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Abstract

Despite substantial advances, single-image super-
resolution (SISR) is always in a dilemma to reconstruct
high-quality images with limited information from one in-
put image, especially in realistic scenarios. In this paper,
we establish a large-scale real-world burst super-resolution
dataset, i.e., RealBSR, to explore the faithful reconstruction
of image details from multiple frames. Furthermore, we in-
troduce a Federated Burst Affinity network (FBAnet) to inves-
tigate non-trivial pixel-wise displacements among images un-
der real-world image degradation. Specifically, rather than
using pixel-wise alignment, our FBAnet employs a simple
homography alignment from a structural geometry aspect
and a Federated Affinity Fusion (FAF) strategy to aggre-
gate the complementary information among frames. Those
fused informative representations are fed to a Transformer-
based module of burst representation decoding. Besides, we
have conducted extensive experiments on two versions of
our datasets, i.e., RealBSR-RAW and RealBSR-RGB. Exper-
imental results demonstrate that our FBAnet outperforms
existing state-of-the-art burst SR methods and also achieves
visually-pleasant SR image predictions with model details.
Our dataset, codes, and models are publicly available at
https://github.com/yjsunnn/FBANet.

1. Introduction
As a fundamental research topic, Super-Resolution (SR)

attracts long-standing substantial interest, which targets high-

resolution (HR) image reconstruction from a single or a

sequence of low-resolution (LR) observations. In recent

years, we have witnessed the prosperity of Single Image

Super-Resolution (SISR), e.g., SRCNN [7], EDSR [19], SR-

GAN [16], RDN [33] and ESRGAN [28]. Nevertheless,
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Figure 1: SR predictions with different numbers of burst im-

age inputs in our RealBSR dataset, where more burst inputs

facilitate more accurate reconstruction of image details.

SISR intrinsically suffers from a limited capacity of restor-

ing details from only one LR image, typically yielding over-

smooth LR predictions, especially for large-scale factors.

With real detailed sub-pixel displacement information, Multi-

Frame Super-Resolution (MFSR) [31, 1, 2, 21, 20] provides

a promising potential to reconstruct the high-quality image

from multiple LR counterparts, which is valuable for many

sensitive realistic applications, e.g., medical imaging, and

remote satellite sensing.

After the pioneering work [25] of Tsai and Huang in

1984, the research on MFSR has not achieved as tremendous

progress as SISR. Typically, they are overwhelmed by two

challenges: 1) the difficulty of fusing multiple LR inputs,

which especially is aggravated for real-world data; 2) the lim-

itation of artificially-synthesized data, accounting for a poor

generalization for real-world scenarios; To address those

challenges, a recent work [1] has made seminal contributions

to the first real-world burst SR dataset benchmark, BurstSR,

and a novel architecture, DBSR. Subsequently, MFIR pro-

poses a deep reparametrization to reformulate the classical

MAP objective in a deep feature space [2]. BIPNet [8]

introduces a set of pseudo-burst features for information ex-

change among multiple burst frames. BSRT [20] employs a
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pyramid flow-guided deformable convolution network in a

Transformer architecture.

Despite great progress achieved, two aspects still need

to be revisited. 1) Method: Align-fusion-reconstruction

paradigm-based methods usually fuse multiple burst images

according to their similarity to a reference image, following

their alignment via the optical flow or deformable convo-

lution. However, this fusion strategy largely relies on the

reference image and is limited to exploring more information

among burst images. 2) Dataset: BurstSR captures multiple

LR images with a smartphone in burst mode and a corre-

sponding HR image with a DSLR camera. Thus, several

unexpected issues are nontrivial: a) data misalignment (even

distortion) among burst LRs and their HR counterparts; b)
cross-device gap between LRs and HR captured by different

cameras; and c) unfair model evaluation on warped SR pre-

dictions by introducing GT HR. Moreover, BurstSR can be

cast as a coupled task of burst image SR and enhancement.

To address these issues, we propose the Federated Burst

Affinity Network (FBAnet), and make an attempt to build

a new real-world burst image SR dataset, named RealBSR.

Our RealBSR dataset is captured in quick succession a se-

quence of LR images and one HR image under a contin-

uous shooting mode with the optical zoom strategy, like

RealSR [3]. It provides a real-world benchmark for image

detail reconstruction of real-world burst SR applications,

avoiding the color style change in terms of the original LR

data, especially, burst RAW inputs have no ISP process and

often, for faithful high-resolution image predictions, espe-

cially for sensitive applications, e.g., medical imaging.

