses
only 2D depthwise convolution) and averages along the tem-
poral dimension. Mathematically, Eq. 3 for this case can be
re-written as:

yi = Tst(Ms(it,Xst,t)). (10)

A variation of this design, (b), uses factorized 3D convolu-
tion (2D depthwise followed by 1D pointwise convolution).

The next (c) uses a factorized encoder that stacks two en-
coders, one spatial (using 2D depthwise convolution) and one
temporal (using 1D depthwise convolution), on top of each
other. This is similar to the factorized encoder design pre-
sented by [2] but replaces spatial and temporal self-attention
with spatial and temporal focal modulation.

The second last design (d) follows the concept of divided
space-time attention proposed by [4] and uses alternating
spatial and temporal focal modulation.

The final design (e) is the proposed spatio-temporal focal
modulation. The accuracy and computation requirements for
each are reported on the Kinetics-400 dataset in Fig. 5. It
can be seen that the proposed design is the best in terms of
accuracy and computation.

3.2. Network Variants

Following [47, 76], we use the same four-stage layouts
and hidden dimensions as in [76], but replace the focal modu-
lation block with our spatio-temporal focal modulation block.
In each stage, a stack of L Video-FocalNet blocks is used, di-
vided between the four stages as {L/6, L/6, L/2, L/6}. We
introduce four different versions of Video-FocalNets. The
architecture hyper-parameters of these model variants are:

• Video-FocalNet-T: C = 96, blocknum = {2, 2, 6, 2}

• Video-FocalNet-S: C = 96, blocknum = {2, 2, 18, 2}

• Video-FocalNet-B: C = 128, blocknum = {2, 2, 18, 2}

We use non-overlapping convolution layers for patch em-
bedding at the beginning (kernel size=4× 4, stride=4) and
between two stages (kernel size=2 × 2, stride=2), respec-
tively. The focal levels (L) for the models are set to 2 with
the kernel for the first level set to k1 = 3. We gradually in-
crease the kernel size by 2 from lower focal levels to higher
ones, i.e., kℓ = kℓ−1 + 2.

4. Results and Analysis
4.1. Experimental Setup and Protocols

Datasets: We report results for video action recogni-
tion on three large-scale datasets, Kinetics-400 (K400) [31],
Kinetics-600 (K600) [5] and Something-Something-v2 (SS-
v2) [20]. For each dataset, we train on the training set and
evaluate on the validation set. K400 consists of ∼240k train-
ing and ∼20k testing videos across 400 classes. K600 con-
sists of ∼370k training and 28.3k testing videos across 600
classes. SS-v2 consists of 169k training and 24.7k validation
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Figure 4: We show various design choices for spatio-temporal context modeling via Focal Modulation and evaluate them in
Fig. 5. (a) A naive solution where the frames are passed through spatial focal modulation layers and averaged. (b) A variation
of the naive solution replacing 2D depthwise convolution with factorized 3D convolution (2D depthwise followed by 1D
pointwise convolution). (c) A factorized encoder design that stacks two encoders, one modeling spatial and the other the
temporal dimension. (d) A design based on [4] which uses factorized spatial and temporal focal modulation. (e) Our proposed
spatio-temporal focal modulation with parallel spatial and temporal branches followed by spatio-temporal interaction.

Figure 5: Comparison of various design choices for Video-
FocalNet-S on Kinetics-400 [31] validation set.

videos across 174 classes. For all three datasets, we report
Top-1 accuracy and compare it against the state-of-the-art.

We additionally test our Video-FocalNet on the Diving-48
(D-48) [41] and ActivityNet-1.3 (ANet-1.3) [24] datasets.
D-48 is a challenging dataset of diving actions consisting
of ∼15000 training and ∼2000 testing samples. Actions
are only differentiated by the subtle movement of the diver
across the frames with the background being majorly con-
stant. This means that the dataset requires robust temporal
modeling for good performance. In fact, it has been shown
by [67], that disrupting (through random shuffling) or remov-
ing (by single frame evaluation) temporal information in this
dataset can result in accuracy drops of up to ∼ 33.6% and
∼ 70.2% respectively. Alternatively, the ANet-1.3 dataset
consists of untrimmed videos for action recognition tasks.

Implementation Details: For K400 and K600, we follow

Table 1: Training hyperparameters for experiments in the
main paper. “–” indicates that the regularisation method was
not used at all. Values that are constant across all columns are
listed once. Datasets are denoted as follows: K400: Kinetics-
400. K600: Kinetics-600. SS-v2: Something-Something-v2.
D-48: Diving 48. ANet-1.3: ActivityNet-1.3.

