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Abstract

CLIP models have demonstrated impressively high zero-
shot recognition accuracy, however, their fine-tuning per-
formance on downstream vision tasks is sub-optimal. Con-
trarily, masked image modeling (MIM) performs exception-
ally for fine-tuning on downstream tasks, despite the ab-
sence of semantic labels during training. We note that
the two tasks have different ingredients: image-level tar-
gets versus token-level targets, a cross-entropy loss ver-
sus a regression loss, and full-image inputs versus partial-
image inputs. To mitigate the differences, we introduce a
classical feature map distillation framework, which can si-
multaneously inherit the semantic capability of CLIP mod-
els while constructing a task incorporated key ingredi-
ents of MIM. Experiments suggest that the feature map
distillation approach significantly boosts the fine-tuning
performance of CLIP models on several typical down-
stream vision tasks. We also observe that the approach
yields new CLIP representations which share some diag-
nostic properties with those of MIM. Furthermore, the fea-
ture map distillation approach generalizes to other pre-
training models, such as DINO, DeiT and SwinV2-G,
reaching a new record of 64.2 mAP on COCO object
detection with +1.1 improvement. The code and mod-
els are publicly available at https://github.com/
SwinTransformer/Feature-Distillation.

1. Introduction
The pre-training and fine-tuning paradigm is instrumen-

tal in the success of deep learning methods in computer
vision, as evidenced by numerous influential works such
as [20, 30, 13, 39]. One common practice is to use
model weights pre-trained on ImageNet-1k classification
task [10] as the initialization for various downstream vision
tasks, such as object detection [13] and semantic segmenta-
tion [39]. However, this approach faces two key challenges:
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Table 1: Improving the fine-tuning performance of the
ViT-B/16 CLIP model [42] via a classical feature distilla-
tion framework. The model is distilled on ImageNet-1K
dataset [10] with images only for 300 epochs. Clear gains
are observed on four evaluation benchmarks. MAE [17] re-
sults are also listed in gray for reference.

Method
IN-1K (%) ADE20K COCO NYUv2
linear f.t. mIoU APbox APmask RMSE (↓)

MAE [17] 68.0 83.6 48.1 46.5 40.9 0.383

CLIP [42] 79.5 82.9 49.5 45.0 39.8 0.416
FD-CLIP 80.1 85.0 51.7 48.2 42.5 0.352

∆ ↑0.6 ↑2.1 ↑2.2 ↑3.2 ↑2.7 ↓0.064

the difficulty in scaling up high-quality image classification
data, and the limited semantic information contained in cat-
egory labels, both of which constrain the ability to further
improve model performance.

The recent CLIP [42] alleviates these challenges. It uti-
lizes contrastive learning to learn representations from web-
scale noisy vision-language pairs. The learned represen-
tations exhibit impressive semantic modeling capabilities,
as evidenced by performance on zero-shot image classifi-
cation and image-text retrieval tasks. Meanwhile, a new
self-supervised pre-training method based on masked im-
age modeling (MIM) [2, 58, 17] has also attracted great
attention for its excellent fine-tuning performance on var-
ious downstream tasks. Without losing generalizability, we
mainly discuss MAE [17] in this paper.

When comparing the two pre-training methods, the CLIP
model learns richer semantic information reflected by its su-
perior linear probing performance on ImageNet-1K. How-
ever, its fine-tuning performance on most other tasks are
worse than MAE, as shown in Tab. 1. This observation ap-
pears counter-intuitive since models with better semantics
are usually considered to have better transferability. This
raises a further question: can CLIP be made as successful
as, or even surpass, MIM in fine-tuning? To answer this
question, we firstly decompose the ingredients of these pre-
training methods into three aspects: input ratios, training
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Table 2: Improving the fine-tuning performance of the ViT-
L/14 CLIP model [42] on ImageNet-1K classification.

