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Abstract

The accuracy of the visual tasks for top-view fisheye
cameras is limited by the Euclidean geometry for pose-
distorted objects in images. In this paper, we demonstrate
the analogy between the fisheye model and the Poincaré
ball and that learning the shape of convolution kernels in
the Poincaré Ball can alleviate the spatial distortion prob-
lem. In particular, we propose the Deformable Convolution
based on the Poincaré Ball, named DCPB, which conducts
the Graph Convolutional Network (GCN) in the Poincaré
ball and calculates the geodesic distances to Poincaré hy-
perplanes as the offsets and modulation scalars of the
modulated deformable convolution. Besides, we explore
an appropriate network structure in the baseline with the
DCPB. The DCPB markedly improves the neural network’s
performance. Experimental results on the public dataset
THEODORE show that DCPB obtains a higher accuracy,
and its efficiency demonstrates the potential for using tem-
poral information in fisheye videos.

1. Introduction

Visual tasks for top-view fisheye cameras are challeng-

ing but with valuable practical significance in real-world

scenarios [18,45]. Due to their large field of view, top-view

fisheye cameras are the most cost-effective devices to cap-

ture 360◦ content and cover a more comprehensive range of

applications in visual surveillance [17]. A traditional per-
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spective camera samples a field of view of the 3D scene

projected onto a 2D plane with relative positions in the real

world [35]. In contrast, a top-view fisheye camera cap-

tures the entire view surrounding its optical center. Thus,

top-view fisheye cameras provide more spatial information

than traditional perspective cameras. However, the geomet-

ric transformations inherent in fisheye cameras cause spa-

tial distortion, leading to magnifying objects near the cen-

ter of fisheye images while the objects away from the cen-

ter of fisheye images shrink [41, 46]. The spatial distortion

considerably increases the difficulty of accurate visual tasks

for top-view fisheye cameras, demanding the algorithms to

be robust. Besides, the algorithms trained on perspective

cameras usually perform poorly on top-view fisheye cam-

eras [49, 51]. To solve these problems, many researchers

are committed to adapting Convolutional Neural Networks

(CNNs) to the severe distortion of fisheye images for the

higher accuracy of visual tasks.

In object detection, [17, 24] proposed CNNs that pre-

dict arbitrarily rotated bounding boxes in a fisheye image

to increase IoU. [10,36] rotated each fisheye image and ap-

plied YOLO [31] only to the upper center part of the image,

where people usually appear upright. These methods only

deal with the input and output of CNNs and ignore that a

convolution kernel may not be appropriate for the distorted

object. Deformable convolution [14] is proposed for ad-

dressing the issue that geometric variations due to scale,

pose, viewpoint, and part deformation degrade the perfor-

mance of CNNs in object recognition and detection. In de-

formable convolution, the grid sampling locations of stan-

dard convolution are each offset by displacements learned

for the preceding feature maps. Deformable ConvNets v2

(DCNv2) [50] introduced modulated deformable convolu-
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Figure 1. (a) The projection model of the top-view fisheye camera. (b) The projection model of hyperboloid on the Poincaré disk.

tion to strengthen the ability of the model to vary the spatial

distribution. [43] proposes a deformable subnetwork that

can generate 4-dimensional deformation coefficients and

perform part alignment to handle object deformation. [4]

replaces the fixed convolution layer and pooling layer in

Cascade-RCNN [6] with the deformable convolution layer

and deformable pooling layer to conduct object detection in

top-view fisheye cameras. To eliminate 2D-to-Sphere in-

trinsic sampling distortions of fisheye images, [7] uses de-

formable convolutions to extract omnidirectional features

with non-deformable Receptive Fields. These methods

build deformable kernel functions on the convolution lay-

ers in the Euclidean space and ignore that top-view fisheye

images have similar geometric properties with hyperbolic

space [1]. To solve the problem that the neural network

in Euclidean space lacks the ability to express the features

of fisheye images, we try to find an appropriate geometric

model in hyperbolic space and learn the features in it.

The Poincaré ball, an n-dimensional hyperbolic geomet-

ric model, is a stereographic projection of the hyperbolic

space. As its two-dimensional form, the Poincaré disk can

achieve a more accurate approximation of the projection

model of the top-view fisheye camera, as shown in Fig. 1.