K400 K600 SS-v2 D-48 ANet-1.3

Optimization
Optimizer SGD
Batch size 512
Learning rate schedule cosine with linear warmup
Linear warmup epochs 20
Base learning rate 0.1
Epochs 120

Data augmentation
Random crop probability 1.0
Random flip probability 0.5 0.5 – – –
Scale jitter probability 1.0
Maximum scale 1.33
Minimum scale 0.75
Colour jitter probability 0.8

Other regularisation
Stochastic droplayer rate [28] 0.1
Label smoothing [59] 0.1
Mixup (α = 0.8) probability [80] 0.5

a similar training scheme to [39, 42] and train for 120 epochs
with a linear warmup of 20 epochs using the SGD optimizer.
We linearly scale the learning rate by LR× batchsize

512 where
LR = 0.1 is the base learning rate. The spatial modules are
initialized from the pretrained Imagenet-1K FocalNet [76]
weights, while the rest are randomly initialized. For augmen-
tations, we follow a recipe similar to [16] with some varia-
tions. To each clip, we apply a horizontal flip, Mixup [80]
(α=0.8), and CutMix [78], each with a probability of 0.5.
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Table 2: Comparison with state-of-the-art methods on Kinetics-400 [31].

Method Pre-training Top-1 Views FLOPs (G/view)

TEA (ICCV’21) [40] ImageNet-21K 76.1 10× 3 70
TSM-ResNeXt-101 (ICCV’21) [44] ImageNet-21K 76.3 - -
I3D NL (ICCV’21) [69] ImageNet-21K 77.7 10× 3 359
VidTR-L (ICCV’21) [83] ImageNet-21K 79.1 10× 3 351
LGD-3D R101 (CVPR’19) [53] ImageNet-21K 79.4 - -
SlowFast R101-NL (ICCV’19) [18] ImageNet-21K 79.8 10× 3 234
X3D-XXL (CVPR’20) [17] ImageNet-21K 80.4 10× 3 194
OmniSource (ECCV’20) [14] ImageNet-21K 80.5 - -
TimeSformer-L (ICML’21) [4] ImageNet-21K 80.7 1× 3 2380
MFormer-HR (NeurIPS’21) [51] ImageNet-21K 81.1 10× 3 959
MViTv1-B (ICCV’21) [16] - 81.2 3× 3 455
MoViNet-A6 (CVPR’21) [35] ImageNet-21K 81.5 1× 1 390
ViViT-L FE (CVPR’21) [2] ImageNet-21K 81.7 1× 3 3980
MTV-B (CVPR’22) [75] ImageNet-21K 81.8 4× 3 399
MTV-B (320p) (CVPR’22) [75] ImageNet-21K 82.4 4× 3 967
Video-Swin-T (CVPR’22) [47] ImageNet-1K 78.8 4× 3 88
Video-Swin-S (CVPR’22) [47] ImageNet-1K 80.6 4× 3 166
Video-Swin-B (CVPR’22) [47] ImageNet-1K 80.6 4× 3 282
Video-Swin-B (CVPR’22) [47] ImageNet-21K 82.7 4× 3 282
MViTv2-B (CVPR’22) [42] - 82.9 5× 1 226
Uniformer-B (ICLR’22) [39] ImageNet-1K 83.0 4× 3 259

Video-FocalNet-T ImageNet-1K 79.8 4× 3 63
Video-FocalNet-S ImageNet-1K 81.4 4× 3 124
Video-FocalNet-B ImageNet-1K 83.6 4× 3 149

Table 3: Comparison with state-of-the-art methods on
Kinetics-600 [5] dataset.

Method Pre-training Top-1

SlowFast R101-NL (ICCV’19) [18] ImageNet-21K 81.8
X3D-XXL (CVPR’20) [17] ImageNet-21K 81.9
TimeSformer-L (ICML’21) [4] ImageNet-21K 82.2
MFormer-HR (NeurIPS’21) [51] ImageNet-21K 82.7
ViViT-L FE (CVPR’21) [2] ImageNet-21K 82.9
MTV-B (CVPR’22) [75] ImageNet-21K 83.6
MTV-B (320p) (CVPR’22) [75] ImageNet-21K 84.0
Video-Swin-B (CVPR’22) [47] ImageNet-21K 84.0
Uniformer-B (ICLR’22) [39] ImageNet-1K 84.5
MoViNet-A6 (CVPR’21) [35] ImageNet-21K 84.8
MViTv1-B (ICCV’21) [16] None 83.8
MViTv2-B (CVPR’22) [42] None 85.5