Our FBAnet employs a simple-yet-effective alignment

algorithm via a homography matrix from a structural and

global aspect. Then, a Federated Affinity Fusion (FAF)

module is introduced to aggregate inter- and intra-frame in-

formation through affinity difference maps, aiming to not

only focus on pixels consistent with the reference frame for

global content reconstruction but also highlight the distinc-

tion among frames to absorb complementary information.

The fused representations pass through the burst represen-

tation decoding module to integrate local features extracted

by convolutions with the global long-range dependencies of

self-attentions for HR image reconstruction.

In a nutshell, our contributions are summarized below:

• We make an effort to establish a Real-world Burst Super-

Resolution benchmark, i.e., RealBSR, which has two

versions consisting of RAW and RGB images. Re-

alBSR has a great potential to inspire further researches

for realistic burst SR applications.

• We propose a Federated Burst Affinity network to ad-

dress real-world burst image super-resolution, which

derives the affinity difference maps of burst images to

federate inter- and intra-frame complementary informa-

tion for reconstructing more image details.

• We have conducted extensive experiments on RAW

and RGB versions of RealBSR to benchmark existing

state-of-the-art methods. Empirically, the efficacy of

our FBAnet has been justified with superior SR perfor-

mances from quantitative and qualitative aspects.

2. Related Work

2.1. Single Image Super-Resolution

SRCNN [7] pioneers CNN to image SR, inspiring nu-

merous follow-ups. Fueled by the evolving of deep neural

networks [13, 10, 14, 26], a series of seminal SISR meth-

ods have been built to achieve significant advances, e.g.,

VDSR [15], EDSR [21], SRResNet [17], ESRGAN [28],

DRN [11], SwinIR [18], etc. Nevertheless, considering

the over-cost collection of real-world LR-HR image pairs,

those methods turn to map synthetic LR images to their HR

counterparts, which is constantly criticized for poor model

generalization in practical scenarios. To facilitate the ex-

ploration of real-world image SR, great efforts have been

made on building functional benchmarks, e.g., SRRAW [32],

RealSR [3], and DRealSR [30], following the optical zoom

manner to capture paired LR-HR images. Meanwhile, LP-

KPN [3] has been proposed to employ a Laplacian-based

network for non-uniform kernel estimation. Encountering

heterogeneous image degradation, CDC [30] proposes a

gradient-weighted loss to adapt to diverse challenges in re-

constructing different regions.

2.2. Multi-Frame Super-Resolution
With great potential to remedy the intrinsic ill-posed SISR

problem, MFSR pursues absorbing authentic sub-pixel de-

tails contained in the image sequences towards real-world ap-

plications. In the early times of MFSR, Tsai and Huang [25]

contribute the first fair solution. Afterward, taking advan-

tage of deep learning, TDAN [24] introduces deformable

convolutions to mitigate the misalignment problem between

neighboring frames and the reference frames. Similarly,

EDVR [27] and EBSR [21] build a pyramid structure facili-

tating the motion compensation during the alignment proce-

dure. MFIR [2] presents a deep reparametrization algorithm

that transforms Maximum A Posteriori (MAP) formulation

to the latent space for better reconstruction. BIPNet [8]

introduces a pseudo-burst feature fusion method to allow

flexible information exchange among frames. In addition,

BSRT [20] builds the reconstruction module based on Swin

Transformer, which further improves the performance.

For real-world burst image SR, Bhat et al. [1] establish

a dataset consisting of LR burst images captured from a

smartphone and HR counterparts from a DSLR camera and

introduce an encoder-decoder-based model to deal with un-

known pixel-wise displacement with optical flow estimation

and merge aligned frames with an attention mechanism.
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Figure 2: Characteristic analyses of our RealBSR dataset.

One typical challenge of burst SR lies in the fusion strat-

egy. It is common to use the affinity maps between one frame

and base frame as fusion weights. However, this would be

stuck in a devil: it just focuses on what is similar to the base

frame for all the other frames and uses those similar pixels

as complementary to the base frame; but, it is limited to

excavate comprehensively complementary relations among

frames. Besides, when examining the line of research works

conducted on the BurstSR dataset, three issues are also wor-

thy of being taken into serious consideration (Sec. 3), i.e.,

data misalignment among LRs and HRs, cross-device distri-

bution because of different imaging cameras for capturing

LRs and HRs, and unfair model evaluation with warped SR

predictions via their ground-truth HRs.