The Poincaré ball is a conformal mapping that preserves

angles between distorted lines [1]. Thus, the geodesic in

the Poincaré disk corresponds to any arc perpendicular to

the disk’s boundary or diameter. By considering the sur-

face area of a hypersphere of increasing radius centered at

a particular point, the Poincaré ball and fisheye images can

be seen to grow exponentially. In addition, the objects near

the center of fisheye images are magnified while the objects

away from the center shrink, like the induced distance [40]

in the Poincaré ball. Therefore, we think learning the rele-

vant features of fisheye images in the Poincaré ball is feasi-

ble.

In this paper, to improve the ability of the convolution

kernel to extract distorted features from top-view fisheye

images, we propose the Deformable Convolution in the

Poincaré Ball (DCPB) for top-view fisheye cameras. We

embed the features of the fisheye image in the Euclidean

space into the Poincaré ball and then obtain the offsets and

modulation scalars of the modulated deformable convolu-

tion through the Graph Convolution Network (GCN) in the

hyperbolic space. To thoroughly verify the increased mod-

eling capacity of the DCPB, we conduct experiments on im-

age semantic segmentation with the synthetic segmentation

dataset THEODORE [34]. Specially, we incorporate the

DCPB into the segmentation networks UNet [32], and we

show that our method improves the performance of CNN

semantic segmentation on synthetic distortions.

Our contributions can be summarized as follows:

• We propose the DCPB which is a novel convolution

method to learn the shape of the kernel in the Poincaré

ball for top-view fisheye cameras, enabling the CNNs

adapted to the severe distortion for the higher accuracy

of visual tasks.
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• We propose the method to project the feature from the

Poincaré ball back to the Euclidean space by calcu-

lating the Geodesic distance from features to Poincaré

hyperplanes, which enhances the information learning

of the CNNs between different spaces.

• We explore an appropriate network structure for the

DCPB in the segmentation networks UNet and ver-

ify the effectiveness of the convolution methods on the

synthetic top-view fisheye segmentation dataset.

2. Related Works
2.1. Convolution kernel adaptation

To adapt to rotational images, [12, 26, 42] proposed

spherical convolution and convolutions in group space. [11,

13] developed efficient convolution algorithms for spheri-

cal signals and created building blocks that satisfy a gen-

eralized Fourier theorem to detect patterns independently

from their location on the sphere. [50] proposed modu-

lated deformable convolution to deform convolution ker-

nel and enhanced the adaptability and computational effi-

ciency of the convolution. To address the spatial distor-

tion problem of fisheye cameras, [16] proposed Restricted

Deformable Convolution (RDC) for pixel-wise prediction

tasks in fisheye images. [30] used deformable convolution

to adapt standard CNN models on fisheye images to capture

non-linear transformations. [41] developed a novel convo-

lution method named the Rotation Mask Deformable Con-

volution (RMDC), which rotates convolution kernels and

introduces the Center-Fixed Deformable Convolution.

2.2. Neural Networks on Hyperbolic spaces

Hyperbolic space can be thought of as a continuous ver-

sion of trees, and as such, it is naturally equipped with hier-

archical model structures [28]. Recent research has proven

that many types of complex data (e.g., graph data) from

many fields exhibit a highly non-Euclidean latent character-

istic [5]. In representation learning existing approach to em-

bedding hierarchical multi-relational graph data in hyper-

bolic space has outperformed Euclidean models [3, 37]. In

machine learning, hyperbolic representations recently sig-

nificantly outperformed Euclidean embeddings for hierar-

chical, taxonomic, or entailment data [20, 33]. In computer

vision, [1] introduced FisheyeHDK, a hybrid neural net-

work that combines hyperbolic and Euclidean convolution

layers to learn the shape and weights of deformable kernels.

3. Methods
3.1. Background and preliminaries

Hyperbolic geometry of the Poincaré ball. The hy-

perbolic space has five isometric models, and we work in

Poincaré ball like [21, 25]. The Poincaré ball Bd
c of radius

1/
√
c, c > 0 corresponds to a d-dimensional Riemannian

manifold, where B
d
c =

{
x ∈ R

d | ‖x‖ < 1/
√
c
}

is an open

ball. Its metric tensor is given by:

gBx = λ2
xg

E

x , λx :=
2

1− ‖x‖2
. (1)

gEx = In denotes the Euclidean metric tensor and ‖·‖
denotes the Euclidean norm. Thus, the hyperbolic metric

tensor is conformal to the Euclidean one. As Fig. 2 shows,

the summation of two points x, y in the Poincaré ball is de-

fined by Möbius addition [38]:

x⊕c y :=

(
1 + 2c〈x, y〉+ c‖y‖2

)
x+

(
1− c‖x‖2

)
y

1 + 2c〈x, y〉+ c2‖x‖2‖y‖2 .