Video-FocalNet-B ImageNet-1K 86.7

See detailed hyperparameters in Tab. 1.
During training, we sample T frames with a stride of τ ,

denoted as T × τ [18]. For the spatial domain, we follow In-
ception [59] and take a crop of H×W = 224×224, with in-
put area selected within a scale of [min,max] = [0.08, 1.00]
and aspect ratio jitter between 3/4 and 4/3. During infer-
ence, we report results as an average across Nclip ×Ncrops

where a total of Nclip clips are uniformly sampled from the
video, and for each video, Ncrops spatial crops are taken
during inference. For K400 and K600 we use 4× 3 for in-
ference. For SS-v2, D-48 and ANet-1.3 we follow the same
training recipe as K400 and K600, with slight changes as
followed by [16, 39, 42, 47]. We initialize our model with

Table 4: Comparison with state-of-the-art methods on
Something-Something-v2 [20] dataset.

Method Pre-training Top-1

SlowFast R50 (ICCV’19) [18] ImageNet-21K 61.7
TimeSformer-HR (ICML’21) [4] ImageNet-21K 62.5
VidTR (ICCV’21) [83] ImageNet-21K 63.0
ViViT-L FE (CVPR’21) [2] ImageNet-21K 65.9
MFormer-L (NeurIPS’21) [51] ImageNet-21K 68.1
MTV-B (CVPR’22) [75] ImageNet-21K 67.6
MTV-B (320p) (CVPR’22) [75] ImageNet-21K 68.5
Video-Swin-B (CVPR’22) [47] Kinetics400 69.6
Uniformer-B (ICLR’22) [39] Kinetics400 70.4
MViTv1-B (ICCV’21) [16] ImageNet-21K 67.6
MViTv2-B (CVPR’22) [42] Kinetics400 70.5

Video-FocalNet-B Kinetics400 71.1

the K400 pretrained weights. For augmentations, we don’t
use the random horizontal flip and infer on 1× 3 views.

Additionally, owing to the large scale of the Kinetics-
400 [31] and Kinetics-600 [5] datasets, we preprocess the
videos before starting to train. Following the guidelines
of [11], each video is first resized, with the shorter side
resized to 256 pixels.

4.2. Comparison with State-of-the-art

Kinetics-400: On the K400 [31] dataset, we report re-
sults for the Video-FocalNet-T, Video-FocalNet-S and Video-
FocalNet-B variants, comparing against recent methods in
Tab. 2. Considering first the T and S variants, it can be
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Table 5: Comparison with state-of-the-art methods on Diving
48 V2 [41] dataset.

Method Pre-training Top-1

SlowFast R50 (ICCV’19) [18] ImageNet-21K 77.6
TimeSformer-L (ICML’21) [4] ImageNet-21K 81.0
RSANet R50 (NeurIPS’21) [32] ImageNet-1K 84.2
VIMPAC (arXiv’21) [61] HowTo100M 85.5
BEVT (CVPR’22) [67] Kinetics400 86.7
GC-TDN (CVPR’22) [22] ImageNet-1K 87.6
ORVIT Transformer (CVPR’22) [26] ImageNet-21K 88.0
TFCNET (arXiv’22) [82] ImageNet-1K 88.3

Video-FocalNet-B Kinetics400 90.8

Table 6: Comparison on ActivityNet 1.3 [24] dataset.

Method Pre-training Top1 (%, ↑)(↓)

Video-Swin-B (CVPR’22) [47] Kinetics400 88.5

Video-FocalNet-B Kinetics400 89.8

seen that our method surpasses the equivalent Video-Swin
Transformer [47] variants by 1.0% and 0.8% respectively
while reducing the TFLOPs by 25%. Our larger base model,
Video-FocalNet-B, surpasses the previous state-of-the-art
Uniformer-B [39] and MViTv2-B [42] by 0.6% and 0.7%
respectively, while maintaining comparable TFLOPs with
MViTv2-B [42] and reducing TFLOPs by about 45% com-
pared to Uniformer-B [39].

Kinetics-600: On the K600 [5] dataset, we report re-
sults for Video-FocalNet-B against recent methods in lit-
erature in Tab. 3. Compared to the previous state-of-the-
art MViTv2-B [42], our Video-FocalNet-B achieves 1.2%
higher performance. Our method using the ImageNet-1K
initialization also surpasses previous methods pretrained on
the larger ImageNet-21K dataset while maintaining much
lower TFLOPs.

Something-Something-v2: On the SS-v2 [20] bench-
mark we report results for Video-FocalNet-B and compare
against state-of-the-art methods in Tab. 4. On this temporally
challenging benchmark, our method surpasses the previous
state-of-the-art MViTv2-B [42] and Uniformer-B [39] by
0.6% and 0.7% respectively. This strong performance shows
that our method can effectively model the subtle temporal
changes and dependencies in this challenging dataset.