In this work, we propose to leverage the federated affin-

ity fusion strategy in our FBAnet model, comprehensively

investigating complementary pixel displacements among a

sequence of burst images. Meanwhile, we build a real-world

burst image super-resolution dataset, named RealBSR, aim-

ing to facilitate further exploration of real-world burst SR.

3. RealBSR: A new Benchmark

BurstSR is the only existing dataset for real-world burst

image super-resolution and enhancement, which has three

typical issues. 1) Data Misalignment. The distortion be-

tween LRs and their HR counterparts is distinct. It possibly

results in a severe misalignment between paired LR and HR

images. Such serious mismatches yield counterproductive

super-resolution results with few details reconstructed from

burst LR images. 2) Cross-Device Distribution. Since LR se-

quences and HR counterparts are captured by a smartphone

and a DSLR, respectively, the difference of imaging devices

would inevitably lead to a cross-device gap between them.

Therefore, it has to cast this task on the BurstSR dataset as

a combination of burst image super-resolution and enhance-

ment. 3) Evaluation Deficiency. The evaluation routine for

BurstSR is that a generated final SR image is warped with

the reference of its ground-truth HR and then this warped

SR image is used to compute the evaluation metrics with the

Img: 0140_0014 
(HR)

Img_0140_0014 
(LR)

(a) Perspective misalignment

Img: 0031_0032
(HR)

Img: 0031_0032
(LR)

(b) Color difference for cross-device

Figure 3: Limitation examples in BurstSR [1].

same ground-truth HR. This is rather problematic and even

not fair to truly evaluate the model performance with the aid

of GTs. Besides, the calculated metric values (e.g., PSNR)

cannot well reflect the visual quality, which means pursu-

ing a higher PSNR on the BurstSR dataset is not positively

related to better reconstruction quality. This evaluation strat-

egy greatly attributes to data misalignment and cross-device

distribution, inviting a great challenge for evaluation.

In this work, we build a real-world burst super-resolution

dataset, named RealBSR. It consists of 579 groups (RAW

version) and 639 groups (RGB version) for the scale factor

4. Each group has 14 burst LR images and a GT HR image.

3.1. Collection and Processing

We use the optical zoom strategy for data collection, sim-

ilar to RealSR [4] and DRealSR [30]. With a Sony DSLR

camera (Alpha 7R), we capture a sequence of 14 LR images

by pressing the camera shutter and optically zoom the cam-

era to shoot an HR image. Those images are collected in

various scenes, e.g., buildings (museum, church, office build-

ing, tower, etc.), posters, plants/trees, sculptures, and ships.

Our indoor and outdoor images have 21 and 618 groups,

respectively. For each group of burst data, since LR and

HR images have different fields of view, we employ SIFT

to crop LR sequences under the reference of collected HR

counterpart.

Considering the distortion of RAW images is not ad-

dressed by the camera, their center regions are cropped into

our RAW version dataset, named RealBSR-RAW. Besides,

the RGB version of RealBSR, termed RealBSR-RGB, is also

provided. Since the collected RGB images are processed by
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Figure 4: Workflow illustration of the proposed FBAnet, which contains three main components, including homography

alignment, federated affinity fusion (cf. Eq. (2) and Eq. (1)), and burst representation decoding.

the camera ISP, it also needs color and luminance correction

between LRs and their HR counterparts.

To facilitate the model training, we crop the inputs

into 160×160 patches, similar to RealSR. Accordingly, the

RealBSR-RAW dataset has 20,842 groups of paired patches

for training and 2,377 groups for testing. Similarly, the

RealBSR-RGB dataset has 19,509 groups of paired patches

for training and 2,224 groups for testing.

3.2. Characteristic Analysis

Pixel Shift is computed between the base frame (the first

LR frame) and the other 13 frames. In Fig. 2a, 50% offsets

between frames are under 1 pixel, but 25% offsets in the

range of (1,2) and 25% larger than 2 pixels, indicating the

model still needs an alignment module to eliminate large

offsets. Instead of other external factors like moving objects

and inconsistent colors, the large pixel shifts in RealBSR

are caused by intense hand tremors. In Fig. 2b, the sub-

pixel shifts are distributed evenly in the range of (0,1) which

provides abundant information for SR improvement.