(2)

The induced distance which is measured along a

geodesic (i.e., the shortest path between the points x, y ∈
B
d
c ) is given by:

dBd
c
(x, y)=

1√
c
cosh−1(1+2

‖x− y‖2
(1− c‖x‖2) (1− c‖y‖2)

)
.

(3)

Because the effect of a neural network is poor if it is di-

rectly applied to hyperbolic space, a common approach is

to project the point x in hyperbolic space onto its tangent

space TxBd
c which is a d-dimensional Euclidean space, and

apply a neural network to the tangent space [21].The expo-

nential map expcx : TxBd
c → B

d
c allows one to move on the

manifold from x in the direction of a vector v ∈ TxBd
c , tan-

gential to B
d
c at x. And the inverse is the logarithmic map

logcx : Bd
c → TxBd

c . For the Poincaré ball and v 	= 0, x 	= y,

these are defined as:

expcx(v) = x⊕c

(
tanh

(√
c
λc
x‖v‖
2

)
v√
c‖v‖

)
, (4)

logcx(y) =
2√
cλc

x

tanh−1
(√

c ‖−x⊕c y‖
) −x⊕c y

‖−x⊕c y‖
.

(5)

Using the more straightforward form when x = 0, [21]

shows that the linear mapping M : Rn → R
m can be ap-

plied on the Poincaré ball by projecting a point x ∈ B
d
c

onto the tangent space at 0 ∈ B
d
c with the logarithmic map

logc0(x), performing matrix multiplication in the Euclidean

tangent space TxBd
c , and finally projecting back to B

d
c by

the exponential map expc0(x), i.e.:

fout(x) := expc0 (M (logc0(x))) . (6)
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Figure 2. (a) The point x⊕ y is the point obtained by replacing the triangle �(−x, o, y) parallel over the line passing through the points

−x, x to a triangle �(o, x, x⊕ b). (b) the geometrical description of the summation y ⊕ x [39].

Modulated deformable convolution. Deformable con-

volution is introduced to extend the regular grid sam-

pling locations used in convolutions with 2D offsets, which

are learned from the input feature maps of the previous

layer. Given a convolutional kernel of K grids sam-

pling, wk and pk denote the weight and pre-specified

offset for the k-th location, respectively. For a 3 × 3
convolutional kernel of dilation 1, K = 9 and pk ∈
{(−1,−1) , (−1, 0) , ..., (1, 0) , (1, 1)}. Let f(x) denote the

input feature value at a location x, and the output feature

fout(x) value of the deformable convolution can be calcu-

lated as:

fout(x) =

K∑
k=1

wk · f(x+ pk +Δpk), (7)

where Δpk is the learnable offset for the k-th location

in grids. Bilinear interpolation is applied for computing

f(x + pk + Δpk) because the location x + pk + Δpk is

fractional. To further strengthen the capability of the de-

formable convolution in manipulating spatial support re-

gions, DCNv2 [50] introduced a modulation mechanism as:

fout(x) =

K∑
k=1

wk · f(x+ pk +Δpk) ·Δmk, (8)

where Δmk is the learnable modulation scalar which lies in

the range [0, 1].

Both the offset Δpk and the modulation scalar Δmk are

learned from the input feature map x of the previous layer

via a separate convolution layer. The convolution results

of Δmk are activated by a sigmoid function. The shape of

the output of the offset convolution layer is like the input

feature map, and the difference is that the dimension of the

channel is 2K, including offset values in the vertical and

horizontal direction for K grid. Similarly, the output of the

modulation scalar convolution layer has K channels. As

such, for each grid sampling in the feature map, we need

to learn 3K parameters, and the following shows how to

obtain them in the Poincaré ball.

3.2. Deformable Convolution based on Poincaré
Ball

DCPB Architecture. Fig. 3 demonstrates the architec-

ture of the Deformable Convolution based on the Poincaré

Ball (DCPB). We embed the input feature into an 8-

connected graph and map it to a Poincaré Ball. To im-

plement the feature updates of the graph, the GCN is per-

formed on the Poincaré Ball to transform and aggregate

the features. Then we construct learnable Poincaré hyper-

planes and compute geodesic distances from the feature of

each node to Poincaré hyperplanes as the parameters in the

deformable convolution. The proposed architecture is de-

scribed minutely in the following.