Method Res. Pre-train datasets IN-1K(%)
WiSE-FT [54] 3362 WIT-400M [42] 87.1
DeiT III [52] 3842 IN-22K [10] 87.7
ViT [11] 5122 JFT-300M [50] 87.8
Scaling [63] 3842 JFT-3B[63] 88.5
BeiT [2] 5122 DALLE [45] & IN-22K 88.6

CLIP [42] 2242 WIT-400M 86.1

FD-CLIP
2242 WIT-400M 87.7 (+1.6)

2242 WIT-400M & IN-22K 88.3
3362 WIT-400M & IN-22K 89.0

target granularity and training losses, as listed in Tab. 3. By
comparing the differences between CLIP and two typical
MIM approaches, we exclude the training losses to be re-
sponsible for the inferior fine-tuning performance of CLIP,
and speculate that the input ratios (i.e. full image vs. partial
image) and training target granularity (i.e. image-level vs.
token-level) might be key factors. Although narrowing the
differences in input ratios is straightforward, changing the
granularity of the CLIP training targets from image-level
to token-level poses a significant challenge, since existing
vision-language training data is more suitable for image-
level supervision and lacks fine-grained information.

Knowledge distillation [21] is a widely used technique
for transferring information from one model to another, typ-
ically for the purpose of model compression. In this paper,
we demonstrate that distillation can also perform as a bridge
for converting the training target granularity of CLIP mod-
els from image-level to token-level, while preserving the
semantic information. Specifically, we take the pre-trained
CLIP model as the teacher model, use its output feature map
as the distillation target, and distill this information into a
randomly initialized student model that shares the same ar-
chitecture and size as the teacher model. This process is
illustrated in Fig. 1, which we refer to as “feature distilla-
tion” to differentiate it from logits distillation [21, 51, 12].
Notably, although the student mimics the teacher model’s
output, their different optimization paths can lead to differ-
ent diagnostic properties on the inter-mediate layers, which
is thought to be important for fine-tuning.

The flexibility of the distillation framework allows us to
introduce proper inductive bias and regularization to shape
the optimization path of the student model and enhance the
student model performance on downstream tasks. Specifi-
cally, we propose several crucial adjustments: 1) Standard-
ization of the teacher feature map. This adjustment am-
plifies the subtle information contained within the teacher
model and stabilizes the output value range; 2) Asym-
metric drop path rates for the teacher and student models.
This asymmetric regularization enhances the robustness of
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Figure 1: Illustration of the feature map distillation that in-
troducing token-level targets to distill the pre-trained CLIP
models. The orange block stands for [CLS] token, and the
orange box means a random crop of the original image.

student representations and results in accurate and consis-
tent teacher signals. 3) Shared relative position bias. The
introduction of this inductive bias further strengthens the
translation-invariant property of the student model.

With the feature distillation framework and the above ad-
justments, we derive a model that preserves the strong se-
mantic information of CLIP while being friendly to down-
stream task fine-tuning, as shown in Tab. 1. We observe
consistent improvements compared to the original CLIP on
various tasks: +2.1 accuracy gains on ImageNet-1K im-
age classification [10], +2.2 mIoU gains on ADE20K se-
mantic segmentation [66], +3.2 box AP and +2.7 mask AP
on COCO object detection and instance segmentation [36],
and reducing RMSE(↓) by 0.064 on NYUv2 depth estima-
tion [49]. The improvement remains when scaling up to
the largest CLIP-L/14 model with a +1.6 accuracy gain on
ImageNet-1K, as shown in Tab. 2. Moreover, when general-
izing our method to other models, like DINO [3], DeiT [51]
and the advanced SwinV2-G [37], we still earn clear gains
on various downstream tasks, especially reaching a new
record of 64.2 mAP on COCO object detection with +1.1
mAP improvement on SwinV2-G.

In addition to these improvements in experimental re-
sults, we further introduce several diagnostic tools to an-
alyze the properties of learned visual representations from
different models. These analyses provide deeper insights
into understanding how feature distillation improves the
CLIP model: 1) diversifying different attention heads of the
CLIP model in deeper layers; 2) improving the translational
invariance of learned representations; and 3) flattening the
loss landscapes and reflecting optimization friendliness.

Our contributions are summarized as follows:

• We examine the ingredient differences between CLIP
and MIM methods and demonstrate target granularity
is vital in the success of MIM in fine-tuning.

• We leverage the classical feature map distillation to
convert the training target granularity of CLIP to
token-level ones, which enhances its fine-tuning per-
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formance and preserves its semantic information.

• We propose several crucial techniques during feature
distillation that further enlarge the improvements, in-
cluding distilling standardized feature maps, asymmet-
ric drop path rates, and shared relative position bias.

• With several diagnostic tools, we find that compared to
CLIP, both MIM and FD-CLIP possess several prop-
erties that are intuitively good, which may provide in-
sights on their superior fine-tuning performance.