Image Diversity. We employ grey-level co-occurrence ma-

trix (GLCM), which is widely used to measure image tex-

tures [12], to analyze the image diversity. With GLCM,

we derive five second-order statistic features from all the

training images, i.e., Haralick features [12], including im-

age contrast, entropy, dissimilarity, correlation and energy,

Fig. 2c. Contrast measures the intense changes between

contiguous pixels, and dissimilarity is similar to contrast
but increasing linearly. Energy measures texture uniformity,

and entropy measures the disorder of the image, which is

negatively correlated with energy. Correlation measures the

linear dependency in the image.

4. FBAnet: A New Method
4.1. Overview

In comparison with SISR, MFSR pursues favorable pixel-

wise displacements to facilitate realistic detail reconstruction.

Since it is not easy to exactly figure out the displacement

association among different burst LR images, how to fuse

burst images remains intractable. What’s worse, stemming

from physical camera shake during imaging, it occurs more

unexpected and non-uniform pixel shifts. To address this

issue, we propose a federated burst affinity network to move

towards real-world burst SR by effectively integrating infor-

matic sub-pixel details contained in multiple frames.

Our FBAnet follows a conventional alignment-to-fusion

paradigm, Fig. 4. Formally, given an LR image sequence

{xi}Ni=1 of N burst observations as the input, our model

will yield a high-resolution image prediction ŷi for a scale

factor s, where their ground-truth (GT) HR counterpart is de-

noted as yi. With the randomness of pixel-wise shift among

different burst images, the fused features would not be per-

fect enough to directly support the reconstruction of image

details. Without loss of generality, the first frame x1 is re-

garded as the reference frame to align the other images in

the sequence by their homography matrix H . Then, FBAnet

employs a federated affinity fusion strategy to aggregate mul-

tiple frames and utilizes two hourglass Transformer blocks

to take over the fused features for the final decoding phase

of high-resolution image prediction.

4.2. Homography Alignment
Captured in a quick succession, the pixel-wise displace-

ments among burst images mainly stem from camera mo-

tion and scene variations, which are usually regarded to

be complementary for reconstructing more details. Before

fusing them, we align those images firstly, avoiding the in-

formation confusing or discrepancy and leading to blurry

super-resolution predictions even with unpleasant artifacts.

We employ a simple homography matrix [23] for the

alignment from a global and structural manner. Specifically,

a 3×3 homography matrix Ht between i-th frame xi and the

base frame x1 indicates the transformation with respect to

Correlation Coefficient Maximization (ECC) criterion [9].
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Each frame is warped with the homography matrix by taking

the base frame as reference for alignment.

4.3. Federated Affinity Fusion
To take full advantage of potential information, the

aligned images pass through the fusion module. As fused

outputs should not only be consistent with the base frame

but also incorporate additional signals from other frames,

we propose a Federated Affinity Fusion (FAF) module to ag-

gregate inter-frame and intra-frame information, Fig. 4. Our

FAF determines how informative the final result could be by

assigning pixel-wise fusion weights on each frame, which

serves the core of the whole burst paradigm. It is noteworthy

that one-order affinity maps, i.e., the differences between

two affinity maps, are leveraged to determine the weights,

rather than the affinity or attention maps. Specifically, we

extract deep features Fi from aligned images with two con-

volutional layers. The affinity map A between two frames is

the dot product of their features, i.e., Ai,j = Fi · Fj .

1) Vanilla Affinity Fusion (VAF): Following wisdom that

higher similarity or affinity indicates more important pixels

for fusion, it is intuitive that those affinity maps are utilized

to weight each frame, which is common in existing works,

e.g., TSA in EDVR [27]. The fused feature map of VAF

can be formulated as M =
∑N

i=1 A1,i ◦ Fi, where ◦ is the

element-wise product. As intuitively illustrated in Fig. 5a,

VAF focuses on pixels from other frames consistent with the

reference ones in the base frame. Consequently, informa-

tion similar to the base frame would be kept (e.g., Pixel-A
in Fig. 5a), while important details only appear in other

frames are ignored (e.g., Pixel-B in Fig. 5b).

