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Abstract

We address the problem of out-of-distribution (OOD)
detection for the task of object detection. We show that
residual convolutional layers with batch normalisation pro-
duce Sensitivity-Aware FEatures (SAFE) that are consis-
tently powerful for distinguishing in-distribution from out-
of-distribution detections. We extract SAFE vectors for ev-
ery detected object, and train a multilayer perceptron on
the surrogate task of distinguishing adversarially perturbed
from clean in-distribution examples. This circumvents the
need for realistic OOD training data, computationally ex-
pensive generative models, or retraining of the base ob-
ject detector. SAFE outperforms the state-of-the-art OOD
object detectors on multiple benchmarks by large margins,
e.g. reducing the FPR95 by an absolute 30.6% from 48.3%
to 17.7% on the OpenImages dataset.

1. Introduction

Across a variety of tasks, deep neural networks (DNNs)
produce state-of-the-art performance when tested on data
that closely matches the training data distribution [19, 54].
However, when deployed into the real world, out-of-distri-
bution (OOD) samples that do not belong to the training dis-
tribution are likely encountered. Upon encountering OOD
samples, DNNs tend to fail silently and produce overconfi-
dent erroneous predictions [51, 40, 21, 3, 5, 16]. Especially
in safety-critical applications, such as self-driving vehicles
or medical robotics, such silent failures present a severe
safety risk that must be addressed before the widespread
adoption of these systems [59, 2].

OOD detection, where OOD samples are distinguished
from in-distribution (ID) samples, is thus an important task.
OOD detection has been addressed widely in the image
classification setting [31, 35, 22, 53, 66, 6, 57, 68]. In
this paper, we expand upon the limited body of work in
OOD object detection [9, 8, 7], leveraging recent theoret-
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Figure 1. Overview of our proposed SAFE OOD object de-
tector. Feature maps are extracted from sensitivity-aware layers
in the backbone of a pretrained object detector. Object-specific
SAFE vectors are extracted for the predicted bounding boxes. Pre-
deployment, an auxiliary MLP is trained to distinguish the fea-
ture vectors of normal ID detections (blue) from adversarially-
perturbed ID samples (orange). At test time, the pipeline for
the training samples is repeated (blue) for all test samples, with
the auxiliary MLP producing OOD detection scores for each ob-
ject in a test image. Illustrative input images are drawn from
BDD100K [70].

ical insights on the behaviour of the feature space of DNNs.
Specifically, recent theory [34, 43, 61, 55] has highlighted
the importance of ensuring that the feature space of a DNN
is distance-preserving through the constraints of sensitivity
and smoothness. In particular, sensitivity, i.e. the preserva-
tion of input distances in the output, has been shown to play
a crucial role in learning a robust feature set that avoids
mapping ID and OOD data to similar feature representa-
tions [61].

Furthermore, prior work established the role of adversar-
ial attacks in OOD generalisation [69], increasing the sep-
arability of ID samples from OOD [32, 23] and perturbing
feature representations [15, 49, 36]. We thus leverage the
most sensitive layers in a pretrained object detector back-
bone through targeted input-level adversarial perturbations.

This paper introduces SAFE, a new approach to vi-
sual OOD object detection that utilises object-specific

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23565



Sensitivity-Aware Features (Figure 1). Our approach has
three core components, each offering advantages over ex-
isting works in this area:

1. We identify a critical subset of layers that are sensi-
tive to OOD input variations, i.e. these layers preserve
differences from the input in their feature space, and
trigger abnormally high activations. SAFE layers are
residual convolutional layers with batch normalisation
within the backbone of an object detector. We empir-
ically validate their superiority for OOD detection in
our results. In contrast, previous work only uses fea-
tures from the classification head of the object detector
and do not consider the characteristics of different lay-
ers for OOD detection [9, 53, 31].

2. We extract object-specific SAFE vectors and use a
multi-layer perceptron (MLP) to classify every de-
tected object as ID or OOD. This allows OOD samples
to be detected in a posthoc manner, i.e. it does not re-
quire retraining of the base network [68] and can be
applied to any pre-trained object detector with a back-
bone containing SAFE layers (e.g. ResNet [19] and
RegNetX [44]).

3. We train this MLP on the surrogate task of distin-
guishing the SAFE vectors of adversarially-perturbed
samples and clean ID training samples. This avoids
the necessity of access to real outlier training data
[31, 25, 71, 35, 22, 47, 4, 1] or a complex generative
process to synthesise such data [30, 64, 56, 52].