Diving-48: On D-48 [41] we report our results and com-
pare them against recent methods in literature in Tab. 5.
Video-FocalNet-B surpasses the previous state-of-the-art
method TFCNET [82] by 2.5%. This shows that our method
can effectively model the temporal information even when
using a small number of training samples.

ActivityNet-1.3: For ANet-1.3 [24], results are presented
in Tab. 6. Our proposed Video-FocalNet outperforms the
baseline Video-Swin (CVPR’22) [47] model by a signifi-

Figure 6: (a) Ablation of various modulator-query spatio-
temporal interaction methods for Video-FocalNet-S on
Kinetics-400 [31] validation set. (b) Ablation for using patch
vs tubelet embedding for Video-FocalNet-S on Kinetics-
400 [31] validation set. Note that the number of frames is
adjusted to ensure that the number of tokens is the same.

cant margin on the untrimmed video dataset. This demon-
strates the efficacy of our method in localizing highlights
and addressing the challenges posed by untrimmed videos.
We appreciate your insightful suggestion and believe that
evaluating our method on untrimmed video datasets further
supports its potential in this challenging problem setting.

4.3. Ablations

In this section, we present an ablative analysis of various
choices in our final design. Note that all ablations are per-
formed using the Video-FocalNet-S variant on K400 using
the same training settings as mentioned in Sec. 4.1.

Modulator Fusion Method: Since we propose a two-
stream spatio-temporal focal modulation design, we end up
with two modulators, one each for the spatial and temporal
branches respectively, that need to be fused with the query
tokens. We evaluate various fusion methods to see which
works best. Fig. 6 (a) shows the comparison of three fusion
techniques which include simple averaging, elementwise
multiplication, and a learnable projection layer. We find that
elementwise multiplication gives the best performance.

Patch Embedding vs Tubelet Embedding: Many recent
works [2, 47, 75] propose encoding a tubelet of T × H ×
W × 3, with T = 2, into a single token rather than patch
embedding with T = 1. We evaluate this design choice for
our model and find that a simple patch embedding works
better for us, as shown in Fig. 6 (b).

Visualizations: We visualize the spatial and temporal
modulators for sample videos across two datasets, K600
and SS-V2 in Fig. 7. We note that our modulators focus on
the salient parts and essential dynamics of the video which
are relevant to the end task. The spatial modulator tends to
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(a) Class Label: "Cutting Apple" (b) Class Label: "Smashing" (c) Class Label: "Tying Knot"

(d) Class Label: "Pushing Something So
That It Slightly Moves"

(e) Class Label: "Putting Something On a
Flat Surface Without Letting It Roll"

(f) Class Label: "Showing That Something
Is Empty"

(g) Class Label: ["Back", "25som",
"15Twis", "PIKE"]

(h) Class Label: ["Forward", "25som",
"2Twis", "PIKE"]

(i) Class Label: ["Reverse", "Dive",
"NoTwis", "PIKE"]

Figure 7: We visualize the spatial and temporal modulators for sample videos from Kinetics-600 [5] (top row), Something-
Something-V2 [20] (middle row) and Diving-48 [41] (bottom row). Note how the temporal modulator fixates on the global
motion across frames while the spatial modulator captures local variations. For example in Fig. 7a, the temporal modulator
specifically focuses on the point where the knife meets the apple, while the spatial modulator shifts focus from frame to frame
based on the knife’s position. For Diving-48 (bottom row), we can see that the model can specifically fixate on the area where
the action happens in each frame, regardless of the camera movement and small region of interest. More interestingly, the
temporal modulator can separate the two regions of action in Fig. 7g and Fig. 7h.

shift to the local spatial changes in individual frames, while
the temporal modulator fixates to the global region across
frames where the majority of the motion happens.

5. Conclusion
To learn spatio-temporal representations that can effec-

tively model both local and global contexts, this paper intro-
duces Video-FocalNets for video action recognition tasks.
This architecture is derived from focal modulation for im-
ages and can effectively model both short- and long-term
dependencies to learn strong spatio-temporal representa-

tions. We extensively evaluate several design choices to
develop our proposed Video-FocalNet block. Specifically,
our Video-FocalNet uses a parallel design to model hierarchi-
cal contextualization by combining spatial and temporal con-
volution and multiplication operations in a computationally
efficient manner. Video-FocalNets are more efficient than
transformer-based architectures which require expensive self-
attention operations. We demonstrate the effectiveness of
Video-FocalNets via evaluations on five representative large-
scale video datasets, where our approach outperforms previ-
ous transformer- and CNN-based methods.
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