2) FAF: Despite the higher affinity of xi (∀i �= 1) indi-

cating the higher similarity to the base frame x1, there also

underlies two adverse effects, especially for real-world burst

images: (a) Their easy reconstruction regions (e.g., the flat)

would also have large affinity values for xi, ∀i �= 1, which

would unexpectedly drive the model to pay more attention

to those regions, resulting in over-fitting. (b) As for the

imperfect alignment and pixel shift, even the key pixels in

detail-rich regions may not have large affinity values to be

highlighted for fusion.

To address these issues, our FAF additionally considers

the affinity difference maps to distinguish specific differ-

ences between one frame from other frames. Consequently,

our FAF would pay attention to those complementary details

do not appear in the base frame, e.g., Pixel-B in Fig. 5a. The

affinity difference map of the i-th frame can be expressed as

D1 = A1,1; Di = d(A1,i, A1,1), when i �= 1, (1)

where d(·) is the difference function.

The final fused feature can be defined as,

1-Frame in the HR grids

Vanilla Affinity Fusion Federated Affinity Fusion

2-Frame in the HR grids 3-Frame in the HR grids

(Base Frame)
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(a) Fusion from pixels in different burst LRs. (Circle, Triangle
and Semicircle indicate pixels in 3 burst frames, shown in the

corresponding positions of HR pixel grids.)

VAF

FAF

x0

x1

x2

(b) Fusion results on each of 9 HR pixels. (Height: signal intensity.)

Figure 5: Intuitive illustration of FAF. FAF considers more

complementary details from other frames (e.g., Pixel-B in

(a)), besides those similar to base frame (e.g., Pixel-A). (b)

FAF can rectify the fusion information, avoiding negative

effects from easy reconstruction regions with very high simi-

larity and encouraging those subpixels for fusion.

M =
∑N

i=1
Di ◦ Fi

= A1,1 ◦ F1︸ ︷︷ ︸
self−affinity feature

+
∑N

i=2
d(A1,i, A1,1) ◦ Fi

︸ ︷︷ ︸
frame−specific feature

. (2)

Analysis: As Eq. (2) indicates, the fused feature map con-

sists of two components, i.e., (i) attentive features of the base

frame based on its self-affinity, (ii) frame-specific features

that are relatively independent of the base frame providing

more complement from other frames. Given Di computed

in the Euclidean space, Eq. (2) can be derived as

M = A1,1 ◦ F1 +
∑N

i=2
(Fi − F1) · F1 ◦ Fi. (3)

The second terms in Eq. (2) & (3) can be regarded as

the combination of difference maps (Fi–F1) and correlation

maps F1 ◦Fi. The former would alleviate the issue that VAF

encourages the fusion of redundant information similar to
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the base frame too much, which is too easy for reconstruc-

tion, e.g., the flat. The latter would alleviate the adverse

effects derived from the misalignment due to large motions.

Thus, FAF rectifies the fusion information to alleviate the

adverse effects resulting from the large misalignment and

the overfitting to the easy reconstruction of regions with high

affinity, as illustrated in Fig. 5b.

3) FAF*: Following the similar federating spirit, we can

further extend this design of FAF. That is, the affinity maps

and their different maps can take more complex federated

interactions of frames into consideration, rather than only

taking the base frame as a reference. Specifically, for t-th
frame, its affinity difference map can be compared to any

other frame. Thus, Di = d(A1,i, A1,m), i,m �= 1 and the

fused features is computed similar to Eq. (2),

M =
∑N

k=1
(Ak,k ◦ Fk +

∑N

i=1,i �=k
d(Ak,i, Ak,k) ◦ Fi). (4)

4.4. Burst Representation Decoding

To aggregate global information for finer high-frequency

detail reconstruction, we utilize the self-attention mechanism

to model long-range pixel relations. Specifically, our FBAnet

adopts a burst representation decoding module to explicitly

model inter-dependencies among channels. This module

has two cascaded blocks, shown in Fig. 4. A block has an

encoder and a decoder, both of which cascade three Locally-

enhanced Window (LeWin) Transformer blocks [29]. Each

block has a LayerNorm, multi-head self-attention, a Lay-

erNorm, and a Locally-Enhanced Feed-Forward (LeFF)

layer [29]. The module is followed by pixelshuffle [22]

for producing the final HR predictions.

