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Abstract

Most prior semantic segmentation methods have been

developed for day-time scenes, while typically underper-

forming in night-time scenes due to insufficient and com-

plicated lighting conditions. In this work, we tackle this

challenge by proposing a novel night-time semantic seg-

mentation paradigm, i.e., disentangle then parse (DTP).

DTP explicitly disentangles night-time images into light-

invariant reflectance and light-specific illumination compo-

nents and then recognizes semantics based on their adaptive

fusion. Concretely, the proposed DTP comprises two key

components: 1) Instead of processing lighting-entangled

features as in prior works, our Semantic-Oriented Disen-

tanglement (SOD) framework enables the extraction of re-

flectance component without being impeded by lighting, al-

lowing the network to consistently recognize the seman-

tics under cover of varying and complicated lighting con-

ditions. 2) Based on the observation that the illumination

component can serve as a cue for some semantically con-

fused regions, we further introduce an Illumination-Aware

Parser (IAParser) to explicitly learn the correlation be-

tween semantics and lighting, and aggregate the illumi-

nation features to yield more precise predictions. Exten-

sive experiments on the night-time segmentation task with

various settings demonstrate that DTP significantly outper-

forms state-of-the-art methods. Furthermore, with negligi-

ble additional parameters, DTP can be directly used to ben-

efit existing day-time methods for night-time segmentation.

Code and dataset are available at https://github.

com/w1oves/DTP.git.

1. Introduction

Most existing semantic segmentation methods [27, 12,

45, 55, 19, 53, 13, 40, 49, 37, 7] are developed for day-

time scenes, which have sufficient and uniform lighting.

* indicates equal contributions.
† Corresponding authors.
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Figure 1: Illustration of the main idea. (a) In the night-time

scenes, the entanglement of content and complicated light-

ing lead to confused semantics. (b) The proposed DTP first

disentangles the image and then parses based on the light-

invariant and light-specific components. The blue map in

the top left corner is a heatmap indicating the lighting inten-

sity. (c) Feature space of road (green) and sidewalk (blue)

on the validation set visualized by t-SNE [44] demonstrates

that the light-invariant component leads to more discrimi-

native representations.

However, in practical application, visual systems are often

required to work under insufficient and complicated light-

ing conditions nearly half the time (i.e., working under

the night-time condition), where existing day-time methods

may encounter performance drops due to the discrepancy

in lighting. Therefore, developing a night-time segmenta-

tion method, which accounts for the unique characteristics

of night-time scenes, is crucial in training a network with

stable performance for full-time segmentation.

To achieve similar performance for night-time scenes as

for day-time scenes, previous methods [42, 36, 16, 24, 8]

have adopted unsupervised domain adaptation techniques to

transfer knowledge from labeled day-time domain to unla-

beled night-time domain. However, this approach is chal-

lenging due to the lack of corresponding labels at night,

resulting in limited improvement of segmentation perfor-

mance. To address this issue, Tan et al. recently propose
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NightCity [43], a large-scale night-time dataset that aims at

solving the problem of inadequate training data for night-

time segmentation. Several methods have been proposed

based on this benchmark, such as EGNet [43] and NightLab

[17], which achieve substantial improvement in night-time

scenes compared to pure day-time methods. However, they

typically parse scenes on the lighting-entangled representa-

tions, rendering them unsuitable for the challenging lighting

conditions in night-time scenes.

Rethinking the challenge of night-time segmentation, we

have identified that the main issue lies in insufficient and

complex lighting conditions. As shown in Fig. 1 (a), the

entanglement of content and complex lighting makes the

semantics confused, resulting in blurred object boundaries.

Therefore, an intuitive idea is whether we can disentan-

gle the features of the content and lighting. From this per-

spective, we propose to disentangle the light-invariant and

light-specific components from a night-time image. The

light-invariant component allows us to obtain more discrim-

inative features related to the content itself. Fig. 1 (c) illus-

trates an example of our idea. After separating the light-

specific component from the nigh-time image, the feature

distributions of the sidewalk and road become more com-

pact and discriminative. Additionally, it is observed that

the light-specific component can serve as a cue for some

semantically confused regions. As illustrated in Fig. 1 (b),

the artificial light usually appears in some special categories

(e.g., traffic light and car), which exhibit larger intensity in

the light-specific component.

