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Abstract

To promote the safe application of detectors, a task of un-
supervised out-of-distribution object detection (OOD-OD)
is recently proposed, whose goal is to detect unseen OOD
objects without accessing any auxiliary OOD data. For
this task, the challenge mainly lies in how to only lever-
age the known in-distribution (ID) data to detect OOD ob-
jects accurately without affecting the detection of ID ob-
jects, which can be framed as the diffusion problem for
deep feature synthesis. Accordingly, such challenge could
be addressed by the forward and reverse processes in the
diffusion model. In this paper, we propose a new approach
of Deep Feature Deblurring Diffusion (DFDD), consist-
ing of forward blurring and reverse deblurring processes.
Specifically, the forward process gradually performs Gaus-
sian Blur on the extracted features, which is instrumen-
tal in retaining sufficient input-relevant information. By
this way, the forward process could synthesize virtual OOD
features that are close to the classification boundary be-
tween ID and OOD objects, which improves the perfor-
mance of detecting OOD objects. During the reverse pro-
cess, based on the blurred features, a dedicated deblurring
model is designed to continually recover the lost details in
the forward process. Both the deblurred features and orig-
inal features are taken as the input for training, strength-
ening the discrimination ability. In the experiments, our
method is evaluated on OOD-OD, open-set object detec-
tion, and incremental object detection. The significant per-
formance gains over baselines demonstrate the superiori-
ties of our method. The source code will be made available
at: https://github.com/AmingWu/DFDD-OOD.

1. Introduction

Discriminating known from unknown objects is indis-
pensable for building reliable detection systems. Currently,
most object detection models [38, 14, 53, 2] usually follow
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Figure 1. Deep Feature Deblurring Diffusion (DFDD) for detect-
ing OOD objects. The forward process aims to synthesize virtual
OOD features (as shown in the blue stars) by gradually perform-
ing Gaussian Blur on the extracted feature maps, which reduces
the impact of lacking OOD data and improves the ability of de-
tecting OOD objects. Meanwhile, the reverse stage is to recover
the deblurred results (as shown in dark orange) of the forward out-
put. Finally, both the deblurred results and original feature maps
(as shown in orange) are taken as the input for training, which en-
hances the discrimination of the object classifier.

a close-set assumption, i.e., the training and testing stages
share the same category space. However, the real scenario
is open and full of unknown objects, presenting significant
challenges for close-set assumption based detectors. To pro-
mote the safe deployment of detectors, a task of unsuper-
vised out-of-distribution object detection (OOD-OD) [6] is
proposed, aiming to detect OOD objects never-seen-before
during training without using any auxiliary OOD data.

For unsupervised OOD-OD [6], there exist two essential
challenges: one is to only leverage the given in-distribution
(ID) data to improve the ability of discriminating OOD ob-
jects. Another is to avoid the performance degradation of
ID object detection. One feasible solution [6, 37] is to syn-
thesize a series of virtual OOD features based on the ID
data, which promotes the detector to learn a clear boundary
between ID and OOD objects. The work [6] first utilizes
ID data to estimate class-conditional distribution for each

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13381



category. Then, virtual OOD features are sampled from the
region that slightly deviates from the estimated distribution.
However, to estimate the distributions accurately, it is criti-
cal to use a large number of objects for each category, which
limits its application in the case of few samples.

To reduce the impact of lacking OOD data, in this pa-
per, we focus on synthesizing virtual OOD features that are
close to the classification boundary of ID and OOD objects.
Here, we assume that the data points located on the bound-
ary should own an important attribution, i.e., the boundary
data is related to the ID data but can not be classified into
ID categories. One intuitive idea is to utilize GANs [10]
for feature synthesis, which is difficult to optimize [6] and
could not resolve the two challenges of OOD-OD effec-
tively. To this end, as shown in Fig. 1, we explore han-
dling the two key challenges from the diffusion perspective
[18, 39, 20]. In general, diffusion models [32, 24] contain
a forward diffusion by adding noise and a reverse denois-
ing process. For unsupervised OOD-OD, the forward pro-
cess could be utilized to synthesize OOD features near the
boundary, improving the capability of distinguishing OOD
objects. The reverse process is exploited to recover the fea-
tures involving rich object-related information, used to en-
hance the discrimination of the object classifier.