SAFE achieves new state-of-the-art results across multiple
established benchmarks. We release a publicly available
code repository to replicate our experiments at: https:
//github.com/SamWilso/SAFE_Official

2. Related Work
In this section, we identify the core contributions in the

related areas to OOD object detection: i) Many methods
attempt to calibrate the confidence of the network utilis-
ing available or self-generated outlier data. ii) When access
to outlier data is unavailable, deep features of the network
are monitored for deviations from known values. iii) Un-
der some regularisation constraints, the feature space of a
deep network can be tuned to be distance-aware, improv-
ing OOD detection performance. iv) Whilst work on OOD
object detection is scarce, recent works have been proposed
for adjacent tasks (e.g. open-set, performance monitoring)
in object detection.

Outlier-based OOD Detection A common approach to
OOD detection is to calibrate the model confidence by tun-
ing the weights or hyperparameter on an auxiliary validation
dataset [31, 25, 71, 35, 22, 47, 4, 1]. These OOD-specific
characteristics can be extrapolated from an available set of
real outlier data constructed from either the testing OOD
set [25, 31, 35] or an entirely separate dataset [47, 4, 22, 1].

While these methods often present impressive performance,
the use of these outlier sets is inherently problematic: if the
real outlier set does not accurately represent the OOD sam-
ples encountered at test time, substantial drops in perfor-
mance are observed [57].

To overcome this, many prior works synthesise out-
liers as a proxy for OOD samples, training a network
to distinguish between ID samples and the synthetic out-
liers [14, 30, 63, 64, 56, 52, 9]. Early works on out-
lier synthesis focused on Generative Adversarial Networks
(GANs) [14], training a model that generated low ID den-
sity samples in the image space for calibrating confidence
measures [30], training a reject class [63, 64] or encour-
aging uniform predictions on OOD samples [56]. Scaling
input-based generative models becomes complex as the fi-
delity of images increases, and thus feature-based gener-
ative methods have been proposed for OOD object detec-
tion [9]. Synthetic outliers have also been created by adding
input-level perturbations to the known ID dataset via adver-
sarial generation [32, 23, 69], pixel-level mutation [48] or
permutation [6] and additive noise [37, 60]. We adopt a sim-
ilar approach and generate synthetic outliers via adversarial
perturbations with the goal of training an auxiliary MLP to
distinguish between ID samples and adversarial samples.

Feature-based OOD Detection Many methods avoid
generating sufficiently realistic outliers by directly mon-
itoring the outputs [21, 20, 16, 12, 72, 65, 26] or fea-
tures [53, 66, 6, 61, 1, 58] of the DNN. These methods are
generally more computationally efficient in contrast to al-
ternative OOD detectors, but often rely on fundamental as-
sumptions about the characteristics of the feature space e.g.
separability of classes in feature space [11, 66, 72, 61, 58].
Following these findings, recent works have proposed meth-
ods that enable the assessment of layer-wise performance,
subsequently demonstrating that not all layers are equally
effective at detecting OOD data [66, 6, 53, 37] and that
some layers exhibit abnormal behaviour when presented
with OOD data [57]. All these works are applied exclu-
sively to image classification. In this work, we extend the
usage of feature-based OOD detectors to object detection
by only leveraging the backbone features that are the most
sensitive to OOD data.

Feature Space Regularisation The beneficial proper-
ties of sensitivity and smoothness have recently been high-
lighted in the context of OOD detection for classifica-
tion [34, 43, 61, 55]. Sensitivity ensures that differences
in the input space (i.e. pixels) result in sufficiently differ-
ent representations in the feature space, preventing the fea-
ture collapse problem [61]. Smoothness prevents the feature
mapping from being too sensitive, thus avoiding reduced
generalisation and robustness [61]. Both properties consti-
tute the lower and upper bounds of a bi-Lipschitz constraint
(Eq. (1)) and can be enforced during training, e.g. by train-
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ing a network with residual connections [19] with spectral
normalisation [42], as applied by [43, 34]. However, re-
cent work [43, Sec. C.4] has shown that residual connec-
tions constitute an inductive bias towards sensitivity, even
without spectral normalisation. We build upon this insight
and expand it to the task of OOD for object detection.

Reliable Object Detection Applications of OOD de-
tection methods to object detection is a new field; how-
ever, there are existing works in related domains. Akin
to OOD detection, open-set error detection [5] commonly
relies on the outputs of the final layer of the object detec-
tor network [41, 28, 40]. In a similar vein, recent works
have sought to explain failures in deep object detectors by
analysing the relationship between individual architecture
components and unique errors [39] and the influence of the
datasets on these errors [38]. Related works in failure mon-
itoring use auxiliary networks trained on backbone object
detector features [46, 45]. Few works [9, 8, 7] have explic-
itly addressed the problem of OOD object detection. These
methods require explicit retraining of the base network or
fine-tuning of the hyperparameters with an auxiliary outlier
dataset [9, 8, 7].