Based on the above observation, we intend to estab-

lish a paradigm that can harness the advantages of light-

invariant and light-specific components. However, disen-

tangling these two components is quite challenging due

to the lack of well-defined ground truth. Although the

Retinex [23] theory points out that the light-specific com-

ponent (i.e., illumination) and light-invariant component

(i.e., reflectance) can be organized together via a simple dot

product and the light-specific component should satisfy the

piece-wise smooth constraint, these weak constraints are

inadequate in complex lighting conditions. To tackle this

challenge, this work employs semantics as an additional

constraint for the disentanglement tasks. Specifically, we

design a semantic-oriented disentanglement (SOD) frame-

work, which generates training data with ground truth by

combining the light-invariant and light-specific components

disentangled from different night-time images. Such a train-

ing framework allows us to establish semantic consistent

constraints for two images sharing the same light-invariant

component but owning different light-specific components.

Moreover, to make full use of the light-specific compo-

nent, we propose an illumination-aware parser (IAParser),

which explicitly learns the correlation between illumination

and semantics, thereby improving the performance of some

challenging categories.

Last but not least, we have noticed that NightCity [43,

17] contains numerous mislabeled pixels, which can poten-

tially hinder the research progress of the night-time segmen-

tation task. In this work, we build a NightCity-fine dataset

by elaborately correcting the erroneous labels in NightCity.

Supported by this refined dataset, the segmentation model

can be evaluated more validly and achieves improved per-

formance. Through extensive experiments, we demonstrate

the superiority of the proposed method and the reliability of

the refined dataset. In a nutshell, the main contributions of

this paper are as follows:

• We propose a novel night-time semantic segmentation

paradigm, i.e. disentangle then parse (DTP), to tackle

the challenge of insufficient and complicated light-

ing. With negligible additional parameters, DTP can

be readily applied to enhance existing day-time meth-

ods for night-time segmentation.

• We devise a semantic-oriented disentanglement frame-

work (SOD), which disentangles images into light-

invariant reflectance and light-specific illumination

components with the aid of semantic constraints,

allowing the network to extract consistent features

under varying lighting. Moreover, we present an

illumination-aware parser (IAParser) that harnesses

the illumination component to serve as a cue for more

precise predictions.

• We introduce the NightCity-fine dataset by refining the

largest night-time segmentation dataset NightCity. To-

gether with DTP, NightCity-fine presents a more ro-

bust benchmark for night-time segmentation.

2. Related work

Semantic segmentation. Semantic segmentation aims

to assign each pixel its own category. Later, methods

based on Fully Convolutional Networks (FCN)[31] com-

bined with encoder-decoder architectures have become the

dominant approach for segmentation. Various methods

[9, 10, 51] employ dilated convolutions to enlarge the re-

ceptive field, while PSPNet [54] leverages pyramid pooling

module (PPM) to model multi-scale contexts. Combining

these enhancements, DeepLab series [9, 10, 11, 12] pro-

pose the atrous spatial pyramid pooling (ASPP) to embed

contextual information. More recently, self-attention mech-

anisms have been widely adopted to capture long-range de-

pendencies for semantic segmentation, such as Non-Local

[45], DANet [19], and OCRNet [52]. Furthermore, several

transformer-based networks, such as Vision Transformer

[18], and Swin Transformer [29], have been utilized for

stronger backbones. Additionally, ConvNeXt [30] has been
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Figure 2: An overview of proposed DTP that consists of SOD and IAParser. In SOD, Mdis disentangles the image into

two components: light-invariant reflectance and light-specific illumination. In IAParser, an adaptive fusion is adopted to

aggregate the features of reflectance and illumination to produce a reliable prediction. DTP can be trained end-to-end and

requires only 2M additional parameters to achieve a significant improvement. "disturb" means adding noise to the input

illumination, and ’a’ is the heatmap where red indicates high intensity.

presented as a competitive backbone to transformers. How-

ever, most of these methods mainly focus on the day-time

scene.