Unfortunately, experimental results show that using the
denoising diffusion [18, 44] for feature synthesis could not
boost the performance of discriminating OOD objects. The
reason may be that adding much noise destroys the seman-
tic structure of the features, resulting in the synthesized fea-
tures being far away from the classification boundary of ID
and OOD objects and then attenuating the discrimination
of the detector. To this end, we pay attention to exploiting
Gaussian Blur to replace adding noise and design a dedi-
cated deblurring mechanism to generate expected features
for addressing the two challenges of OOD-OD.

Specifically, as shown in Fig. 1, an approach of Deep
Feature Deblurring Diffusion (DFDD) is proposed, which
consists of forward blurring and reverse deblurring. During
the forward process, we gradually perform Gaussian Blur
[9] on the feature maps extracted by a backbone network.
Since Gaussian Blur is a weighted average of neighboring
elements, compared with adding noise roughly, this oper-
ation continually removes detail content and could retain
plentiful input-related information. For example, in Fig. 1,
we can see that after T iterations, compared with the origi-
nal feature x0, xT contains much less detail information but
still involves rich content related to x0. And based on xT , it
is difficult to recognize the categories of ID objects. There-
fore, xT is the expected virtual OOD feature that is close to
the classification boundary of ID and OOD objects, which is
instrumental in improving the performance of distinguish-
ing OOD objects. Next, in the reverse stage, a U-Net model
[40] is designed to recover the deblurred features containing

plentiful object-related information. Finally, both the de-
blurred features and original features are taken as the input
for training, which ameliorates the discrimination ability. In
the experiments, our method is evaluated on three different
tasks. Extensive experimental results on multiple datasets
demonstrate the superiorities of our method.

The contributions are summarized as follows:
(1) Though diffusion models have achieved impressive

performance in image generation, it is under-explored for
feature generation. In this paper, we convert the challenges
of unsupervised OOD-OD to the diffusion problem for fea-
ture synthesis and present a new solution to strengthen the
ability of discriminating OOD objects.

(2) We propose an approach of Deep Feature Deblurring
Diffusion (DFDD) for unsupervised OOD-OD. Particularly,
the forward process is to synthesize virtual OOD features
by gradually performing Gaussian Blur. Meanwhile, a ded-
icated deblurring mechanism is designed to enhance the dis-
crimination of the object classifier.

(3) In the experiments, our method is evaluated on OOD-
OD [6], open-set object detection [25, 43], and incremen-
tal object detection [13]. Particularly, based on MS-COCO
[30], compared with the baseline method [6], our method
significantly reduces FPR95 by around 13.56%.

2. Related Work
OOD Detection. To promote the reliable deployment of

models in real scenarios, OOD detection [16, 29, 55, 59]
has recently attracted much attention, whose goal is to dis-
criminate OOD data from ID data. Most existing methods
[8, 21, 23, 33, 34] focus on OOD image classification and
attempt to design an effective regularization-based method.
For example, the model is regularized to produce lower con-
fidence [17] or higher energy [31] on the OOD data. Be-
sides, Bendale et al. [1] design the OpenMax score based
on the extreme value theory, which promotes the develop-
ment of score-based methods [49, 45]. Though these meth-
ods have been shown to be effective, since object detection
[52, 50] involves object localization and classification, these
methods could not be directly applied to OOD-OD.

Recently, a task of OOD-OD [6, 51] is proposed, which
aims to detect objects never-seen-before during training
without degrading the detection performance for ID objects.
Du et al. [6] explore estimating class-conditional distribu-
tion for each category. And virtual OOD features are sam-
pled from the region that slightly deviates from the distribu-
tion. However, this work [6] may require a large number of
objects to estimate the distributions accurately, which lim-
its its application in the case of few samples. Besides, Du
et al. [5] further propose to learn unknown-aware knowl-
edge from auxiliary videos, which does not match the set-
ting of unsupervised OOD-OD. The work [4] tries to utilize
a distance-based mechanism to shape the learned represen-
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Figure 2. Deep Feature Deblurring Diffusion for unsupervised OOD-OD. We explore leveraging the idea of diffusion models to address
the two challenges. Particularly, to reduce the impact of lacking OOD data for training, the forward process aims to gradually perform
Gaussian Blur on the extracted feature map F0, which outputs the virtual OOD map FT (as shown in the red arrow). Meanwhile, the
reverse deblurring process is to recover the feature map F̂0 that is taken as the augmentation of F0. Finally, F̂0 (as shown in the blue arrow)
and F0 are taken as the input for training, which enhances the discrimination ability of the object classifier.

tations. Different from the above methods, we convert the
challenges of unsupervised OOD-OD to the diffusion prob-
lem [18, 32] for feature synthesis and present a new solution
to improve the ability of detecting OOD objects.