Our training objective includes a Mean Absolute Error

(MAE) loss for SR image reconstruction. In addition, on the

RAW-version dataset, to mitigate the negative effects brought

by a slight misalignment of the RAW-version dataset, we

also introduce the CoBi loss [32] to ease the training and

enhance the visual quality of final results. While on the

RGB-version dataset, we adopt the Gradient Weighted (GW)

loss [30] for high-frequency detail reconstruction.

5. Experiments
5.1. Experimental Settings

Datasets. We conduct experiments on the two versions

(RAW and RGB) of the proposed RealBSR benchmark at

scale factor 4, real-world BurstSR [1] and a synthetic burst

SR dataset, SyntheticBurst [1, 8], with fair comparisons.

Implementation Details. We align frames in a burst se-

quence using OpenCV to estimate homography matrixes,

before training. Input images are augmented using flip and

rotation in the training stage. The AdamW optimizer is em-

ployed and the initial learning rate is set to be 1e-4. Besides,

we adopt the cosine annealing schedule to set the learning

rate of each parameter group.

Task Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR-Linear ↑

B
ur

st
SR

DBSR [1] 20.906 0.635 0.134 30.484

MFIR [2] 21.562 0.638 0.131 30.979

BSRT [20] 22.579 0.662 0.103 30.826

BIPNet [8] 22.896 0.641 0.144 31.311

FBAnet (ours) 23.423 0.677 0.125 32.256

Table 1: Performance comparisons on our RealBSR-RAW.

Task Method PSNR ↑ SSIM ↑ LPIPS ↓

SISR
LP-KPN [4] 29.268 0.863 0.160

CDC [30] 30.014 0.880 0.132

SwinIR [18] 29.924 0.876 0.139

M
F

SR B
ur

st

DBSR [1] 30.715 0.899 0.101

MFIR [2] 30.895 0.899 0.098
BSRT [20] 30.782 0.900 0.101

BIPNet [8] 30.665 0.892 0.111

FBAnet (ours) 31.012 0.898 0.102

Vi
de

o EDVR [27] 29.708 0.876 0.115

BasicVSR [5] 29.274 0.860 0.156

BasicVSR++ [6] 30.682 0.896 0.115

Table 2: Performance comparisons on our RealBSR-RGB.

Method
SyntheticBurst [1] (real) BurstSR [1]

PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 36.17 0.909 - 46.29 0.982 -

DBSR [1] 40.76 0.960 - 47.63 0.982 0.032

MFIR [2] 41.56 0.960 - 48.02 0.984 0.028

FBAnet (ours) 42.23 0.970 - 48.24 0.988 0.026

Table 3: Evaluation on synthetic and real BurstSR data. ’-’

indicates that the LPIPS results are not provided in [1] and

thus are omitted.

Evaluation Metric. On RealBSR-RAW, we adopt four

evaluation metrics, i.e., PSNR, SSIM, LPIPS, and PSNR-

Linear [1]. The first three metrics are computed in the RGB

space, and the last one is in the linear sensor space. On

RealBSR-RGB, it follows the evaluation routine in the RGB

image space and thus three metrics (PSNR, SSIM, LPIPS)

are adopted. On BurstSR, the predicted SR images have to be

warped by taking GT HRs as a reference before computing

metrics [1], while without post-processing on our RealBSR.

5.2. Comparison with the State-of-the-art Methods

We compare our model with four state-of-the-art burst

SR methods, i.e., DBSR [1], MFIR [2], BSRT [20], and BIP-

Net [8], and three video SR methods, including EDVR [27],

BasicVSR [5] and BasicVSR++ [6].

Comparison with burst SR methods: On RealBSR-

RAW, Tab. 1, our FBAnet achieves the best results on PSNR,

SSIM, and PSNR-Linear metrics. Notably, FBAnet im-

proves the performance by ∼ 0.5dB in terms of PSNR

and ∼ 0.945dB in terms of PSNR-Linear. Similar to the

performance on RealBSR-RAW, PSNR of our FBAnet on

RealBSR-RGB is also superior to other burst SR methods,

13238



BIPNetBSRT

CDC

DBSR

EDVR

FBAnet(Ours) GT

LP-KPN

MFIR

SwinIR BasicVSR BasicVSR++

(a) Burst SR results on the RealBSR-RGB dataset.
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Figure 6: Result visualization of existing methods including Real-world SISR (blue), video SR (green), and burst SR (red).