Night-time semantic segmentation. The goal of night-

time semantic segmentation is to achieve comparable per-

formance to the day-time counterpart. In the early stage,

due to the lack of large-scale labeled datasets in the night-

time scenes, some previous methods [36, 16, 24, 38, 47]

have adopted domain adaptation to transfer the knowledge

from the day-time scenes to night-time. Others meth-

ods [39, 1] have employed pre-trained image enhancement

models during the inference pipeline to translate night-time

images into their day-time counterparts. Recently, several

methods directly train a model on the labeled night-time

data. For instance, Tan et al. propose EGNet [43], which

uses the V channel of the input image in the HSV color

space to guide the network to generate discriminative fea-

tures in under- and over-exposed regions. Dan et al. propose

the NightLab [17], in which objects are divided into simple

and difficult categories. A Hardness Detection Module is

used to detect difficult categories on the fly and send them to

a specialized segmentation module. Xie et al. [48] propose

to exploit the image frequency distributions for night-time

scene parsing. However, these methods do not explicitly es-

timate the effect of lighting on semantics but instead implic-

itly force the network to learn the entangled representations

of various content and lighting.

Disentangling deep representations. Disentangling the

accidental scene events, such as illumination, shadows,

viewpoint, and object orientation from the intrinsic scene

properties has been a long-desired goal in computer vi-

sion [3]. This allows the deep-learning models to cap-

ture the isolated factors of variation affecting the repre-

sented entities, which is crucial in improving their ro-

bustness to varying conditions [34, 3]. Previous works

[2] have explored various approaches for disentangling the

image representations, such as learning domain-invariant

representations across multiple domains in a GAN [21]

framework[20, 4, 5, 26, 28]. In this work, we develop a

novel disentangling method for the night-time segmentation

task based on the Retinex [23] theory and semantic guid-

ance, which significantly improves the performance of the

night-time segmentation methods.

3. Method

3.1. Motivation

Night-time scenes are typically characterized by low-

intensity lighting and complex artificial light sources, lead-

ing to variations in the appearance of objects due to chang-

ing lighting conditions. This reinforces the entanglement

between light-invariant reflectance and light-specific illu-

mination, making it challenging to extract discriminative

features for semantic segmentation. Therefore, an intuitive

idea is disentangling the illumination from the night-scene

image, and thus the consistent features under varying light-

ing conditions induced by light-invariant reflectance enable

robust night-time segmentation.
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Moreover, we have observed that the illumination infor-

mation can serve as a cue for some semantically confused

regions, such as the traffic lights and signs, as illustrated

in Fig. 1 (b). Consequently, for a superior segmentation

performance, it is necessary to perform an adaptive infor-

mation fusion of reflectance and illumination based on their

semantic characteristics.

To implement the above idea, we establish a segmenta-

tion paradigm as shown in Fig. 2, i.e. disentangle then parse,

which is formulated as:

Ỹ = Mseg(R, I) = Mseg(Mdis(X)), (1)

where X is an input image, and Ỹ is the correspond-

ing pixel-wise prediction. The disentanglement module

Mdis disentangles images into light-invariant reflectance R

and light-specific illumination I , described in Section 3.2.

Then, the segmentation module Mseg incorporates both re-

flectance and illumination components to produce a reliable

prediction, described in Section 3.3.

3.2. SemanticOriented Disentanglement

According to Retinex theory [23], an image X can be

naturally modeled as:

X = R⊙ I, (2)

where R represents the light-invariant reflectance that de-

scribes the intrinsic property of captured objects, I denotes

the light-specific illumination representing various lighting

on objects, and ⊙ is the element-wise multiplication.

Disentangling night-time images solely based on the

Retinex theory is a challenging problem in night-time seg-

mentation involving complex lighting conditions. It is diffi-

cult to look for a generalized pre-trained disentanglement

module, and supervised training for the disentanglement

module is not feasible due to the absence of a correspond-

ing dataset. To obtain a disentanglement module that is sta-

ble and suitable for night-time segmentation, we utilize the

semantic supervision supported in the dataset and innova-

tively train the disentanglement and segmentation modules

together. Specifically, our proposed framework is based on

the following two initial points.

Implement disentanglement with entanglement. Retinex

theory assumes that images of the same scene captured

in different light conditions share the same reflectance

[23, 46]. Based on this assumption, in this work, we first

coarsely disentangle night-time images into reflectance and

illumination. Then, new synthetic night-time images are

entangled with predicted reflectance and various illumina-

tions. Finally, the reconstructed reflectance and illumina-

tion are disentangled from synthetic images for calculating

pixel-wise reconstruction loss. Through this process, the

disentanglement module is guided to learn the consistency

of reflectance under different lighting conditions.