Diffusion Models. In general, diffusion models [39, 56]
include forward diffusion for adding noise and a reverse
process to recover the denoised data. Particularly, Ho et al.
[18] first propose Denoising Diffusion Probabilistic Mod-
els, which accelerates the popularity of diffusion models.
Based on this work, some methods [39, 11, 20] explore in-
troducing the attention mechanism [48] and Variational Au-
toEncoder (VAE) [47] into existing diffusion models, which
produce stable diffusion models and generate high-quality
images. However, diffusion models are rarely used for spe-
cific feature generation. In this paper, we propose a method
of Deep Feature Deblurring Diffusion, which contains a for-
ward blurring process to synthesize virtual OOD features
and a reverse deblurring stage to recover the original fea-
tures. Extensive experiments on multiple datasets demon-
strate the superiorities of our method.

3. Denoising Diffusion for Feature Synthesis
Diffusion models [18, 44] are a class of latent variable

models, which define a Markov chain of forward diffusion
process by gradually adding noise to data samples. The for-
ward noise process is defined as follows:

q(xt|x0) = N (xt|
√
αtx0, (1− αt)I), (1)

which transforms data sample x0 to a latent noisy sample
xt by adding noise to x0. t ∈ {1, ..., T}. αt :=

∏t
s=1 αs =∏t

s=1(1−βs) and βs represents the noise variance schedule
[18]. During training, a denoising network ϵθ is trained to

minimize the following loss:

L = Eϵ∼N (0,I)[||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2]. (2)

In other words, at each timestep t, the denoising network
ϵθ is tasked with correctly removing the noise ϵ. Although
diffusion models could generate high-quality images, it is
under-explored for feature generation. To this end, we study
whether the denoising diffusion model [18] could be used
for synthesizing virtual OOD features. Specifically, given
the feature map x0 extracted by a backbone network, we
first utilize the forward diffusion to obtain the noisy map
xT defined as the virtual OOD map. Next, a U-Net model
[40] is designed to remove the added noise and recover the
original feature x0. Finally, both the recovered feature and
original feature are used for training. The overall processes
are the same as our method (as shown in Algorithm 1).

In the experiments, we follow the settings of the base-
line work [6]. PASCAL VOC [7] and MS-COCO [30] are
separately taken as ID data for training and OOD data for
evaluation. Compared with the baseline [6], FPR95 perfor-
mance is increased by around 7.26%. The reason may be
that directly adding noise into the feature map x0 is prone
to destroy the semantic structure of x0, which results in the
synthesized virtual OOD feature xT being far away from
the classification boundary of ID and OOD objects. At this
time, the feature xT could not be used to effectively enhance
the ability of discriminating OOD objects.

4. Deep Feature Deblurring Diffusion
Based on the above analysis, adding noise may hinder

the application of diffusion models for feature generation.
To this end, we explore replacing adding noise with Gaus-
sian Blur and propose a new diffusion model, i.e., Deep
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Figure 3. Details of Deep Feature Deblurring Diffusion for Fea-
ture Synthesis. During the forward process, we gradually perform
Gaussian Blur on the extracted features to obtain the virtual OOD
map FT . Meanwhile, it is worth noting that there are no learnable
parameters in the forward diffusion process. For the reverse pro-
cess, a network is designed to deblur continually and recover the
feature map F̂0. Finally, for the forward and reverse processes, the
size of feature maps is kept unchanged.

Feature Deblurring Diffusion, for unsupervised OOD-OD.
Concretely, we follow the settings [6] and only utilize the
ID data that own a fixed number of categories for training.
During inference, the object detector should distinguish ID
objects from OOD objects accurately.

4.1. Forward Blurring Diffusion

Concretely, as shown in Fig. 2 and 3, we follow the base-
line work [6] and exploit the widely used object detector,
i.e., Faster R-CNN [38, 14], as the basic detection model.
Given an input image, a backbone network, e.g., ResNet
[15], is utilized to extract the corresponding feature map
F0 ∈ Rw×h×c, where w, h, and c separately denote width,
height, and the number of channels.