• We generalize our method to various pre-training mod-
els and observe consistent gains. We also set a new
record on COCO object detection, by improving the
advanced 3B SwinV2-G model with our framework.

2. Related Work
Representation Learning There are four notable repre-
sentation learning approaches in vision area. 1) Image clas-
sification (CLS) on supervised datasets [10, 50] has been
the standard upstream pre-training task for nearly a decade
since AlexNet [30]. The pre-trained weights are applied
to numerous down-stream tasks including image segmen-
tation [66, 16], object detection [36, 46] and video recog-
nition [24, 15]. 2) The contrastive language-image pre-
training (CLIP) task is to connect paired images and texts
and separate unpaired ones, which opens up the field of
zero-shot recognition [42, 23], and proves to be power-
ful in multi-modality down-stream tasks [47, 40, 44]. 3)
Instance contrastive learning (CLR) method performs pre-
training in a self-supervised manner by contrasting the aug-
mentation views of the same image with others [18, 57].
The method achieves impressive accuracy using linear and
few-shot evaluations [3, 5, 31]. 4) Masked image model-
ing (MIM) learns representations also in a self-supervised
way, which first masks a large portion of the image area and
learns to predict the pixel values or features of the masked
area. It excels in fine-tuning evaluations [2, 17, 58].

In this paper, we propose to adopt the classical fea-
ture map distillation framework to derive a same-size re-
freshed CLIP model which performs better on downstream
tasks and largely preserves the semantic information incor-
porated in original CLIP. We also generalize our method
to non-CLIP models, including supervised models, like
DeiT [51] and SwinV2 [37] and self-supervised models,
like DINO [3].

Knowledge Distillation Knowledge distillation [21, 26]
is firstly proposed in CNN models, and further explored
in Transformers [51, 53] to boost the supervised training
performance and compress a compact small model. “Dark
knowledge” is proven to be useful in distillation when stu-
dent models mimic the logits prediction of the teachers [12].
Beyond supervised learning, knowledge distillation is also

Table 3: Ingredients comparison between CLIP and MIM
methods from the perspective of input ratios, training target
granularity and loss format.

Method Input Target Loss Semantics
BeiT [2] Partial Token-level Cross-entropy
MAE [17] Partial Token-level Regression
CLIP [42] Full Image-level Cross-entropy ✓
FD-CLIP Full Token-level Regression ✓

widely used in deep reinforcement learning [48, 4], life-
long learning [62] and recommendation system [7].

Our work does not aim to propose a new distillation ap-
proach, but leverage this flexible framework with crucial
designs to mitigate the differences on input ratios and tar-
get granularity between CLIP and MIM methods. We find
that tasks with token-level target granularity maybe a key
ingredient to the success of MIM methods. And feature dis-
tillation serves as a counter-part for CLIP, which improves
its fine-tuning performance and largely maintain its original
semantic information.

Model Diagnosing and Explanation Model diagnosing
is important for demystifying the “black box” of deep learn-
ing models due to their high-dimensional and non-linear na-
ture [59]. There have been also works [67, 11, 9, 14, 29,
43, 41] seeking to understand Transformers, including at-
tention analysis [67, 11, 56], loss landscapes visualization
[33], CKA [28] and knowledge neuron discovery [9, 14].
Inspired by these works, we adopt a set of attention- and
optimization-related diagnostic tools to reveal the unique
properties of MIM method. And these tools are also ap-
plied on FD-CLIP to provide a better understanding of fea-
ture distillation process.

3. Improving CLIP by Feature Distillation
The CLIP method is known for its ability to incorporate

rich semantics learned by contrasting tremendous image-
text pairs. Compared to the MIM methods (e.g. MAE),
CLIP is more consistent with human concepts, as evidenced
by its superior linear probing performance (as shown in
Tab. 1). However, its impressive semantic capability seems
to marginally benefit downstream tasks fine-tuning. By
closely examining the training loss curves for the object de-
tection task, depicted in Fig. 2, we note that the classifica-
tion loss, i.e. Lcls, is close between MAE pre-training and
CLIP pre-training, but MAE appears to have better localiza-
tion ability with lower Lbbox. These differences motivated
us to investigate the factors behind CLIP’s sub-optimal fine-
tuning performance and explore ways to unleash its power-
ful semantic capability better.