3. SAFE: Sensitivity-Aware Features

We propose SAFE, a post-hoc OOD detector for object
detection that leverages the sensitivity of residual convo-
lutional layers and abnormal batch normalisation activa-
tions to identify OOD object detections. In Section 3.1,
we provide the motivation that informs the critical aspects
of SAFE, and then in Section 3.2, we introduce the SAFE
method in detail.

3.1. Motivation

Fundamental to SAFE, we identify residual convolu-
tion layers followed immediately by batch normalisation
are consistently sensitive and thus powerful layers for OOD
object detection. Whilst it has been shown that not all lay-
ers perform equally for OOD detection in image classifica-
tion [66, 6, 53, 1] or LIDAR-based OOD detection [24],
we are the first to empirically validate this for OOD object
detection and the first to investigate the layer characteris-
tics that induce stronger performance. We select our subset
of critical layers based on prior work in the image classifi-
cation setting demonstrating sensitivity-preserving proper-
ties of residual connections [43] and abnormal activations
of batch normalisation layers [57]. In the following, we de-
tail the theoretical groundwork underpinning our findings.

Sensitivity of Residual Connections We consider a
frozen pre-trained base network f that functions as a feature
extractor, mapping samples from the input space X to the
hidden feature space f : X → H. To detect OOD samples,
the DNN’s feature space needs to be well-regularised [34],

according to the bi-Lipschitz constraint:

L1 · ∥x−x∗∥I ≤ ∥f(x)− f(x∗)∥F ≤ L2 · ∥x−x∗∥I (1)

where x and x∗ are two input samples, ∥·∥I and ∥·∥F de-
note distance metrics in the input and feature space respec-
tively, and L1 and L2 are the lower and upper Lipschitz
constants [34]. The lower bound, sensitivity, ensures that
distances in the input space are sufficiently preserved in the
hidden space, and the upper bound, smoothness, limits the
sensitivity of the hidden space to input variations, ensuring
that distances in the hidden space have a meaningful cor-
respondence to distances in the input space. Encouraging
sensitivity and smoothness is commonly accomplished by
applying spectral normalisation [42] to the weight matri-
ces of a DNN with residual connections [34, 43, 55]. In
posthoc OOD detection, where f is pretrained, we cannot
guarantee that a network is pretrained with spectral normali-
sation, hence not fulfilling the smoothness constraint. How-
ever, [43, Sec C.4] has shown that a network solely trained
with residual connections and no smoothness constraint is
still sufficiently sensitive to changes in the input.

Mismatched BatchNorm Statistics Batch Normalisa-
tion [27] (BatchNorm) is a commonly used normalisation
technique to help training deep networks. BatchNorm as-
sists the network in learning the designated task on ID data
by normalising a given input z with respect to the expected
value Ein[·] and variance Vin[·] calibrated over the ID data:

BatchNorm(z; γ, β, ϵ) =
z − Ein[z]√
Vin[z] + ϵ

· γ + β. (2)

Recent work [57] empirically observed that BatchNorm
statistics calibrated on the ID set and directly applied to the
OOD set trigger abnormally high activations due to a mis-
match of the true parameters between datasets Ein,Vin ̸=
Eout,Vout. Propagation of these abnormal activations
throughout the network results in abnormally high logits
for an erroneous prediction, resulting in overconfidence of
the network on OOD samples. We propose a deep feature-
based approach to leverage this characteristic; training an
auxiliary network to monitor feature activations from these
layers and flagging a sample as OOD when an abnormal
activation is detected.

3.2. Method

Given the observations that residual connections enable
sensitivity to input changes [43] and that BatchNorm lay-
ers trigger abnormal activations on OOD data [57], we thus
hypothesise that residual connections combined with Batch-
Norm regularisation provide a clear signal for OOD detec-
tion. Connections of this variety are not uncommon, with
four of these layers in the standard ResNet-50 [19] and Reg-
NetX4.0 [44] backbone architectures. We now detail the
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Figure 2. Architecture diagram of our proposed SAFE OOD detector with an example ResNet-50 [19]. We extract object-level feature
maps {M1,M2,M3,M4} from the layers that are most sensitive to OOD data. Next, object descriptors {q1,q2,q3} are formed by
applying region of interest pooling to the feature maps and concatenating the resultant vectors layer-wise. Each object descriptor is passed
through the MLP, producing producing a corresponding OOD score for each object {ŷ1, ŷ2, ŷ3} which distinguishes detections with OOD
samples (red) from detections with ID samples (blue).

pipeline for SAFE to leverage these critical layers (see Fig-
ure 2) and later confirm our hypothesis empirically in Sec-
tion 4.4.