Superior disentanglement with semantic constraint. Re-

flectance implies the intrinsic properties of categories pre-

sented in the scene [35]. Therefore, a well-disentangled re-

flectance should have clearer and more discriminative se-

mantics than an image consisting of incorrect reflectance

and redundant illumination. To evaluate the quality of the

disentangled reflectance, we propose to train a semantic

segmentation module alongside the disentanglement mod-

ule, which can serve as a discriminator. Specifically, we use

the optimization cost of the segmentation predictions as a

valid quality evaluation metric for the reflectance.

Following the above guidelines, we design our frame-

work as illustrated in Fig. 2 (a). The framework takes two

input images as the input, i.e. Xj and Xk, and feeds them

into the disentanglement module Mdis, which estimates the

corresponding reflectance and illumination images, denoted

as Rj , Ij , Rk, and Ik, respectively. In the initial phase, the

estimated reflectance and illumination may be invalid due

to inadequate training. In order to obtain meaningful results

during this stage, the disentanglement module employs a

long-distance jump connection structure, which geneartes

reflectance by combining input images with the output of

disentanglement model. To prevent the module from learn-

ing a fixed transformation, we introduce random noise to

disturb illumination:

I ′j = (1− β)Ij + βNj , I
′

k = (1− β)Ik + βNk, (3)

where β ∼ Uniform(1 − t
T
, 1), t is the number of cur-

rent iteration, and T is the number of maximum iteration.

The guidance noise Nj and NK is designed to possess sim-

ilar properties and characteristics as common illumination

[22, 6, 56, 33, 25], which serves as a rough guidance for

illumination during the initial training stage. Multiple guid-

ance noise distributions are used together, and more details

can be found in the supplementary material.

To implement disentanglement with entanglement guid-

ance, we recombined the illumination and reflectance com-

ponents after disentanglement according to the Retinex the-

ory, producing two new images with different illumination.

New synthetic images then are disentangled again using a

weight-sharing disentanglement module, as shown in:

Rs
j , I

s
k = Mdis(Rj ⊙ I ′k)

Rs
k, I

s
j = Mdis(Rk ⊙ I ′j). (4)

The disentanglement loss is defined as the pixel loss of the

reflectance extracted from both original and synthetic im-

ages. This loss function constrains the model to learn the

consistency of reflectance under different lightness condi-

tions, which can be expressed as:

Ldisentangle = ∥Rs
j −Rj∥

1
+ ∥Rs

k −Rk∥1

+∥Isj − I ′j∥1 + ∥Isk − I ′k∥1.
(5)
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Table 1: Comparison results of night-time segmentation in terms of mIoU. The mIoU (NightCity) column shows the results

obtained using a model trained and evaluated on NightCity dataset, while the mIoU (NightCity-fine) column shows the results

obtained on NightCity-fine dataset. Results marked with * denote metrics reported in the original article. The best score is

indicated in bold.

Method Backbone Parameters mIoU (NightCity) mIoU (NightCity-fine)

NightCity [43] Res101 84.6M 51.8∗ 55.9

NightLab [17] Swin-Base 242.4M 59.5 62.3

HRNetV2 [41] HRNet-W48 65.8M 58.2 60.3

HRNetV2+Ours HRNet-W48 68.6M 59.4 (1.2↑) 61.8 (1.5↑)

DLV3P [12] Res101 60.1M 54.7 58.8

DLV3P+Ours Res101 63.9M 57.6 (2.9↑) 60.4 (1.6↑)

UPer-ConvNeXt [30] ConvNeXt-Base 120.7M 58.7 60.9

UPer-ConvNeXt + Ours ConvNeXt-Base 123.3M 60.6 (1.9↑) 63.3 (2.4↑)

UPer-Swin [29] Swin-Base 119.9M 58.4 61.1

UPer-Swin + Ours Swin-Base 122.5M 61.2 (2.8↑) 64.2 (3.1↑)

Table 2: Comparison results of day-time and night-time segmentation in terms of mIoU. We evaluated methods on three

datasets: the NightCity dataset (denoted as N), the NightCity-fine dataset (denoted as N-fine), and the cityscapes dataset

(denoted as C). The columns mIoU (C) and mIoU (N) indicate the dataset on which the methods are evaluated. Results

marked with * denote metrics reported in the original article. The best score is indicated in bold.