We compare the ingredient differences between CLIP
and MIM methods shown in Tab. 3. Based on it, we spec-
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Figure 2: Fine-tuning MAE, CLIP and FD-CLIP on COCO object detection task. We visualize the loss curves of Lcls
and Lbbox w.r.t the training epoch. Although CLIP pre-training is comparable to MAE pre-training on Lcls, it shows worse
localization ability, reflected by the Lbbox curve.

ulate the input ratios (i.e. full image vs. partial image) and
training target granularity (i.e. image-level vs. token-level)
might be responsible for CLIP’s inferior fine-tuning perfor-
mance. While it is relatively easy to use partial inputs in
CLIP, directly changing the training target from image-level
to token-level would be challenging, as CLIP and existing
vision-language training data are designed for image-level
supervision. More importantly, re-training CLIP is costly
that we would like to avoid.

Therefore, we propose to use distillation techniques,
which are usually used for model compression, as a bridge
for converting the training target granularity of CLIP mod-
els from image-level to token-level, while preserving the
semantic information of the pre-trained model. To be spe-
cific, the pre-trained model serves as a frozen teacher, and a
new same model with randomly initialized weights plays as
the student, as illustrated in Fig. 1.

Instead of distilling logits like most previous distillation
works [21, 51], we adopt the full output feature map of the
pre-trained model as the distillation target, dubbed “feature
distillation”. This approach allows us to work with any
pre-trained model including those not having logits output.
Moreover, distilling the feature map also leads to higher
fine-tuning accuracy than only distilling a reduced single
feature vector (see Tab. 4), emphasizing the importance of
training target granularity for pre-trained models. To ensure
that the feature maps of the teacher and student are aligned,
we apply the same augmentation view to each original im-
age. A light-weight projector is added on top of the student
network to allow for different output feature map dimen-
sions between the teacher and student models, further gen-
eralizing the method.

While the goal of the student model is to closely mimic
the teacher model, training the student network from scratch
allows a different optimization path. This relaxation of the
optimization path provides the possibility for the student
model to possess similar properties to those of MIM while
maintaining the most of expressive power of the teacher net-
work. Then we propose the following designs to make bet-

ter relaxation and introduce desirable inductive biases and
regularization, which further boosts the transferability of
the student models.

Standardizing the teacher’s feature map Different pre-
trained models may have very different orders of fea-
ture magnitudes, which will make difficulties in hyper-
parameter tuning. In addition, the subtle information that
encoded in small values may not be well distilled into the
student network without amplification. To solve these is-
sues, we normalize the output feature map of the teacher
network by a standardization operation, which is imple-
mented by a non-parametric layer normalization opera-
tor [1] and proven to be important in Tab. 7 (a).

In distillation, we employ a smooth ℓ1 loss between the
student and teacher feature maps:

Ldistill(s, t) =

{
1
2
(g(s)− t′)2/β, |g(s)− t′| ≤ β

(|g(s)− t′| − 1
2
β), otherwise

, (1)

where β is set 2.0 by default; t′ = standardization(t); s and
t are output feature vectors of the student and teacher net-
works, respectively; g is a 1 × 1 convolution layer served
as the projector. We amplify the distillation loss weight on
[CLS] token by 10.0 as it aggregates the global image in-
formation during CLIP pre-training.

Asymmetric drop path rates The two-branch structure
in the feature distillation framework allows for asymmetric
regularization on the teacher and student networks. We find
that applying a strategy of asymmetric drop path [22] rates
can learn better representations. Specifically, the strategy
of a drop path rate of 0.1 on the student branch with no
drop path regularization on the teacher branch works best
on ViT-B, as shown in Tab. 7 (b).

Shared relative position bias The original CLIP
model [42] adopts the absolute position encoding (APE),
but recent works [38, 35, 34] found the relative position
bias (RPB) shows benefit on downstream tasks. Benefiting
from the flexibility of feature distillation, we are able to
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re-examine the impacts of position encoding configuration
in the student architecture. In particular, we investigate a
shared RPB configuration, where all layers share the same
relative positional bias matrices. Our experiments show that
the shared RPB performs best overall, as shown in Tab. 7
(c). We find that the shared RPB enhances the diversify
of heads, particularly for the deeper layers (as shown
in a figure in the supplementary material), which likely
contributes to its slightly better fine-tuning performance.