To alleviate the impact of lacking OOD data, we lever-
age the forward process to synthesize virtual OOD features.
Specifically, the diffusion process is fixed to a Markov chain
that gradually performs Gaussian Blur on the extracted fea-
ture map according to a variance schedule σ1, ..., σT :

Ft = Ft−1 ∗ G(σt), G(σt) =
1

2πσ2
t

e−(i2+j2)/2σ2
t , (3)

where G(σt) represents Gaussian Kernel with the variance
σt. (i, j) indicates the position in the kernel. t = 1, ..., T .
Ft ∈ Rw×h×c is the convolutional output. Besides, to en-
sure the blur effect, the variance is increased linearly. Here,
we ignore the fact that the kernel size could be changed and
instead fix the size to 5 × 5. Meanwhile, it is worth noting
that the forward process has no learnable parameters.

Finally, the forward process owns a notable property that
it admits blurring Ft at an arbitrary timestep t:

Ft = Ft−1 ∗ G(σt) = (Ft−2 ∗ G(σt−1)) ∗ G(σt)

= F0 ∗ G(σ1) ∗ G(σ2) ∗ · · · ∗ G(σt)

= F0 ∗ G(σ),
(4)

where σ =
∑t

k=1 σk. Using this property is beneficial for
reducing the computational time of the forward process.

Since Gaussian Blur is a weighted average of neighbor-
ing elements, compared with directly adding noise [18], this
operation reduces the damage to the semantic structure of

the input feature F0 and retains rich input-related informa-
tion. Furthermore, after multiple Gaussian Blur operations,
it is difficult to recognize the category of the blurred feature
FT ∈ Rw×h×c. Thus, FT is the expected virtual OOD map
that is close to the classification boundary of ID and OOD
objects, which is instrumental in improving the ability of
discriminating OOD objects.

4.2. Reverse Deblurring Process

The reverse process aims to recover the original features
from the blurred features, which is instrumental in improv-
ing the discrimination of the classifier for ID objects. Con-
cretely, as shown in Fig. 3, taking the output FT of the for-
ward process as the input, a U-Net model [40] is designed
to predict detail feature Dt ∈ Rw×h×c. Then, we combine
the predicted detail feature with the blurred feature as the
input of the model. The processes are shown as follows:

Dt = ϵθ(F̂t, t), F̂t−1 = F̂t +Dt, (5)

where ϵθ(·, ·) represents the learned U-Net model. And t =
T, ..., 1. F̂T = FT . F̂t−1 ∈ Rw×h×c is the output at the
timestep t. Next, taking F̂t−1 as the input, we continually
perform the above operations to obtain the recovered deblur
feature map F̂0 ∈ Rw×h×c.

During training, a loss function LDFDD is proposed to
promote the designed U-Net model to possess the capability
of detail prediction:

LDFDD = Et[||ϵt − ϵθ(F̂t, t)||2], ϵt = Ft−1 − Ft. (6)

Since blur is continually strengthened, ϵt describes the
lost detail from the timestep t − 1 to t. And ϵθ(F̂t, t) is to
recover the lost detail, which is beneficial for promoting the
deblurred F̂0 to contain plentiful object-related information.

4.3. DFDD-Driven OOD Object Detection

In general, object detection includes object localization
and classification. Thus, strengthening object-related infor-
mation in the feature F0 is beneficial for detecting objects
accurately. As shown in Fig. 2, we first perform a residual
operation between F0 and the blurred feature FT , whose
output involves rich information of object structure. Then,
the residual output is concatenated with F0 to obtain the en-
hanced result E ∈ Rw×h×c, i.e., E = Ψ([F0, F0 − FT ]),
where Ψ(·) ∈ R1×1×2c×c represents one-layer convolution
to transform the number of channels.

Next, E is taken as the input of the RPN module [38, 14]
to output a set of object proposals O. Meanwhile, based on
O, RoI-Alignment followed by RoI-Feature extraction [14]
is separately performed on E and the recovered map F̂0 to
obtain Pin ∈ Rm×n and P̂in ∈ Rm×n, where m and n
denote the number of proposals and channels respectively.
Then, Pin is taken as the input of the object classifier and
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regressor to calculate the classification loss Lcls and local-
ization loss Lloc. The joint objective is shown as follows:

Lin = Lcls + Lloc + β ·KL[p(Pin), p(P̂in)], (7)

where β is a hyper-parameter and is set to 0.001. The KL-
divergence loss is to promote the prediction consistency be-
tween Pin and P̂in, which is conducive to ameliorating the
ability of discriminating ID objects.