Preliminaries We consider a pretrained, frozen DNN
object detector f , which given an image x will produce a set
of D object predictions. Each detection d ∈ {1, ..., D} has
a classification label cd and bounding box bd ∈ R4. During
deployment, we wish to classify each object prediction as
being generated from ID or OOD data.

Object-specific SAFE Extraction To distinguish be-
tween ID and OOD object predictions, we extract object-
specific features from our identified sensitivity-aware lay-
ers. In the detector, there are L SAFE layers, i.e. resid-
ual connection layers with BatchNorm regularisation, that
output a set of L feature maps {M1, ...,ML}. Figure 2
shows an example of an object detector with a ResNet-50
backbone, which contains L = 4 SAFE layers. To ex-
tract object-specific features, the proposed bounding boxes
{b1, . . . , bD} are used to take cropped regions of each fea-
ture map Ml. These object-specific feature maps Ol,d are
then reduced to a vector representation pl,d for concatena-
tion via a bilinear interpolation operation along the spatial
axis. Finally, the pooled feature vectors pl,d are concate-
nated layer-wise to form a single object-specific vector qd

with a length equal to the sum of the number of channels c
for each layer: |qd| =

∑
l cl.

Feature Monitoring MLP We instantiate an auxiliary
feature monitoring MLP, fβ , to classify detections as ID or
OOD. Given an object-specific SAFE vector, the MLP out-
puts an OOD score ŷd = fβ(qd) in the range of ŷ ∈ [0, 1].

These scores can be used in practice to make decisions
based on the application and corresponding risk profile of
the downstream task, e.g. detection scores can be compared
to a predefined threshold to classify objects as ID or OOD
and achieve a minimum true positive rate.

Surrogate Training with Synthetic Outliers Since
OOD samples are inaccessible prior to deployment, the fea-
ture monitoring MLP is trained on the surrogate task of dis-
criminating between objects within clean ID images and the
same objects within adversarially-perturbed ID images. For
each image in the training set x ∈ X, we generate an out-
lier counterpart of the same image through an adversarial
perturbation xo = g(x). In practice, we utilise the simple
Fast Gradient Sign Method [15] (FGSM) adversarial attack
that produces a perturbed image xo by adding noise to the
original image x. Given the model parameters θ, the noise
for FGSM is computed based on the sign of the gradient
sign(∇x) with respect to the cost function J(θ, x, y)) and
then scaled with by magnitude multiplier ϵ:

xo = x+ ϵ · sign
(
∇xJ(θ, x, y)

)
. (3)

Next, object-specific feature vectors are extracted from the
SAFE layers for both the clean and perturbed images us-
ing the bounding boxes bd predicted on the clean image.
Finally, the object-specific feature vectors are used to train
the auxiliary MLP with clean features corresponding to ID
detections and perturbed features corresponding to surro-
gate OOD detections. We ablate the parameters of our
adversarial-perturbation in Section 4.5.
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4. Experiments
We conduct a series of experiments to demonstrate the

efficacy of our proposed SAFE OOD detector. We first
describe our experimental setup in Section 4.1 and detail
the implementation of SAFE in Section 4.2. We then com-
pare our method to the state-of-the-art on the challenging
task of OOD object detection in Section 4.3. Finally, we
demonstrate the unique effectiveness of our identified crit-
ical layers in Section 4.4, and we ablate the sensitivity of
the auxiliary MLP to the transformation magnitude in Sec-
tion 4.5. Additional comparisons of SAFE to the state-of-
the-art with the transformer-based Deformable DETR ob-
ject detector [73] are provided in the Supplementary Mate-
rial.

4.1. Experimental Setup

We follow the evaluation protocol defined by [9] with the
accompanying benchmark repository1.

Datasets We use the predefined ID/OOD splits for the
object detection task defined in [9]. The two ID datasets
are constructed from the popular PASCAL-VOC [10] and
Berkley DeepDrive-100K [70] (BDD100K) datasets. For
the OOD datasets, subset versions of the MS-COCO [33]
and OpenImages [29] datasets are provided where classes
that appear in the custom ID datasets are removed.

Evaluation Metrics We consider the standard AUROC
and FPR95 metrics defined in [9] extensively used across
the image classification literature [72, 32, 66, 53]. AU-
ROC: The Area Under The Receiver Operating Charac-
teristic curve (AUROC) is defined by the area under the
ROC curve with true positive rate (TPR) on the y-axis and
false positive rate (FPR) on the x-axis; higher is better. An
AUROC score of 50% indicates a method that is as effec-
tive as random guessing. FPR95 reports the false positive
rate when the true positive rate is at 95%; lower is better.
For real-world deployment, a binary classifier based on a
threshold of the confidence scores determines if a detection
is ID or OOD; under these conditions, FPR95 provides bet-
ter insight into how an OOD detector will perform. AP:
Our SAFE OOD detector is a posthoc addition to a pre-
trained network and does not affect the on-task performance
of the base model under the average precision (AP) metric,
as such, we do not report AP as in [9].