Method Backbone Parameters
trained on C + N trained on C + N-fine

mIoU (N) mIoU (C) mIoU (N-fine) mIoU (C)

NightCity [43] Res101 84.6M 53.9∗ 76.9∗ 55.6 76.5

NightLab [17] Swin-Base 242.4M 60.2 77.1 62.6 77.2

HRNetV2 [41] HRNet-W48 65.8M 58.6 75.0 61.0 76.0

HRNetV2 + Ours HRNet-W48 72.8M 59.6 (1.0↑) 75.7 62.9 (1.9↑) 77.1

DLV3P [12] Res101 60.1M 59.0 73.6 60.9 74.1

DLV3P + Ours Res101 66.3M 59.9 (0.9↑) 75.2 62.2 (1.3↑) 75.8

UPer-ConvNeXt [30] ConvNeXt-Base 120.7M 60.1 76.7 61.9 77.9

UPer-ConvNeXt + Ours ConvNeXt-Base 127.7M 61.8 (1.7↑) 78.1 64.2 (2.3↑) 78.8

UPer-Swin [29] Swin-Base 119.9M 59.7 76.0 62.0 77.9

UPer-Swin + Ours Swin-Base 126.9M 63.3 (3.6↑) 78.3 64.8 (2.8↑) 79.2

Furthermore, for each pair of disentangled results, we

apply the retinex loss to ensure that the organization of re-

flectance and illumination aligns with the Retinex theory.

The retinex loss can be formally described as:

Lretinex = ∥I ⊙R−X∥
2
, (6)

where X denotes input image. For each generated illumi-

nation, a smooth loss is applied to ensure its smoothness,

which can be written as:

Lsmooth = ∥∇I ⊙ exp (−λg∇R)∥
2
, (7)

where ∇ denotes gradient operator. λg balances the strength

of structure-awareness, which is set to 10 as [46]. I and R

are illumination and reflectance, respectively.

Although the disentanglement module can validly esti-

mate the illumination with the aforementioned losses, it is

subject to broad constraints for reflectance, leading to blur-

ring and distortion in the generated reflectance. To obtain

reflectance with clear semantics and boundaries, we intro-

duce the semantic disentanglement loss for generating su-

perior reflectance, is defined as:

LSeDe=Lseg(Mseg(Rj,Ij), Yj)+Lseg(Mseg(Rk, Ik),Yk)

+Lseg(Mseg(R
s
j , Ij),Yj)+Lseg(Mseg(R

s
k, Ik), Yk), (8)

where Mseg refers to segmentation module, Yj and Yk are
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corresponding semantic annotations. Our scheme on how

to combine illumination and reflectance for better segmen-

tation will be explained in the next section.

3.3. IlluminationAware Parser

The semantic characteristics of certain object categories

can be more distinguishable in the illumination features

rather than reflectance features. For instance, the seman-

tics of artificial light sources are highly correlated with their

illumination. Hence, combining both reflectance and illu-

mination features can lead to more accurate segmentation

results compared to using reflectance features alone.

To exploit the semantic features present in illumination,

we propose the Illumination-Aware Parser (IAParser), as

depicted in Fig. 2 (b). For reflectance, the feature extraction

module can be an existing semantic segmentation network,

(e.g., UPer-Swin [29] and DeepLabv3+ [12]). For illumi-

nation, IAParser employs a simple pyramid pooling module

[54] to extract illumination features. Since not all illumi-

nation features are closely associated with semantic infor-

mation, we use a convolution layer to compute an attention

mask that quantitatively evaluates the pixel-wise richness of

semantic information contained in the illumination:

Amask = σ(Wa ⊗ (Wai ⊗ Fill +War ⊗ Fref )). (9)

Here, Fill = Mill(I), and Fref = Mref (R). W with dif-

ferent subscripts denotes the learnable weights for the con-

volution, ⊗ denotes the convolution operation, σ refers to

sigmoid function, and Aatt is the attention mask that in-

dicates the pixel-wise richness of semantic information in

illumination. The final result is obtained by combining Fill

and Fref by Matt:

Ỹ = Wcls ⊗ ((1−Amask)⊙Fref +Amask ⊙Fill), (10)

where Wcls is a learnable weights for the convlution, which

outputs the final prediction Ỹ .