Graph embedding. In a CNN, the convolution layer

can aggregate the feature information in the receptive field

in the Euclidean space. Still, it is difficult to apply to the

features in the Poincaré ball. Therefore, a feasible method

is to embed the feature in the Euclidean space into a graph

in the Poincaré ball and use a Graph Convolution Network

(GCN) to aggregate features of adjacent nodes. A feature

map can be regarded as rectangular grids with channels and

represented as arrays (e.g., 512 ∗ 512 ∗ 3), whereas we can

also think of it as a graph with a regular structure, where

each pixel represents a node and is connected via an edge

to adjacent pixels. Similar to 3 × 3 convolution, we embed

a feature map with Nin channels into a graph where a non-

border node has eight neighbors. The information stored

at each node is a Nin-dimensional vector representing the

channel values of the pixel in the feature map. Fig. 4 (a)

and (b) demonstrate embedding a 5×5 feature map to an 8-
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Figure 3. The architecture of the DCPB.

Figure 4. (a) A 5× 5 feature map. (b) An 8-connected graph. (c) The adjacency matrix. Note that these three representations are different

views of the same piece of data.

connected graph. As Fig. 4 (c) shows, the adjacency matrix

A preserves explicit relationships between nodes and needs

to be calculated for the GCN.

GCN in the Poincaré Ball. After graph embedding

and computing the adjacency matrix A, we can use the

GCN to perform message passing between features in the

Poincaré Ball. We base our work on the GCN proposed in

[23], which introduces a first-order approximation of Cheb-

Net [15]. The GCN encapsulates each node’s hidden repre-

sentation by aggregating feature information from its neigh-

bors. After feature aggregation, a nonlinear transformation

is applied to the resulting outputs. As such, the message

from node y to its receiving the neighbor node x is com-

puted as:

my = WÃxyf(x), (9)

where f(x) is the feature with Nin channels at the node x,

W ∈ R
Nin → R

Nmid is the weight matrix from input to

mid layer, and Ã = I + D− 1
2AD− 1

2 captures the connec-

tivity of the graph. Here D is the diagonal degree matrix

of the graph:Dii =
∑

j (Aij + Iij), and Ã is computed by

adding the identity matrix I to the normalized adjacency

matrix D− 1
2AD− 1

2 . By summing up all the messages from

its neighbors and applying the activation function , we can

obtain the information propagates (i.e., the output features)

of the graph:

fout(x)=σ

⎛
⎝ ∑

y∈N(x)

my

⎞
⎠=σ

⎛
⎝ ∑

y∈N(x)

WÃxyf(x)

⎞
⎠ ,

(10)

where N(x) is the neighborhood of x, and y ∈ N(x) has

an edge pointing to x.

For the GCN in the Poincaré Ball, we map the input fea-

ture in a Poincaré Ball BNin
1 of radius 1 by clamping the

value of the input feature to [0, 1], and the dimension Nin

is equal to the input feature. As equation 6 shows, linear

mapping can be applied to the tangent space of the Poincaré

ball. Similarly, the GCN in the Poincaré Ball is conducted

by projecting the input feature f(x) ∈ B
Nin
1 onto the tan-

gent space at 0 ∈ B
Nin
1 with the logarithmic map, perform-

ing the GCN in the Euclidean tangent space Tf(x)BNin
1 , and
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finally projecting back to B
Nmid
1 by the exponential map.

Note that the dimensions of GCN input and output are dif-

ferent; thus, the output is projected back to another Poincaré

ball BNmid
1 .As such, the information propagates of the GCN

in the Poincaré ball is calculated as:

fout(x) = σ

⎛
⎝exp10

⎛
⎝ ∑

y∈N(x)

WÃxy

(
log10f(x)

)⎞⎠
⎞
⎠ .

(11)

Geodesic distance from features to Poincaré hyper-
planes. Because of the analogy between the fisheye model

and the Poincaré ball, we can directly map the features in

the Euclidean space to the Poincaré Ball. However, the off-

set and modulation parameters in the deformable convolu-

tion are very different from the data in Poincaré Ball, and

the output feature of the GCN in the Poincaré Ball cannot

be used as these parameters directly. Therefore, we con-

struct Nout learnable Poincaré hyperplanes and compute

Nout geodesic distances from the feature of each node to

Poincaré hyperplanes as the parameters in the deformable

convolution. Here, Nout is equal to 3K, the number of the

parameters to learn for each grid sampling in the feature

map, and the geodesic distance is the data in the Euclidean

space.