Importantly, under the benchmark setting by [9], the
AUROC and FPR95 metrics are computed after low-
confidence objects are suppressed according to a confi-
dence threshold determined by [17]. Our comparisons in
Table 1 implement this suppression for fair comparisons
while our qualitative visuals in Figure 3 visualise some low-
confidence detections.

Random Seeds As there is inherent randomness in the

1https://github.com/deeplearning-wisc/vos

initialisation of the auxiliary MLP, we report the mean µ
and standard deviation σ of each metric over five seeds; the
default benchmark seed [9] (0) and four randomly generated
seeds in the range of [1, 105] for replicability, in the format
of µ± σ.

Baselines We compare against the following state-
of-the-art methods: MSP [21], ODIN [32], Maha-
lanobis Distance [31], Energy Score [35], Gram Matri-
ces [53], ViM [65], KNN [58], Generalized ODIN [23],
CSI [60], GAN-Synthesis [30] and Virtual Outlier Synthesis
(VOS) [9]. Performance metrics for ViM and KNN are re-
ported from implementations based on public code. Perfor-
mance metrics for all other methods are reported from [9].

4.2. Implementation

Base Network Architecture Following the evalua-
tion protocol defined in [9], we implement the Faster-
RCNN [50] detector with either a ResNet-50 [19] or Reg-
NetX4.0 [44] backbone using the Detectron2 library [67].
All compared methods, excluding VOS [9], are evalu-
ated exclusively using the ResNet-50 backbone consistent
with [9]; VOS and SAFE are compared on both the ResNet-
50 and RegNetX4.0 backbones. Of the compared methods,
Generalized ODIN [23], CSI [60], GAN-Synthesis [30] and
VOS [9] all require the base object detector to be retrained
with a custom loss objective, we identify these methods
with a checkmark ✓ in Table 1. For a fair comparison,
we report the results of SAFE and VOS [9] using both the
ResNet-50 and RegnetX4.0 backbones to ensure that the
differing on-task performance, which has been shown to af-
fect open-set recognition performance [62], does not bias
the results.

Feature Extraction During feature extraction, hooks are
applied to the output of the critical residual + BatchNorm
layer combinations within the ResNet-50 and RegNetX4.0
backbones of the Faster-RCNN model. Object-specific fea-
tures pl,d are retrieved using the ROIAlign [18] operation
with the predicted bounding boxes b. Appropriate spa-
tial scaling factors in ROIAlign are set so that features are
pooled to a channels length cl vector per layer l.

MLP Architecture Following previous works on auxil-
iary network feature monitoring [6], the auxiliary MLP is
constructed as a 3-layer fully connected MLP with a single
output neuron fed into a Sigmoid activation with a dropout
connection before the final layer. The size for each fully
connected layer is progressively halved with each consec-
utive layer. The MLP, initialised with Xavier initialisa-
tion [13], is trained for 5 epochs using binary cross entropy
loss optimised by SGD with a learning rate of 10−3, mo-
mentum of 0.9, dropout rate of 50% and batch size of 32
images2.

2The size of each individual batch for the MLP is determined by the
number of predicted boxes within the 32 images.
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ID: PASCAL-VOC ID: Berkley DeepDrive-100K
Method Retrain? OpenImages MS-COCO OpenImages MS-COCO

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP [21] 81.91 73.13 83.45 70.99 77.38 79.04 75.87 80.94
ODIN [32] 82.59 63.14 82.20 59.82 76.61 58.92 74.44 62.85
Mahalanobis [31] 57.42 96.27 59.25 96.46 86.88 60.16 84.92 57.66
Energy Score [35] 82.98 58.69 83.69 56.89 79.60 54.97 77.48 60.06
Gram Matrices [53] 77.62 67.42 79.88 62.75 59.38 77.55 74.93 60.93
ViM [65] 68.73 88.40 71.94 83.47 86.49 53.80 87.17 54.58
KNN [58] 85.08 55.73 86.07 54.50 88.37 44.50 87.45 47.28
Generalized ODIN [23] ✓ 79.23 70.28 83.12 59.57 87.18 50.17 85.22 57.27
CSI [60] ✓ 82.95 57.41 81.83 59.91 87.99 37.06 84.09 47.10
GAN-Synthesis [30] ✓ 82.67 59.97 83.67 60.93 81.25 50.61 78.82 57.03
VOS-ResNet50 [9] ✓ 85.23±0.6 51.33±1.6 88.70±1.2 47.53±2.9 88.52±1.3 35.54±1.7 86.87±2.1 44.27±2.0
VOS-RegNetX4.0 [9] ✓ 87.59±0.2 48.33±1.6 89.00±0.4 47.77±1.1 92.13±0.5 27.24±1.3 89.08±0.6 36.61±0.9
SAFE-ResNet50 (ours) 92.28±1.0 20.06±2.3 80.30±2.4 47.40±3.8 94.64±0.3 16.04±0.5 88.96±0.6 32.56±0.8
SAFE-RegNetX4.0 (ours) 94.38±0.2 17.69±1.0 87.03±0.5 36.32±1.1 95.97±0.1 13.98±0.3 93.91±0.1 21.69±0.5