The aforementioned steps implicitly guide the segmen-

tation model to learn the relationship between illumination

and semantics. Furthermore, adding explicit constraints as

guidance can result in more precise and effective learning

of this relationship. To this end, we leverage semantic an-

notation as a means of adding explicit constraints. Specif-

ically, we use the cross-entropy loss to explicitly guide the

generation of clear semantics in Fill. The corresponding

illumination segmentation loss is defined as follows:

Lsegill = Lce(Wcls ⊗ Fill, Y ). (11)

In summary, The overall loss function for the IAParser

results in the:

Lseg = λiLsegill + Lce(Ỹ , Y ), (12)

where λi are the hyperparameters for the segmentation loss.

This loss function is applied for every result of the Mdis

output, as described in Eq. (8).

4. Experiments

4.1. Datasets

Image NightCity NightCity-fine

Figure 3: Samples of modification between NightCity-fine

and NightCity datasets.

NightCity-fine. The original NightCity [43, 17] is the

largest available night-time semantic segmentation dataset,

which contains 2998 images with a resolution of 1024x512

for training and 1299 images for validation. All of these

samples have pixel-level annotations. However, it is ob-

served that there are some obvious annotation errors that

damage the effectiveness of NightCity, as shown in the

missing labels and mislabeled regions in Fig. 3. To ad-

dress these problems, we propose NightCity-fine, a refined

night-time semantic segmentation dataset, in which the un-

reasonable annotations have been carefully modified in both

the training and validation sets, which can be observed in

Fig. 3. More examples of modification can be found in the

supplementary material. A total of 2554 label maps have

been rectified, and a detailed analysis of the performance

that NightCity-fine improves is presented in Tab. 7.

Cityscapes [15]. This is an autonomous driving dataset,

which is captured from 50 different cities with 19 semantic

classes in the day-time scene. Cityscapes dataset contains

2975 for training and 500 images for validation, both with

a resolution of 2048x1024.

BDD100K. Following the setting in previous work [43, 17],

we conduct a supplementary experiment using the subset

of the BDD100K dataset [50], denoted as BDD100K-night,

which includes 314 night-time images for the training set

and 31 images for validation. The complementary dataset

of BDD100K-night is referred to as BDD100K-day.

4.2. Implementation details

Network Architecture. Our implementation is based on

the mmsegmentation framework [14]. For the disentangle-

ment model Mdis, we use a classical encoder-decoder CNN

that generates an illumination and reflectance image with

the same size as the input. For the illumination segmenta-

tion model Mill, we use a pyramid pooling module [54] for

extracting the features. The reflectance segmentation model

Mref can be replaced with existing segmentation networks,

such as UPer-Swin [29] and DeepLabv3+ [12].
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Table 3: Comparison results of BDD100K in terms of mIoU. B-N denotes the BDD100K-night dataset, and B-D denotes the

BDD100K-day dataset. Results marked with * denote those reported in the original article. The best score is indicated in

bold.

Method Backbone Parameters
mIoU (BDD100K-night)

trained on B-N trained on B-D and B-N

NightCity [43] Res101 84.6M 28.4 39.7

NightLab [17] Swin-Base 242.4M 35.4∗ 50.4∗

HRNetV2 [41] HRNet-W48 65.8M 29.9 44.3

DeeplabV3+ [12] Res101 60.1M 30.1 43.4

UPer-ConvNeXt [30] ConvNeXt-Base 120.7M 31.6 47.4

UPer-Swin [29] Swin-Base 119.9M 31.7 48.0

UPer-Swin + Ours Swin-Base 122.5M 36.9 (4.2↑) 53.1 (5.1↑)

Image Ground Truth DeepLabV3+ Swin NightLab Our

Figure 4: Qualitative comparison of the proposed method with state-of-the-art methods on the NightCity-fine dataset.

More precise traffic light profited by IAParserAccurate and fine boundary profited by SOD

Figure 5: A visual demonstration of performance improve-

ment achieved by SOD and IAParser, compared to the base-

line method of Swin. For the same image, the left shows the

results of the baseline, while the right shows the results of

the proposed method.