For p ∈ B
Nmid
1 , a ∈ TpBNmid

1 \ 0, a Poincaré hyperplane

can be defined as:

H̃1
a,p :=

{
x ∈ B

Nmid
1 :

〈
log1p(x), a

〉
p
= 0

}

=
{
x ∈ B

Nmid
1 : 〈−p⊕ x, a〉 = 0

}
,

(12)

where H̃1
a,p can also be described as the union of images

of all geodesics in B
Nmid
1 orthogonal to a and containing p.

Then we can calculate the geodesic distance from a feature

in the Poincaré Ball to the hyperplane as:

d
(
x, H̃a,p

)
:= inf

w∈H̃a,p

d(x,w)

= sinh−1

⎛
⎝ 2 |〈−p⊕ x, a〉|(

1− ‖−p⊕ x‖2
)
‖a‖

⎞
⎠ .

(13)

3.3. Other details

The geodesic distances of each node have 3K channels,

where the first 2K channels correspond to the learned off-

sets Δpk, and a sigmoid function activates the remaining K
channels to obtain the modulation scalars Δmk. Δpk and

Δmk are initialized to 0 and 0.5, respectively. The learning

rates of the added GCN layer and the Poincaré hyperplane

are set to 0.1 times those of the other standard convolution

layers. The channel Nmid of the output of the GCN layer

is the same as the channel Nout, and we select the Rectified

Linear Unit (ReLU) as the activation function in the GCN

in the Poincaré ball.

In a CNN, features from the lower convolution layers

encode low-level spatial visual information like edges, cor-

ners, circles, etc. Features from the higher convolution

layers encode high-level semantic information and weak

spatial information, including object- or category-level ev-

idence. For high-level convolution kernels, the extraction

of semantic information and integration of spatial informa-

tion from the lower convolution layers are improved by the

DCPB. However, for low-level convolution kernels, variety

ensures their ability to extract spatial details information,

and the DCPB will fluctuate their spatial structures. We

only apply the DCPB to replace the standard 3 × 3 con-

volutions in higher convolution layers. For example, in a

standard UNet, the end of the encoder and decoder includes

higher convolution layers with more channels of convolu-

tion kernels, and the DCPB is adopted at these layers.

4. Experiments
4.1. Experimental settings

Currently, top-view fisheye datasets are scarce, and

THEODORE [34] is the unique segmentation dataset, a syn-

thetic downside indoor scenes dataset containing 100k im-

ages with 16 classes. Our segmentation experiment is car-

ried out on 10k images of THEODORE. All segmentation

models are trained with the same configuration. We use an

adaptive learning rate momentum algorithm (Adam) with

an initial learning rate of 0.0001, a momentum of 0.9, and

a weight decay of 0.0001. Random horizontal flip is used

for data augmentation. The input resolution of networks is

512× 512, and the batch size is 32. Besides, we train mod-

els for 40000 iterations. We adopt the mean of class-wise

intersection over union (mIoU) and pixel accuracy (mPA)

as the evaluation metrics for segmentation evaluation and

select the standard cross entropy as the loss function. In all

experiments, 80% of the images are used for training and

validation and 20% for testing. We perform all experiments

under Pytorch 1.9, CUDA 11.1, and CUDNN 7.6.5 on four

NVIDIA RTX 2080Ti GPUs.

4.2. Ablation Study

We first evaluate our proposed method in the baseline

model UNet. Standard UNet has 8 stages, in which the first

4 stages (Down1∼Down4) are used as encoders to down-

sample and extract features, and the decoders include the

last 4 stages (UP1∼UP4) to reconstruct the segmentation

images. Here experiments are conducted using variants of

our method in the UP1 stage of the UNet to evaluate their

semantic segmentation performance. Table 1 shows the ef-
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Figure 5. Qualitative comparison of the semantic segmentation results on images from THEODORE dataset. Columns show the segmen-

tation results from baseline with different convolution methods.