Table 1. OOD detection results comparing SAFE to state-of-the-art OOD detectors. Comparison metrics are FPR95 and AUROC, direc-
tional arrows indicate if higher (↑) or lower (↓) values indicate better performance. Best results are shown in red and bold, second best
results are shown in orange. Methods that require retraining are indicated with a checkmark ✓. Mean and standard deviation over 5 seeds
is shown for SAFE. We observe that SAFE provides strong performance across almost all benchmarks and metrics, achieving the highest
performance across 7 out of 8 of the benchmark permutations. Notably, we observe substantial reductions in FPR95, particularly when
OpenImages is the OOD set, with a greater than 30% reduction for both backbones under the PASCAL-VOC setting.

Transform Implementation We implement
FGSM [15], parameterised by a scalar magnitude multiplier
ϵ, as our adversarial-perturbation for the surrogate MLP
training task. During comparisons in Section 4.3, we set
ϵ = 8 when ResNet-50 is the backbone and ϵ = 1 for
RegNetX4.0. We ablate the sensitivity to ϵ on ResNet-50 in
Section 4.5.

4.3. Results and Discussion

Table 1 compares the performance of our SAFE detec-
tor to the current state-of-the-art in OOD object detection.
SAFE sets a new state-of-the-art across 7 out of the 8 bench-
mark permutations. We observe substantial reductions to
the FPR95 metric, with the OpenImages as OOD setting im-
proving by more than 30% when PASCAL-VOC is ID and
20% when BDD100K is the ID set, with the most significant
differences when comparing directly between ResNet-50
models. These observations are further substantiated when
considering SAFE in contrast to other posthoc OOD detec-
tors with substantial performance improvements across the
majority of metrics, exemplified by improvements of ∼35%
in FPR95 under the OpenImages setting for both datasets.
In summary, SAFE, which does not require retraining, out-
performs OOD detectors that do require retraining, and sig-
nificantly outperforms other posthoc OOD detectors.

Robustness We further note that the results from Table 1
demonstrate the robustness of SAFE to varying model ar-
chitectures (i.e. ResNet-50 and RegNetX4.0), given that the
target models contain the specified critical layers as dis-
cussed in Section 3.1. We reiterate that SAFE does not

require a specified training regime and thus both networks
are trained without a specialised loss. Directly comparing
between SAFE and VOS [9] on the same ResNet-50 back-
bone, we observe that SAFE outperforms VOS across all
metrics under the BDD100K setting and the majority of
metrics when PASCAL-VOC is ID. Under the architectural
shift towards the RegNetX4.0 backbone, we observe that
SAFE still retains high performance, outperforming VOS
under the majority of metrics under the PASCAL-VOC set-
ting and providing higher AUROC and FPR95 results for
both OOD sets under the BDD100K setting.

Qualitative Results Figure 3 visualises the object pre-
dictions of the base network (Top) and subsequent OOD
detections from SAFE (Middle) or VOS [9] (Bottom) on
a set of MS-COCO test images when the ID dataset is
BDD100K. We observe that SAFE successfully identifies
many of the OOD objects within the scenes, reducing the
impact of these erroneous predictions during deployment.

Consistent with the quantitative results from Table 1, we
observe that SAFE is more reliable at detecting OOD sam-
ples than VOS [9]. In particular, we observe that in some
instances VOS generates additional erroneous predictions
(Figure 3, Columns 2 & 4), flagging only a subset of these
instances as OOD. In contrast, SAFE correctly detects all
of the object instances predicted by the vanilla network as
OOD in these images.

We note that SAFE is susceptible to some failures
where an object may have similar features to an ID class.
The right-most column of Figure 3 provides two exam-
ples of this where the base network predicts vehicle labels
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Figure 3. Qualitative visualisation of object detections from the ResNet-50 Faster-RCNN on samples from the MS-COCO OOD dataset.
BDD100K is the ID dataset. Binarisation of OOD detection scores are achieved by thresholding the OOD scores using the same threshold
used to compute the FPR95 metrics. Green bounding boxes signify detections that were correctly flagged as OOD and red detections are
incorrectly considered ID. Top: Vanilla predictions from the object detector. Middle: OOD detections by SAFE. Bottom: OOD detections
by VOS [9].