validating the effectiveness of our method. Fig. 6 visu-

alizes SR results of competing methods and ours in both

RealBSR-RGB and RealBSR-RAW datasets. On RealBSR-

RGB, it is clear that the state-of-the-art burst SR methods

are prone to generate realistic but blurry textures, e.g., the

building in Fig. 6. On RealBSR-RAW, the SR predictions of

DBSR, MFIR and BIPNet have differences in image color,

compared with that of our FBAnet. Moreover, on Synthet-

icBurst and real-world BurstSR, all the evaluation methods

are trained from scratch in Tab. 3 and performance gains are

also achieved by our FBAnet over existing methods.

Comparison with video SR methods: To further evalu-

ate the results of video SR methods in the real-world burst

SR task, we also introduce three state-of-the-art video SR

methods (i.e. EDVR, BasicVSR and BasicVSR++) for com-

parison. Since the video SR algorithms are always based

on RGB dataset, we train all these methods from scratch on

RealBSR-RGB dataset. In Tab. 2, our FBAnet outperforms

the state-of-the-art video SR algorithms by ∼0.5dB gains (vs.
BasicVSR++) at least and 1.489dB gains (vs. EDVR) at most.

In Fig. 6a, it is clearly observed that visualization results of

EDVR, BasicVSR and BasicVSR++ produce blurry details

of the building, while our proposed FBAnet reconstructs

realistic and sharp textures.

SISR vs. Burst SR: To verify the benefits brought by burst

SR data, we provide comparisons under the real-world SISR

task. The compared methods are two representative real-

world SISR methods (i.e., LP-KPN [4] and CDC [30]) and a

Transformer-based SISR method (i.e., SwinIR [18]). Those

SISR methods only take the base frame of burst sequences

Alignment Fusion Decoding PSNR ↑ SSIM ↑ LPIPS ↓
Alignment

No alignment FAF (ours) ours 30.223 0.878 0.125

Optical flow FAF (ours) ours 30.857 0.889 0.117

Deformable FAF (ours) ours 30.782 0.891 0.111

Homography FAF (ours) ours 31.012 0.898 0.102
Fusion

Homography VFA/TSA [27] ours 30.724 0.896 0.107

Homography FAF (ours) ours 31.012 0.898 0.102

Homography FAF* (ours) ours 31.197 0.901 0.101
Decoding

Homography FAF (ours) BSRT [20] 30.890 0.895 0.106

Homography FAF (ours) ours 31.012 0.898 0.102

Table 4: Evaluation about alignment, fusion, and decoding.

as input. Compared to MFSR methods, SISR methods are

characterized by generating relatively sharp and clean out-

puts, which could be observed from Fig. 6a, while suffering

from the absence of informative details.

5.3. Evaluation and Analysis

Alignment: We have ablatively investigated the homography

alignment module and also compared it with other different

alignment methods including flow-based alignment [1, 2]

and deformable-based alignment [27, 24]. As shown in

Tab. 4, compared with optical flow alignment [1] and de-

formable convolutional alignment [27, 20], our approach out-

performs them with performance improvements by 0.155dB
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Figure 7: Three examples on pixel shift among a sequence of

14 burst images before and after our homography alignment.

Each color indicates one frame in a sequence.
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Figure 8: Visualization of affinity maps and affinity differ-

ence maps.

and 0.230dB in PSNR, respectively. This demonstrates that

our method is effective to align the pixel shifts in real-world

burst frames, even though it is simple.

To verify our solution, we analyze motion patterns among

a sequence of burst images. Taking the base frame as ref-

erence, pixel shifts of each image in a sequence are image-

dependent and global-structural, Fig. 7. Namely, they present

a relatively consistent displacement of pixels. This evidences

that it is reasonable and effective to align images via homog-

raphy matrix in the real-world burst super-resolution task.

This is different from many existing burst algorithms that

usually adopt pixel-wise alignment methods (e.g., optical

flow and deformable convolutions), which rarely consider

the image-wise structural motion pattern prior of the frame.

Burst Inputs Number PSNR ↑ SSIM ↑ LPIPS ↓
1 30.139 0.879 0.132

2 30.616 0.891 0.113

4 30.818 0.894 0.108

8 30.945 0.898 0.101

10 30.980 0.899 0.098
14 31.012 0.898 0.102

Table 5: Evaluation on the number of burst inputs.