Table 1. Ablation study of enriched deformable convolution on baseline model. In the setting column, “DC” stands for modulated de-

formable convolution. “GCNE” and “GCNP” mean that the offsets and modulation scalars of the modulated deformable convolution are

obtained by graph convolution network (GCN) in the Euclidean space and Poincaré ball, respectively. Also, “GD” stands for computing

the geodesic distances to Poincaré hyperplanes.

Method Setting mIoU (%) mPA(%) FPS

Baseline
Regular 90.85 94.54 13.8
DC [50] 91.97 94.96 13.7

Enriched deformation

DC+GCNE 92.57 95.58 13.7

DC+GCNP 92.74 95.72 13.5

DC+GCNP+GD(DCPB) 93.05 96.12 13.4

fects of enriched deformation methods from ablation exper-

iments. The inference speed (FPS) is estimated from serial

images of testing data using an Nvidia RTX 2080Ti GPU.

The baseline with regular CNN modules obtains an

mIoU score of 90.85% and an mPA score of 94.54% for

UNet. By replacing regular CNN modules with DC, the ac-

curacy of the UNet steadily improves, with gains between

1.12% and 0.42% for the mIoU and mPA scores. Com-

puting the offsets and modulation scalars of DC in GCN

increases mIoU and mPA scores by 0.6% and 0.62%, re-

spectively. By upgrading the Euclidean space to a Poincaré

ball, mIoU and mPA scores steadily improve by 0.17% and

0.14%. When we compute the geodesic distances from the

feature of each node to Poincaré hyperplanes as the param-

eters in the deformable convolution, we obtain further gains

between 0.31% and 0.4% in mIoU and mPA scores. In total,

the DCPB method yields 93.05% mIoU and 96.12% mPA

scores on UNet. Note that although the inference speeds of

models are harmed slightly, the models with DCPB can still

meet the real-time requirements.

Fig. 5 shows another few parsing results on the test sets

and demonstrates the visual comparison of the DCPB. With

DCPB, the model pays more attention to distorted objects

in the edge region and contains more accurate and detailed

structures than the baseline.

To explore an appropriate network structure with DCPB,
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Table 2. Per-class results on THEODORE test set. We choose ResNet-18 pre-trained on MS-COCO as the backbone of DeepLabV3,

DeepLabV3+, PSPNet, BiSeNetV2, DANet, and DUNet. Other methods are trained only on the THEODORE training set. The comparison

experiments are conducted on THEODORE test set

Method Pers. Door Chair Wall Floor Table Sofa Furn. Lamp Deco. Plant Scre. Bed Frid. Whee. Armch. FPS mIoU

ESPNetV2 [27] 59.5 88.2 44.2 93.8 90.6 69.6 84.7 83.1 55.8 29.3 72.2 81.9 83.9 87.3 31.2 74.5 12.2 70.6

CGNet [44] 61.9 91.1 52.0 94.5 91.7 75.3 87.6 85.0 65.2 46.0 63.7 84.2 86.0 89.0 37.8 78.5 15.1 74.3

ENet [29] 64.5 93.6 53.9 95.5 92.8 78.5 89.8 88.3 46.9 44.9 68.2 86.9 88.8 91.6 37.4 80.7 13.7 75.1

DeepLabV3 [8] 76.5 95.7 70.0 96.3 94.3 88.3 94.8 92.6 74.3 78.7 60.2 91.3 93.3 94.8 50.2 88.3 15.6 83.7

PSPNet [48] 77.8 96.9 75.0 97.2 95.8 90.0 95.5 93.8 81.2 78.0 66.2 93.2 94.8 95.2 49.8 90.6 14.9 85.7

BiSeNetV2 [47] 79.7 97.1 74.9 97.3 95.9 89.9 95.5 94.1 81.8 77.2 67.5 93.3 95.0 95.7 51.6 90.5 13.8 86.1

DANet [19] 79.4 97.2 76.3 97.5 96.1 90.6 95.8 94.2 82.7 79.0 67.8 93.7 95.4 96.0 49.9 91.2 13.9 86.4

DeepLabV3+ [9] 79.3 95.5 76.9 97.3 96.4 90.2 93.7 93.5 86.0 77.6 76.6 93.0 93.8 94.9 58.0 91.0 15.4 87.1

SegNet [2] 83.0 96.2 80.2 97.6 96.4 91.7 94.6 95.1 87.2 81.4 80.7 94.5 94.5 96.0 61.4 92.1 15.2 88.9