Training. During the training process, we adhere to the

pipeline recommended by the MMSegmentation [14]. This

includes mean subtraction, random resizing, and random

flipping. Specifically, we resize the images to 512x1024 and

then apply random cropping for large images or padding for

small images to achieve a fixed size of 256x512, which is

used for both Nightcity-fine and Cityscapes datasets. To op-

timize our network, We employ the AdamW optimizer [32]

with a base learning rate of 6e-5. The training is carried out

for 80000 iterations with a batch size of 8.

Inference. To handle varying image sizes during inference,

we use re-scaled versions of the input image with scaling

factors of [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]. We also perform

left-right flipping and average the predictions across all aug-

mented versions of the input.

4.3. Comparison with stateoftheart Methods

In this section, we comprehensively evaluate the per-

formance of our method on three datasets: NightCity,

NightCity-fine, and BDD100K-night. We compare our

method with state-of-the-art methods on the night-time

scenes using the NightCity-fine dataset. Moreover, we

also evaluate the full-time segmentation performance (both

day-time and night-time) by using the NightCity-fine and

Cityscapes datasets. For each method, we train them using

the hyper-parameters reported in their papers.

NightCity-fine. Tab. 1 reports the performance results on

the validation set of NightCity and NightCity-fine datasets.

Compared to recent methods designed for night-time seg-

mentation, our proposed method achieves a state-of-the-
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Table 4: Ablation on the key components of our method

on NightCity-fine dataset. The best scores are indicated in

bold.

Components mIoU Gain

Baseline 61.1

SOD

Ldistangle Lretinex Lsmooth LSeDe mIoU Gain

✓ 61.4 +0.3

✓ 61.3 +0.2

✓ 61.3 +0.2

✓ ✓ ✓ 62.5 +1.4

✓ ✓ ✓ ✓ 63.7 +2.6

IAParser

Lseg Lsegill mIoU Gain

✓ 63.7 +2.6

✓ ✓ 64.2 +3.1

art mIoU score of 61.2% on NightCity and 64.2% on

NightCity-fine, outperforming existing methods by a sig-

nificant margin. Additionally, the errors in the original

NightCity dataset limit the performance improvement of

our proposed method (from 58.4% to 61.2%). However,

this limit is lifted on the NightCity-fine dataset, resulting

in a performance improvement from 61.1% to 64.2%. The

qualitative results presented in Fig. 4 demonstrate that our

method can better recognize multiple categories, such as

traffic light, traffic sign, and person categories, and generate

more precise boundaries.

NightCity-fine and Cityscapes. We further conducted the

full-time segmentation task by training networks on both

NightCity-fine and Cityscapes jointly. As shown in Tab. 2,

our methods obtain a consistent performance improvement

on the full-time scene, outperforming the previous SOTA

methods over 2%, achieving the best performance sepa-

rately and jointly.

BDD100K. Tab. 3 displays the comparison on BDD100K-

day and BDD100K-night. Although BDD100K-night has

only 314 images for training, our method still achieves an

impressive performance with an mIoU score of 36.9%, out-

performing the SOTA methods by a significant margin.

4.4. Ablation studies

In ablation studies, UPer-Swin [29] is used as Mref due

to its strong performance.

Contribution of the losses. To investigate the influence of

different loss functions in our proposed SOD and IAParser,

we conduct an ablation study on the critical losses using the

NightCity-fine dataset. As presented in Tab. 4, when the

model is trained using only one of the three losses, Ldis,

Lretinex, or Lsmooth, the insufficient constraints hinder the

disentanglement process and resulting in only slight im-

provement. However, when these losses are combined, the

Table 5: Ablation study investigating diverse disentangle-

ment methods. The best score is indicated in bold.

Method mIoU Gain

Baseline 61.1

Histogram normalization (HN) 60.6 -0.5

HN + grayscale conversion 61.6 +0.5

CLAHE 61.2 +0.1

CLAHE + grayscale conversion 62.0 +0.9

SOD - Disturb operation 62.5 +1.4

SOD 63.7 +2.6

Table 6: Performance comparison (mIoU) of the disentan-

glement model with different depths. The best score is in-

dicated in bold.