Method Burst Inputs Data PSNR ↑ SSIM ↑ LPIPS ↓
DBSR [1]

(base frame)×14 29.389 0.867 0.150

14 burst images 30.715 0.899 0.101

MFIR [2]
(base frame)×14 29.325 0.865 0.151

14 burst images 30.895 0.901 0.098

BIPNet [8]
(base frame)×14 30.001 0.878 0.136

14 burst images 30.665 0.892 0.111

BSRT [20]
(base frame)×14 29.501 0.869 0.151

14 burst images 30.695 0.897 0.105

FBAnet (base frame)×14 30.086 0.868 0.152

(Ours) 14 burst images 31.012 0.898 0.102

Table 6: Evaluating the burst inputs’ complementary content.

Federated Affinity Fusion: In Tab. 4, we have evaluated

the proposed federated affinity fusion module. In compari-

son with VAF using only affinity maps, our FAF introduces

affinity difference maps and achieves the performance gains

by 0.288dB in PSNR. And our FAF* further improves the

performance by 0.185dB gains in PSNR. This indicates that

our federated affinity fusion provides complementary infor-

mation to the subsequent module.

To further analyze FAF, Fig. 8 provides the visualization

of affinity maps and affinity difference maps. As discussed

in Sec. 4.3, the affinity values in the flat region with few

details would be rather large. Since VAF takes the affinity of

one frame to base frame as fusion weight, this encourages

the model to pay more attention to those easy reconstruction

regions. Instead, FAF uses the affinity difference maps to

lower their weights to alleviate this negative effect.

Besides, for the difference map of Frame2 in Fig. 8, it

could be seen that the highlighted attention is different from

that of Frame1 and Frame3, indicating that Frame2 also

provides additional details to the fusion process. This can

be further validated through the presented residual between

HR predictions of FAF and VAF, which demonstrates that

our FAF achieves better detail reconstruction than VAF, as

highlighted in the prediction difference image.

Burst Representation Decoding. In Tab. 4, we compare our

decoding module to that of BSRT with a Transformer design,

under a similar architecture with the same alignment and

FAF modules. Our decoding has achieved gains by 0.122dB.

The Number of Burst Image Inputs. We investigate the

impact of different numbers of burst images in a sequence

and compare it with a single-frame baseline. And all the

training processes are based on our proposed architecture.
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Tab. 5 reveals that there has been a giant gap in the perfor-

mance between the single-image baseline and multi-frame

restoration results. Specifically, with the burst size increas-

ing from 2 to 14, the performance also experiences a marked

rise from 30.616dB to 31.197dB, which tends to be relatively

saturated with the input number being close to 1.

The Complementary Content of Burst Image Inputs. To

verify the influence of contents in burst frames, we compare

models trained on 14 shifted frames with models trained on

14 identical images (i.e. the base frame and its 13 copies), the

results of which are reported in Tab. 6. For the five models

(i.e. DBSR, MFIR, BIPNet, BSRT, and Ours) adopted, the

performance gains among (base frame)×14 and 14 burst

images range from 0.664dB to 1.194dB, which proves the

necessity and effectiveness of complementary information

provided by sub-pixel information among shifted frames.

6. Conclusions, Limitations, and Future Work

We release a real-world burst image super-resolution

dataset, named RealBSR, which is expected to facilitate

exploring the reconstruction of more image details from mul-

tiple frames for realistic applications, and a Federated Burst

Affinity network (FBAnet), targeting addressing the fusing

issue of burst images. Specifically, our FBAnet employs

simple homography alignment from a structural geometry

aspect, evidenced by the relatively consistent pixel shift for a

sequence of burst images. Then, a Federated Affinity Fusion

(FAF) strategy is proposed to aggregate the complemen-

tary information among frames. Extensive experiments on

RealBSR-RAW and RealBSR-RGB datasets with improved

performance have justified the superiority of our FBAnet.

Limitations and future work: Our FBAnet employs

a simple homography alignment. But it is not easy to ex-

tend to the video SR task with large motions, which will

be addressed in our future work. Since noise is inevitable,

addressing real-world burst super-resolution and denoising

at the same time is more practical. We will be devoted to

this real-world benchmark and the solutions in future work.
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