Finally, to achieve the goal of discriminating OOD ob-
jects from ID objects, based on O, RoI-Alignment followed
by RoI-Feature extraction is performed on FT to extract
OOD features Pood ∈ Rm×n. Pood and Pin are used to cal-
culate an uncertainty loss [6], which regularizes the detector
to produce a low OOD score for the ID object features, and
a high OOD score for the synthesized OOD features:

Luncertainty = Eu∽Pin [−log
exp−E(u)

1 + exp−E(u)
]+

Ev∽Pood
[−log

1

1 + exp−E(v)
],

(8)

where E(·) is the object-level energy score [6, 31]. During
training, the overall objective is shown as follows:

L = Lin + λ · LDFDD + τ · Luncertainty, (9)

where λ and τ are two hyper-parameters, which are set to
0.001 and 0.1 in the experiments.

4.4. Inference for OOD Object Detection

During inference, we only leverage the forward diffu-
sion process to synthesize the blur feature used to enhance
object-related information. Meanwhile, we only calculate
the uncertainty loss for OOD object detection [6]. Specifi-
cally, for a predicted bounding box b, the processes of dis-
tinguishing OOD objects are shown as follows:

S =
exp−E(b)

1 + exp−E(b)
, C(b) =

{
0 if S < γ,
1 if S ≥ γ.

(10)

For the output of the classifier C(·), we use the thresh-
old mechanism [6] to distinguish ID objects (the result is
1) from OOD objects (the result is 0). The threshold γ is
commonly set to 0.95 so that a high fraction of ID data is
correctly classified. Finally, Algorithm 1 shows the training
and evaluation details of our method.

5. Further Discussion
In this section, we further discuss the advantages of the

forward blurring diffusion.
Currently, most diffusion methods [18, 39, 24, 20] grad-

ually add Gaussian noise to simulate the physical diffusion
process. Though these methods have achieved impressive

Algorithm 1 DFDD for Unsupervised OOD-OD
Input: ID data {X,Y }, randomly initialized detector with
parameter φ, randomly initialized U-Net with parameter θ,
weight β for the KL-loss, weight λ for the loss LDFDD,
weight τ for the uncertainty loss Luncertainty.
Output: Detector φ∗, U-Net θ∗, and OOD classifier C.
while train do

Sample images from the ID dataset {X,Y }.
Synthesize the virtual OOD map FT of the forward dif-
fusion using Eq. (3) and (4).
for t = T, ..., 1 do

Dt = ϵθ(F̂t, t) and F̂t−1 = F̂t +Dt.
end
Calculate the overall training objective L using Eq. (6),
(7), (8), and (9).
Update the parameters φ and θ based on Eq. (9).

end
while eval do

Calculate the OOD uncertainty score using Eq. (10).
Perform thresholding comparison using Eq. (10).

end

generative performance, they are rarely applied to feature-
level generation for OOD-OD. Through experiments, we
observe that adding noise to the features reduces the OOD-
OD performance significantly. For this case, there may exist
two reasons: one is that adding noise is a global operation,
which is prone to destroy the semantic information in the
original features. Another is that it is difficult to determine
the appropriate range of the added noise. If the noise value
is large, the semantic information in the features may be
damaged rapidly.

Compared with globally adding noise, Gaussian Blur is
a local operation, which is beneficial for preserving certain
important information of the input and outputting expected
OOD features. Meanwhile, like traditional diffusion [18],
Gaussian Blur also owns a notable property (Eq. (4)) for re-
ducing computational time. Extensive experimental results
demonstrate the effectiveness of our method.

6. Experiments
In the experiments, for unsupervised OOD-OD, we first

evaluate our method on two different benchmarks [6]. Then,
to further demonstrate the effectiveness of our method, we
evaluate our method on class-incremental object detection
(IOD) [25] and open-set object detection (OSOD) [13].

6.1. Experimental Setup

Implementation Details. We utilize Faster R-CNN [38]
with RoI-Alignment layer [14] as the basic detection model.
ResNet-50 [15] is taken as the backbone. The weights pre-
trained on ImageNet [41] are used for initialization. For the
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Figure 4. Detection results on the OOD images from MS-COCO. The first and second rows respectively indicate results based on VOS [6]
and our method. The in-distribution dataset is BDD-100k. Blue boxes represent objects detected and classified as one of the ID categories.
Green boxes indicate OOD objects. We can see that our method accurately determines OOD objects.