DUNet [22] 86.0 97.3 81.7 98.1 97.2 93.0 96.7 95.8 86.7 83.5 78.9 95.1 96.2 96.3 62.7 93.4 13.7 89.9

UNet [32] 89.0 97.5 83.8 98.0 97.4 93.3 96.5 94.4 90.0 85.0 83.4 95.2 94.8 93.3 68.1 93.9 13.8 90.8

UNet-DCPB 91.4 98.4 87.6 98.7 98.2 95.3 97.6 97.3 91.7 88.8 84.6 96.9 97.4 97.7 71.8 95.5 13.4 93.1

we use DCPB to replace the 3 × 3 standard convolution

module in different baseline stages. As reported in Table 3,

DCPB at various stages of UNet can improve the segmen-

tation performance, and substituting it for standard CNN

modules in the UP1 stage achieves the optimal results in

mIoU score and FPS. As section 3.3 states, deformable con-

volution improves the extraction of semantic information

for high-level convolution kernels but may fluctuate the spa-

tial structures of low-level convolution kernels. Therefore,

it is a better choice to replace the layer which contains high-

level semantic information such as stages Down4 and UP1

with DCPB.

Table 3. Performance comparison of UNet with DCPB in the dif-

ferent stages.

Stage mIoU (%) mPA(%) FPS

Down3 92.99 95.88 12.9

Down4 93.02 96.15 13.3

Up1 93.05 96.12 13.4
Up2 92.78 95.92 13.2

Up3 92.69 96.01 12.6

4.3. Comparison experiments

With deformable convolution methods. In order to

prove the superiority of DCPB in visual tasks for downside

fisheye images, we incorporate the Restricted Deformable

Convolution [16] and Rotation-Mask Deformable Convo-

lution [41] into UNet to investigate the effect of other de-

formable convolution methods. Besides, the hyperbolic de-

formable convolution in the FisheyeHDK [1] is applied in

UNet. The FisheyeHDK also obtains the offsets in de-

formable convolution in the Poincaré ball. The difference is

that FisheyeHDK maps the features to the tangent space of

the Poincaré ball and does not compute geodesic distances

to Poincaré hyperplanes. The experimental data are pre-

sented in Table 4. It can be seen from the data that DCPB

performs better than the previous ones on the THEODORE,

suggesting that our method is helpful for visual tasks in top-

view fisheye images. In terms of efficiency, there is also not

much disparity between our and other methods.

Table 4. Performance comparison of DCPB and other deformable

convolution methods. “DC” stands for modulated deformable con-

volution. “RDC” and “RMDC” stand for Restricted Deformable

Convolution and Rotation-Mask Deformable Convolution, respec-

tively. ”DSN” stands for deformable convolution which generates

4-dimensional deformation coefficients. Results are reported on

the THEODORE test set.

Method mIoU (%) mPA(%) FPS

DC [50] 91.97 94.96 13.7
RDC [16] 92.36 95.22 13.7

DSN [43] 92.55 95.37 13.6

RMDC [41] 92.89 95.9 13.5

FisheyeHDK [1] 92.07 95.48 13.5

DCPB 93.05 96.12 13.4

With common methods. As a final experiment on

DCPB, we compare the performance of our algorithm with

other common methods in semantic segmentation in top-

view fisheye images. As Table 2 demonstrates, it is appar-

ent that UNet with DCPB outperforms other methods with

a notable advantage-the highest accuracy in all 16 classes,

further confirming the superior capability of DCPB.

5. Conclusion

This paper analyzes the analogy between the fisheye

model and the Poincaré ball to inspire future research on

hyperbolic geometry for learning deformations from top-

view fisheye images. Specially, we present the Deformable
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Convolution based on the Poincaré Ball against complex sit-

uations in top-view fisheye images. The DCPB establishes

a novel approach that learns the parameters of the modu-

lated deformable convolution in the Poincaré ball and out-

performs the convolution methods with corresponding Eu-

clidean architectures on sequential data with an implicit hi-

erarchical structure. We implement the DCPB by conduct-

ing GCN in the Poincaré ball and computing the geodesic

distances to Poincaré hyperplanes as the offsets and modu-

lation scalars of the modulated deformable convolution. To

evaluate the effectiveness of our method, we perform ex-

periments on semantic segmentation with the public dataset

THEODORE. Besides, we also explore an appropriate net-

work structure with the DCPB. And the DCPB has the po-

tential to be valid for analyzing data from more visual tasks

for top-view fisheye cameras.
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