(truck/car) onto an airplane which SAFE does not detect as
erroneous.

4.4. Layer Importance

Fundamental to the theory of our proposed SAFE detec-
tor (Section 3.1) is the importance of residual and Batch-
Norm layers. Critically, we leverage theoretical and empiri-
cal foundations for residual connections enabling sensitivity
of the network [43] and BatchNorm layers triggering abnor-
mal activations on OOD data [57] to address OOD object
detection.

We expand upon these foundations by considering resid-
ual convolution + BatchNorm combinations which we ex-
pect to leverage the characteristics of both; triggering ab-
normal activations on OOD inputs which the auxiliary MLP
consequently detects. Therefore, we expect that layers that

do not satisfy both the residual convolution and BatchNorm
combinations will not perform as effectively as those layers
that do. We empirically verify this hypothesis by ablating
the performance of individual layers (Figure 4) and sam-
pling random layer subsets with increasing size (Table 2).
We provide expanded versions of these ablations with an
additive noise input perturbation in the Supplementary Ma-
terial.

Individual Layer Performance Figure 4 ablates the
performance of individual Conv2d layers of the ResNet-
50 backbone as the average over both OOD datasets un-
der the AUROC (Figure 4, top) and FPR95 (Figure 4, bot-
tom) metrics when PASCAL-VOC is the ID set. Our iden-
tified residual convolution + BatchNorm (SAFE) layers are
among the highest performing layers in the network. The
majority of the other Conv2d layers report low performance,
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Figure 4. OOD detection performance of individual Conv2d lay-
ers in the standard ResNet-50 backbone (see Figure 2) when
PASCAL-VOC is the ID set. Top: Comparison metric is AU-
ROC, higher is better. Bottom: Comparison metric is FPR95,
lower is better. Results are reported as averages over both OOD
datasets. Layers in blue with a star are the identified critical layers
for SAFE. Striped layers belong to the Feature Pyramid Network
(FPN) and are the only Conv2d layers that do not have BatchNorm
applied immediately after. Purple layers are the fully-connected
layers of the Faster-RCNN object detector head. The SAFE crit-
ical layers consistently provide among the highest performance
across all layers within the ResNet-50 backbone.

with very few layers having comparable performance to the
SAFE critical layers. Residual connections alone are in-
sufficient as there is no consistently high performance at
the beginning of ConvBlocks (separated by vertical dashed
lines) which take the added residual from the previous Con-
vBlock as input or the Feature Pyramid Network lateral con-
nections. Similarly, all of the layers outside of the Feature
Pyramid Network are followed immediately by a Batch-
Norm layer, but this alone is insufficient since many of
these layers produce poor performance. Figure 4 thus pro-
vides further empirical evidence, compounding the founda-
tional works in image classification supporting our hypoth-
esis [57, 55, 61, 43, 34], that residual convolution + Batch-
Norm layer combinations provide powerful OOD detection
performance.

We observe two further characteristics when inspect-
ing Figure 4: (1) A cluster of relatively high-performing

OpenImages MS-COCO
Layers AUROC↑ FPR95↓ AUROC↑ FPR95↓
1 75.31 69.21 68.09 82.63
4 68.82 77.85 65.19 83.91
8 71.75 67.21 65.40 78.28
16 73.02 66.10 67.31 75.83
Residuals 91.33 24.82 81.87 48.45
All (60) 89.88 26.73 81.30 48.57
SAFE 92.28 20.06 80.30 47.40

Table 2. Comparison of varied-size layer combinations detecting
OOD data when PASCAL-VOC is the ID set. All compared layer
subsets do not contain the identified sensitive layers used in SAFE.
Colour coding and metrics follow those from Table 1. Mean over
5 seeds is shown. We observe that the sensitive layers utilised
by SAFE provide disproportionately high performance for OOD
detection, outperforming all layer subsets, of which many have
access to more than 2x the number of layers as SAFE. Residual
layers produce strong performance, comparable to the fusion of
all layers, but are still inferior to the fusion of SAFE layers.

layers between block F3-B1 through to F4-B1 and (2)
The highest performing layer in most blocks is the last
Conv2d layer. It is not unexpected that there are other high-
performing layers other than the SAFE critical layers. Prior
works [66, 53, 6, 1] in image classification have established
that individual layer performance varies dependent on the
ID and OOD data distributions. However, with no theo-
retical foundation for the selection of these layers, a priori
selection, i.e. selection prior to testing, is infeasible. Fur-
thermore, prior works [66, 53, 6, 1] suggest that the perfor-
mance of the non-SAFE layers will vary as the surrogate
outlier data distribution shifts; we discuss this with the ad-
ditive noise outliers in the Supplementary Material.