Method (VOC) FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

MSP [16] 70.99 / 73.13 83.45 / 81.91 48.7
ODIN [29] 59.82 / 63.14 82.20 / 82.59 48.7
Mahalanobis [28] 67.73 / 65.41 81.45 / 81.48 48.7
Gram matrices [42] 62.75 / 67.42 79.88 / 77.62 48.7
Energy score [31] 56.89 / 58.69 83.69 / 82.98 48.7
Generalized ODIN [19] 59.57 / 70.28 83.12 / 79.23 48.1
CSI [46] 59.91 / 57.41 81.83 / 82.95 48.1
GAN-synthesis [27] 60.93 / 59.97 83.67 / 82.67 48.5
SIREN-vMF [4] 64.68 / 68.53 85.36 / 82.78 -
SIREN-KNN [4] 47.45 / 50.38 89.67 / 88.80 -

VOS (Baseline) [6] 47.53 / 51.33 88.70 / 85.23 48.9
VOS + Blur-Aug 46.26 / 49.68 89.11 / 85.76 49.0
DDPM [18] 54.79 / 58.21 86.53 / 83.91 48.8
DFDD 41.34 / 44.52 90.79 / 88.65 49.2

Method (BDD) FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

MSP [16] 80.94 / 79.04 75.87 / 77.38 31.2
ODIN [29] 62.85 / 58.92 74.44 / 76.61 31.2
Mahalanobis [28] 55.74 / 47.69 85.71 / 88.05 31.2
Gram matrices [42] 60.93 / 77.55 74.93 / 59.38 31.2
Energy score [31] 60.06 / 54.97 77.48 / 79.60 31.2
Generalized ODIN [19] 57.27 / 50.17 85.22 / 87.18 31.8
CSI [46] 47.10 / 37.06 84.09 / 87.99 30.6
GAN-synthesis [27] 57.03 / 50.61 78.82 / 81.25 31.4

VOS (Baseline) [6] 44.27 / 35.54 86.87 / 88.52 31.3
VOS + Blur-Aug 42.85 / 34.23 86.91 / 88.67 31.3
DDPM [18] 50.63 / 41.12 83.79 / 85.63 31.2
DFDD 30.71 / 22.67 90.74 / 92.48 31.4

Table 1. Performance (%) of unsupervised OOD-OD. All methods
are trained based on ID data and do not use any auxiliary data. ↑
denotes larger values are better and ↓ denotes smaller values are
better. “VOS + Blur-Aug” indicates that the training images are
performed Gaussian Blur as data augmentation and employs VOS
[6] for detection. “DDPM” represents that our method is replaced
with DDPM [18]. The training processes are kept unchanged.

forward process, we perform five Gaussian Blur operations.
σ1 and σ5 in Eq. (3) are separately set to 0.1 and 0.8. For the
reverse stage, the encoder and decoder in the U-Net model
ϵθ all consist of three convolutional layers. All the experi-
ments are trained using the standard SGD optimizer with a

learning rate of 0.02.
Datasets. For unsupervised OOD-OD, PASCAL VOC

[7] and Berkeley DeepDrive (BDD-100k) [57] datasets are
taken as the ID data for training. Meanwhile, we adopt MS-
COCO [30] and OpenImages [26] as the OOD datasets to
evaluate the trained model. And the OOD datasets are man-
ually examined to guarantee they do not contain ID cate-
gories. PASCAL-VOC [7] includes the following 20 cate-
gories: Person, Car, Bicycle, Boat, Bus, Motorbike, Train,
Airplane, Chair, Bottle, Dining Table, Potted Plant, TV,
Sofa, Bird, Cat, Cow, Dog, Horse, Sheep. And the corre-
sponding number of ID training and validation images is
16,551 and 4,952. BDD-100k [57] contains the following
10 classes: Pedestrian, Rider, Car, Truck, Bus, Train, Mo-
torcycle, Bicycle, Traffic light, Traffic sign. And the cor-
responding number of ID training and validation images is
69,853 and 10,000.

Besides, for IOD, we follow the standard evaluation pro-
tocol [25] and evaluate our method on PASCAL VOC [7].
We initially learn 10, 15, or 19 base classes, and then in-
troduce 10, 5, or 1 new classes as the second task. Finally,
for OSOD, we follow the work [13] and utilize 20 VOC
classes and 60 non-VOC classes in COCO to evaluate our
method under different open-set conditions. To effectively
exploit the synthesized blurred features, we train a binarized
classifier, i.e., the output of the known category is 1, and
the output of the blurred features is 0. By minimizing the
cross-entropy loss, the discrimination ability of the object
classifier could be well enhanced.