4. Diagnostic tools
In addition to verifying the effectiveness of feature dis-

tillation through experimental results, we analyze several
interesting properties of the learned visual representations
to provide an understanding of the behind mechanism, by
following diagnostic tools:

• Average attention distances per head [11]. This diag-
nostic tool measures the average relative distance each
patch token attends to in the image, which partially re-
flects the receptive field size for each attention head,
computed using the attention weights. The [CLS] to-
ken and each patch itself are omitted in measurement,
and the distances are pixel-level.

• Average attention maps for each layer [67]. We vi-
sualize the attention maps averaged over all heads per
layer. There are two common patterns in the attention
maps: diagonal and vertical-bar. The diagonal pattern
reveals that the model relies more on visual cues from
relationships of relative locations. It also suggests bet-
ter translation in-variance of the model, which is often
a beneficial property for various down-stream visual
tasks. However, the vertical-bar pattern reflects the
strong impact of the patches in a fixed location to all
other locations, which is translation variant. For the
diagonal pattern, concentrating to a centered diagonal
can also reflect locality prior, i.e. the more concen-
trated to the center, the stronger the locality prior.

• Normalized loss landscapes [33]. In this diagnostic
tool, the trained model weights are perturbed by a se-
ries of Gaussian noises with varying degrees. Fol-
lowing [33], each noise level is normalized to the ℓ2
norm of each filter to account for the effects of varying
weight amplitudes of different models. Visually flatter
minimums usually correspond to lower test error and
better generalization ability [33].

5. Experiments and Analysis
In this section, we investigate whether the fine-tuning

performance of CLIP can be improved via bridging the gap
with MIM methods through feature distillation. We firstly
study the impacts on fine-tuning performance of different

input ratios and training target granularity during distilla-
tion, and then we ablate several key designs in our method.
Additionally, we provide a detailed analysis of the models
before and after distillation, using our diagnosis tools.

5.1. Experimental Settings

Distillation settings. For all experiments, we perform
feature distillation on 1.28M ImageNet-1K training im-
ages [10]. In ablation, we distill 100 epochs for all exper-
iments, except for 300 epochs in Tab. 1 and Tab. 2. The
default model size is ViT-B/16 if not mentioned else. Other
details are in supplemental materials.
Evaluation settings. We include 4 evaluation benchmarks:
ImageNet-1K classification [10], ADE20K semantic seg-
mentation [66], COCO object detection and instance seg-
mentation [36] and NYUv2 depth estimation [49].

• ImageNet-1K classification. For fine-tuning, we fol-
low [2] to use the AdamW optimizer [27] with layer-
wise decayed learning rates and an input size of 224×
224. For ViT-B, we fine-tune it by 100 epochs, and for
ViT-L, we fine-tune it by 50 epochs. For linear prob-
ing, we follow [17] to use the LARS optimizer [60]
with a base learning rate of 0.1 and a weight decay of
0 training for 90 epochs. Top-1 accuracy is reported.
Other details are in supplemental materials.

• ADE20K semantic segmentation. We follow [38] to
use an UPerNet framework [55] for experiments. The
AdamW [27] optimizer is employed with the training
length of 80K, a batch size of 32, and a weight decay
of 0.05. Other hyper-parameters are set as: learning
rate 4e-4, layer decay 0.65, and drop path rate 0.2. In
training, the input image size is 512 × 512. In infer-
ence, we follow the single-scale testing of [38]. Mean
IoU on the validation set is reported.

• COCO object detection and instance segmentation.
We follow the most settings in [6] including a Mask-
RCNN framework [19] with 1× schedule, multi-scale
training and single-scale testing. To reduce the GPU
memory cost brought by global self-attention on high-
resolution COCO images, we adopt a shifted window
attention like [38] and set the window size as 14. An
additional global self-attention layer is added on the
top to aggregate information from whole images. Bbox
mAP and mask mAP on the validation set are reported.
Other details are in supplemental materials.

• NYUv2 depth estimation. We follow the settings in [56,
25]. The input images are randomly cropped to 480×
480 with a batch size of 24, maximal learning rate 5e-5
and 25-epoch training. We evaluate the RMSE (Root
Mean Square Error) on this task. Other details are in
supplemental materials.
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Table 4: Ablation on distilling target granularity. The
models are distilled on ImageNet-1K dataset [10] with 100
epochs. Token-level targets is vital to boost the fine-tuning
performance of CLIP.