Disentangle

Model

None

(baseline)
Small Base Large Huge

Parameters 121M +0.2M +1.5M +5.9M +26.8M

mIoU
N-fine 61.1 64.1 64.2 64.2 64.2

N-fine+ C 62.0 64.2 64.7 64.8 64.8

illumination and reflectance can be disentangled more ef-

fectively, leading to a significant performance boost. More-

over, incorporating LSeDe into the disentanglement model

produces reflectance with clear semantics and boundaries,

resulting in even better performance. Finally, based on

SOD, adding Lsegill further enhances the performance.

Study on different disentanglement methods. We

explored various configurations that consists of simple

pre-processings methods, such as histogram normaliza-

tion (HN) or CLAHE[57] for generating reflectance, and

grayscale conversion for generating illumination. As pre-

sented in Tab. 5, these methods are highly limited in obtain-

ing performance gains, which demonstrate that learning-

based decomposition surpasses the simple pre-processings

when facing complicated real night scenes. Moreover,

removing disturb operation will also cause score decline

(64.2% → 62.5%).

Study on disentanglement model depth. As shown in

Tab. 6, we test the impact of disentanglement models

at different depths on SOD. The base model trained on

NightCity-fine achieves a strong mIoU of 64.2% with only

1.5 million parameters, and the large model jointly trained

on NightCity-fine and Cityscapes datasets achieves the best

mIoU of 64.8% with 5.9 million parameters. Based on this

observation that a deeper disentanglement model can han-

dle the larger scale dataset, we select the base model on

NightCity-fine and the large model on NightCity-fine and

Cityscapes. Additionally, Fig. 5 visually demonstrates that
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Table 7: Ablation study about NightCity-fine dataset. N de-

notes original NightCity dataset, and N-fine denotes refined

NightCity-fine dataset. The best score of same method is

indicated in bold.

Method Training set Validation set mIoU Gain

Swin

N N 58.4

N-fine N 60.0 +1.6

N N-fine 58.8

N-fine N-fine 61.1 +2.3

Swin+Ours

N N 61.2

N-fine N 62.5 +1.3

N N-fine 61.5

N-fine N-fine 64.2 +2.7

Figure 6: Per-class IoU comparison results on the

NightCity-fine dataset. The orange and blue colors denote

the IoU gain or degradation to the baseline (Swin). The

classes that we observe to relate to light are highlighted in

brackets.

SOD brings accurate and fine boundaries.

Study on IAParser. Fig. 6 reports segmentation results of

per-class IoU scores on the NightCity-fine dataset. Thanks

to combining the features of reflectance and illumination,

our method performs better in categories that are related to

lighting or more discriminative in the illumination features,

e.g., IoU of ’traffic light’ increased from 46.4% to 51.3%.

Meanwhile, the IoU of categories ’traffic sign’, ’car’, and

’bus’ have improved by at least 2%. In terms of visual qual-

ity, we can observe in Fig. 5 that IAParser makes the more

accurate recognition for traffic light and traffic sign.

Study on NightCity-fine Dataset. To verify that our re-

labeling efforts not only improve the training effect of the

training set but also improve the accuracy of the verification

of the validation set, we conduct experiments about the per-

formance of both the state-of-the-art methods and our pro-

posed method, as shown in Tab. 7. Compared to the original

NightCity dataset, the addition of the relabeled training set

results in significant performance gains with the same vali-

dation set. Meanwhile, the addition of the relabeled valida-

tion set results in more valid performance metrics.

5. Conclusions

In this paper, we present a novel night-time semantic

segmentation paradigm, i.e. disentangle then parse (DTP).

Specifically, we come up with a semantic-oriented disen-

tanglement (SOD) framework for night-time scenes, which

enables segmentation free from the interference of compli-

cated illumination. Moreover, we propose an illumination-

aware parser (IAParser) to leverage the semantic cues em-

bedded in illumination for more precise predictions. DTP

can serve as a plug-and-play paradigm to existing methods,

which helps these methods achieve superior performance

with negligible additional parameters. Furthermore, we re-

fine the largest night-time segmentation dataset NightCity

and thus propose the NightCity-fine for more effective train-

ing and valid evaluation. Extensive experiments across var-

ious settings showcase that DTP significantly outperforms

state-of-the-art methods, providing a superior night-time

segmentation benchmark, together with NightCity-fine.
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