Layer Subsets Table 2 compares performance of ran-
domly selected subsets of layers that do not contain any
of the identified critical layers against our SAFE detector
with only the four critical layers. As expected from ob-
servations of Figure 4, using the SAFE layers significantly
outperforms the randomly sampled subsets, even when the
subsets contain more layers than SAFE. Subsets of layers
perform worse than randomly sampled individual layers,
with the performance gap tapering off as the subsets get
larger. We attribute this characteristic to the large preva-
lence of poorly performing layers in the backbone, where
the signal from high-performing layers is lowered due to
noise from poor-performing layers in the smaller subsets.
Using all 60 layers produces better performance than any of
the subsets, but still underperforms when compared to our
four SAFE layers.

Consistent with the theory described in Section 3.1, Ta-
ble 2 demonstrates that the 12 residual connections produce
strong performance, performing comparable to the fusion
of all Conv2d layers. Whilst the residual connections do
provide strong performance, they are outperformed by the
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Figure 5. OOD detection performance of SAFE with the ResNet-
50 backbone as the gradient sign magnitude ϵ is varied. Top:
Comparison metric is AUROC, higher is better. Bottom: Compar-
ison metric is FPR95, lower is better. Individual lines correspond
to the average performance over both OOD sets for the given ID
set. Dashed lines correspond to the performance of VOS [9] for
the respective datasets. A region of consistent high performance
for all ID and OOD permutations exists between ϵ ∈ [4, 8] (grey
region), suggesting that values in and near this range will gener-
alise well to additional datasets.

SAFE critical layers across both metrics under the OpenIm-
ages setting and FPR95 under the MS-COCO setting.

We note that the size of the auxiliary MLP input scales
with the number of layers, and hence feature dimensional-
ity, in the subset. This entails O(n2) scaling in the weight
matrices of the auxiliary MLP, making direct inclusion of
large subsets (e.g. the 12 residual connections) or all layers
computationally expensive.

4.5. Gradient Magnitude Sensitivity

Figure 5 ablates the sensitivity of the auxiliary MLP
to varying values of the gradient sign magnitude ϵ when
PASCAL-VOC is the ID set. In general, the performance
curves reported match expectations where we observe ini-
tial low relative performance due to the MLP being unable
to effectively discriminate between the perturbed ID and
clean ID features, which improves up to a peak and is fol-
lowed by a drop in performance as the weighting parame-
ter ϵ becomes too large, destroying too much of the input
content. Critically, we make the observation that a region

of high performance exists across all ID, OOD and met-
ric permutations, residing approximately within ϵ ∈ [4, 8].
The consistently high performance across both ID and OOD
dataset permutations suggests that values in this range gen-
eralise well to unseen data.

We further note that Figure 5 shows that SAFE generally
performs well under a wide range of perturbation magni-
tudes. Comparing the performance under the FPR95 metric,
we observe that only the edge cases of very large values of ϵ
result in worse performance than the previous state-of-the-
art. This argument holds particularly true for BBD100K,
where a random ϵ value could be selected in the range of
ϵ ∈ [1, 20] and SAFE would retain better performance un-
der both AUROC (Figure 5, top) and FPR95 (Figure 5, bot-
tom) than the state-of-the-art, VOS [9].

5. Conclusion

In this paper, we propose SAFE, a novel OOD detection
framework that leverages the layers in an object detector’s
backbone that are most sensitive to OOD inputs. Unlike pre-
vious feature-based OOD object detectors, SAFE leverages
the backbone of an object detector network, identifying that
the subset of residual convolutions followed by batch nor-
malisation are consistently among the most powerful layers
in the network at detecting out-of-distribution samples.

To take advantage of these powerful layers, SAFE trains
an auxiliary MLP on the surrogate task of distinguishing
minimally perturbed adversarial ID samples to clean ID
samples using only the features from this subset of layers.
We provide a theoretical grounding for the disproportionate
power of these layers from image classification literature,
expanding upon it to the challenging task of OOD object
detection, where we are the first to demonstrate these char-
acteristics. We provide empirical evidence supporting our
theory, demonstrating that our identified SAFE layers are
among the most powerful layers individually and outper-
form the fusion of much larger subsets of layers.

SAFE is the first method that considers the sensitivity
and the impact of individual layers under the setting of OOD
object detection. We are optimistic for future work expand-
ing upon our findings through further leveraging our iden-
tified sensitive layers, integration of backbone features into
OOD object detection, and further theoretical analysis on
sensitivity and smoothness in object detection. We believe
that SAFE represents an important step forward in our un-
derstanding of OOD object detection and offers a promising
avenue for future research.
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