Method
IN-1K ADE20K COCO NYUv2

% mIoU APbox APmask RMSE (↓)

MAE [17] 83.6 48.1 46.5 40.9 0.383

[CLS] token 81.9 47.5 44.8 39.6 0.396
GAP feature 83.3 50.3 46.3 40.6 0.393
Full map 84.4 51.8 47.9 42.2 0.350

5.2. On training target granularity and input ratios

Training target granularity. We firstly investigate the im-
pacts of training target granularity. To disentangle the im-
pacts of distillation and target granularity, we ablate three
different distillation targets:

• [CLS] token. The [CLS] token of the visual encoder
plays a unique role in CLIP, which not only aggregates
the global image information, but also aligns to the lan-
guage modality with rich semantics. In this setting, we
use the output feature of [CLS] token from the teacher
model as the target to guide the corresponding output
of the student model.

• GAP feature. In this setting, we use a reduced fea-
ture vector as the target. Specifically, a global average
pooling layer is applied on the whole feature map to
build targets with information from every tokens but
lack of resolutions.

• Full map. We use the whole feature map without re-
duction as the target to create token-level supervision,
which is the default setting in FD-CLIP.

Tab. 4 shows the results. Distilling [CLS] token shows
an improvement on depth estimation, but performs worse
on other tasks than original CLIP. In comparison, distilling
GAP feature shows marginal benefits. The use of full fea-
ture map performs best among all distillation targets on all
the downstream tasks, and also surpassing the MAE model.
Input Ratios. We further study the effects of input ratios
by distilling masked images. Tab. 5 shows the results of
different mask ratios on the student branch, ranging among
[75%, 50%, 25%, 0% (i.e. Full)]. We find that under the
same training epochs, there are no significant differences
between distilling full images and partial images, except for
the setting with only 25% input that is notably worse.

With the above experiments, we draw the conclusion that
the training target granularity is crucial for achieving bet-
ter fine-tuning performance. We further extend the distilla-
tion epochs to 300 and conduct experiments on the largest
CLIP model, ViT-L/14. As shown in Tab. 1, FD-CLIP out-
performs original CLIP by 2 points on ImageNet-1K and

Table 5: Ablation on partial inputs for distillation. The
models are distilled on ImageNet-1K dataset [10] with 100
epochs. ×% map is equal to (100−×)% masking. † means
we also input a masked image into the teacher model, other-
wise we use the full image for the teacher model by default.

Method
IN-1K ADE20K COCO NYUv2

% mIoU APbox APmask RMSE (↓)

MAE [17] 83.6 48.1 46.5 40.9 0.383

25% input† 83.3 47.8 45.2 40.1 0.397
25% input 83.1 48.8 45.1 39.8 0.379
50% input 84.2 51.5 47.5 41.7 0.351
75% input 84.4 52.0 47.8 41.9 0.347
Full input 84.4 51.8 47.9 42.2 0.350

Table 6: Evaluating the distilled CLIP performance on
ImageNet-1K [10]. The feature distillation could largely
preserve the semantic capability of CLIP.

Method CLIP FD-CLIP ∆

Zero-shot (%) 68.6 68.0 -0.6
Linear probing (%) 79.5 80.1 +0.6

Table 7: Ablation on other design choices in feature distil-
lation. Bold ones are our default settings.

(a) Normalization None ℓ2 norm Standardization
IN-1K (%) 83.5 83.9 84.4

(b) Std. / Tea. d.p.r 0.1 / 0.1 0.1 / 0 0.2 / 0
IN-1K (%) 84.0 84.4 84.0

(c) Position config. APE Non-shared RPB Shared RPB
IN-1K (%) 84.0 83.9 84.4

ADE20K and earns around +3 mAP gains on COCO. It also
presents advantages on low-level tasks like depth estimation
on NYUv2, reducing RMSE by 0.033 compared to MAE.
When scaling up to ViT-L model, we earns 87.7% top-1 ac-
curacy on ImageNet-1K fine-tuning, surpassing the original
CLIP by 1.6% (see Tab. 2). Incorporating with intermediate
fine-tuning on ImageNet-22K [10] and a higher fine-tuning
resolution to 336 × 336, we reach 89.0% on ImageNet-1K
with ViT-L. The other downstream tasks are not conducted
on ViT-L/14 due to the inconsistency between the multi-
resolution FPN and the model’s patch size of 14, which is
not an exponential power of 2.

Although distilling the full feature map is different from
the pre-training objective of CLIP, Tab. 6 shows that the dis-
tilled student model has largely preserved zero-shot and lin-
ear probing performance of original CLIP model. That is,
the distillation of the full feature map could inherit much in-
formation incorporated in the CLIP model while taking the
advantages of MIM methods, which may lead to its superior
performance.
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Table 8: Applying feature distillation on ViT-B pre-trained
with DINO [3] and DeiT [51]. The models are distilled on
ImageNet-1K dataset [10] with 300 epochs.

Method
IN-1K ADE20K COCO NYUv2

% mIoU APbox APmask RMSE (↓)

DINO [3] 82.8 46.2 45.8 40.7 0.412
FD-DINO 83.8 47.7 46.1 40.9 0.394

∆ ↑1.0 ↑1.5 ↑0.3 ↑0.2 ↓0.018

DeiT [51] 81.8 47.0 45.8 40.7 0.403
FD-DeiT 83.0 48.0 46.4 41.0 0.404

∆ ↑1.2 ↑1.0 ↑0.6 ↑0.3 ↑0.001

5.3. Ablation of design choices

In this section, we ablate other designs of in our feature
distillation framework. All experiments are performed on
ImageNet-1K dataset using ViT-B and 100-epoch training.
On the normalization of teacher features. Tab. 7 (a) ab-
lates the effect of whether and how to perform teacher fea-
ture map normalization. Teacher feature map standardiza-
tion brings +0.9% improvement over using the original fea-
ture maps. Comparing two normalization approaches of ℓ2
norm and standardization, the latter one shows a gain of
+0.5%. Normalization also makes feature distillation hyper-
parameters insensitive to the pre-training models.
On asymmetric drop path rates. Tab. 7 (b) ablates the ef-
fect of different degrees of drop path regularization. Mod-
erately adding the drop path regularization on the student
network would be beneficial, possibly due to the relief of
over-fitting. However, adding drop path regularization on
the teacher model damages the performance, indicating that
an accurate teacher signal is beneficial. Therefore, we adopt
this asymmetric drop path rate strategy by default.
On position encoding configurations. Tab. 7 (c) ablates
the effect of varying position encoding configurations in the
student network. The results reveal that the shared relative
position bias (shared RPB) configuration outperforms oth-
ers. Nonetheless, all configurations perform quite well, so
the proper position encoding configuration is not the deci-
sive factor for the success of feature distillation.

5.4. Evaluation on more models

Experiments shown in Tab. 1 and Tab. 2 reveal the effec-
tiveness of feature distillation on CLIP models. While the
motivation of this work is to improve the fine-tuning perfor-
mance of CLIP, the feature distillation approach also works
with other pre-training models. In Tab. 8, we apply the fea-
ture distillation on DINO [3] and DeiT [51] and observe
consistent improvements on various downstream tasks. It
shows that the feature distillation approach is also effec-
tive on models pre-trained with different pre-training ob-
jects. We also conduct similar experiments on MAE [17],

Table 9: Feature distillation also improves the advanced
SwinV2-G model [37] on various downstream tasks.

Method IN-1K
COCO ADE20K

APbox APmask mIoU
GLIPv2-CoSwin-H [65] - 62.4 - -
Florence-CoSwin-H [61] - 62.4 - -
DINO-Swin-L [64] - 63.3 - -
MaskDINO-Swin-L [32] - - 54.7 60.8
ViT-Adapter-L [8] - - - 60.5

SwinV2-G [37] 89.2 63.1 54.4 59.9
FD-SwinV2-G 89.4 (+0.2) 64.2 (+1.1) 55.4 (+1.0) 61.4 (+1.5)

shown in appendix. FD-MAE earns marginal gain on most
tasks, verifying our observations that the gain of our method
is largely from a token-level task.

We also improve the 3-billion-parameter SwinV2-G to
achieve 61.4 mIoU and 64.2 mAP on ADE20K semantic
segmentation and COCO object detection (using the same
UperNet / HTC++ framework and the same evaluation set-
tings as the original Swin V2 [37]), creating new records
with +0.6 mIoU and +0.9 mAP higher than previous state-
of-the-art reported in (Mask) DINO [64, 32], respectively,
as shown in Tab. 9. These results suggest the general appli-
cability of our approach to different pre-training methods
and model architectures.

5.5. Analysis

Extensive experimental results have shown that feature
distillation can facilitate the fine-tuning performance of
CLIP models. In this section, we diagnose the models with
tools mentioned in Sec. 4 to understand how feature dis-
tillation affects the model behaviors. All the analyses are
performed on 50,000 ImageNet-1K validation images.

Diversified attention heads. We firstly examine the atten-
tion diversity of different heads w.r.t. network layers. Fig. 3
shows the average attention distance per head in different
network layers of MAE, CLIP and feature distilled CLIP
(FD-CLIP), respectively. At shallow layers, the learned rep-
resentations of all models are diverged across heads. How-
ever, the diversity on attended distances of different heads
is rapidly converging in deep layers of the CLIP model. In-
tuitively, the converged representation indicating the model
capacity is not fully utilized and may have redundancy [56].
In comparison, FD-CLIP alleviates this issue and its repre-
sentations are more similar to the ones in MAE.

Enhanced translational invariance. Fig. 4 shows the aver-
age attention maps of different models. Compared to CLIP
models, the MAE pre-trained model focuses more on the
visual cues from the relative locations, and shows more di-
agonal patterns than others, suggests better translational in-
variance of MAE. This locality property may benefit down-
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Figure 3: The average attention distance per head at each layer depth on (a) MAE [17], (b) CLIP [42] and (c) FD-CLIP. The
distances are measured on the pixel level.

(a) MAE

(b) CLIP

(c)
FD-CLIP

Figure 4: The average attention maps on (a) MAE [17], (b)
CLIP [42] and (c) FD-CLIP. The maps are averaged over all
heads and all images. Five representative layers, 0th, 1st,
7th, 9th, 11th, are selected to save the space. Full attention
maps can be found in the supplementary materials.

stream tasks that requires a fine-grained localization abil-
ity. In contrast, the attention maps of CLIP have much
more vertical-bar patterns in deeper layers (e.g. block 7-
11), which indicates the CLIP features are dominated by
certain patches on absolute locations. The vertical-bar pat-
terns partly disappear after feature distillation, revealing
that the distilled model relies more on encoding relation-
ship of visual cues from relative locations like what MAE
does, and shows better translational invariance.

Flattened loss landscapes. Fig. 5 visualizes the loss and
accuracy landscapes [33] of different models. It turns out
that the landscapes of MAE and FD-CLIP are relatively flat-
ter than original ones, which generally reflects its optimiza-
tion friendliness and better generalization. This observation
is also consistent with their better fine-tuning accuracy.

6. Conclusion
This paper seeks to adopt a classical feature distillation

framework on CLIP models to improve their fine-tuning
performance and simultaneously inherit the original se-

(a) MAE (b) CLIP (c) FD-CLIP

Figure 5: The loss / accuracy landscapes [33] of (a)
MAE [17], (b) CLIP [42] and (c) FD-CLIP, where x-axis
represents the noise strength and y-axis is the loss / accu-
racy. Each plot has 5 landscapes using 5 randomly gener-
ated directions.

mantic capability. By analyzing the ingredient differences
and behaviors differences on classification and localization
tasks between CLIP and MIM methods, we found that a
task with token-level target granularity is one of the key to
the success of MIM methods, especially to their impressive
fine-tuning performance. From this perspective, we intro-
duced the classical feature distillation framework with sev-
eral crucial designs to provide a token-level task for pre-
trained CLIP models. We gained consistent and clear im-
provements on various downstream tasks compared to the
original CLIP models and largely preserved their semantic
capability, like zero-shot and linear probing on ImageNet-
1K classification. Besides, we analyzed FD-CLIP with
MIM and CLIP using several attention- and optimization-
related diagnosing tools. The visualizations revealed that
after distillation, FD-CLIP shares more similar patterns
with MIM. Moreover, we further generalized the framework
to more various models including DeiT, DINO and the ad-
vanced SwinV2-G and observed consistent gains.

Limitations Although the performance improvements are
noticeable after feature distillation, the model training
pipeline becomes more complicated and additional train-
ing cost is required, e.g. 3% more compared to CLIP pre-
training. We further discuss the cost in the appendix. Be-
sides, the diagnosing tools which analyze the MAE and FD-
CLIP are also intuitive and may not be able to indicate the
fine-tuning performance directly.
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