Metrics. For unsupervised OOD-OD, we report: (1) the
false positive rate (FPR95) of OOD objects when the true
positive rate of ID objects is at 95%; (2) the area under the
receiver operating characteristic curve (AUROC); (3) mean
average precision (mAP). For OSOD, we use Wilderness
Impact (WI) [3] to measure the degree of unknown objects
misclassified to known classes. And we also use Absolute
Open-Set Error (AOSE) [35] to count the number of mis-

13386



10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

Faster ILOD (50) [36] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.2
ORE (50) [22] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.6
OW-DETR (50) [12] 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7
ROSETTA (50) [54] 74.2 76.2 64.9 54.4 57.4 76.1 84.4 68.8 52.4 67.0 62.9 63.3 79.8 72.8 78.1 40.1 62.3 61.2 72.4 66.8 66.8

iOD (50) [25] 76.0 74.6 67.5 55.9 57.6 75.1 85.4 77.0 43.7 70.8 60.1 66.4 76.0 72.6 74.6 39.7 64.0 60.2 68.5 60.5 66.3
iOD + Ours (50) 77.4 73.9 71.2 55.2 58.2 80.7 85.5 80.0 46.2 74.3 57.3 76.2 81.3 76.4 79.7 45.8 67.7 66.1 70.9 67.9 69.6

iOD (75) [25] 39.0 36.5 28.4 19.4 24.2 47.2 56.7 41.0 19.1 48.0 21.1 32.1 43.0 36.3 40.0 14.8 40.1 36.5 37.3 45.3 35.3
iOD + Ours (75) 42.9 39.6 31.3 19.9 26.2 54.5 62.9 39.2 18.1 40.8 24.1 34.8 41.3 42.9 36.8 16.8 41.7 33.9 39.0 48.0 36.7

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

Faster ILOD (50) [36] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE (50) [22] 75.4 81.0 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5
OW-DETR (50) [12] 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4
ROSETTA (50) [54] 76.5 77.5 65.1 56.0 60.0 78.3 85.5 78.7 49.5 68.2 67.4 71.2 83.9 75.7 82.0 43.0 60.6 64.1 72.8 67.4 69.2

iOD (50) [25] 78.4 79.7 66.9 54.8 56.2 77.7 84.6 79.1 47.7 75.0 61.8 74.7 81.6 77.5 80.2 37.8 58.0 54.6 73.0 56.1 67.8
iOD + Ours (50) 77.4 79.4 71.6 57.1 62.0 74.3 85.7 80.5 50.1 79.4 65.5 81.7 84.7 76.5 77.5 41.5 63.1 58.5 72.5 67.2 70.3

iOD (75) [25] 40.7 40.9 28.7 19.1 23.8 61.6 56.1 38.8 23.6 47.5 18.7 40.1 40.2 41.5 39.8 9.1 40.6 32.4 41.9 47.6 36.6
iOD + Ours (75) 46.2 43.6 31.1 29.3 33.5 45.2 61.0 40.0 23.7 51.3 24.2 38.1 44.8 42.9 41.8 11.1 42.6 33.0 41.7 48.3 38.7

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

Faster ILOD (50) [36] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.6
ORE (50) [22] 67.3 76.8 60.0 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.9
OW-DETR (50) [12] 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2
ROSETTA (50) [54] 75.3 77.9 65.3 56.2 55.3 79.6 84.6 72.9 49.2 73.7 68.3 71.0 78.9 77.7 80.7 44.0 69.6 68.5 76.1 68.3 69.6

iOD (50) [25] 78.2 77.5 69.4 55.0 56.0 78.4 84.2 79.2 46.6 79.0 63.2 78.5 82.7 79.1 79.9 44.1 73.2 66.3 76.4 57.6 70.2
iOD + Ours (50) 77.2 77.8 72.3 56.3 61.0 81.6 84.8 81.2 50.7 82.1 63.1 81.6 83.3 76.9 77.5 44.8 73.0 69.5 75.1 60.1 71.5

iOD (75) [25] 35.9 44.7 31.6 22.4 26.9 52.0 56.5 38.7 21.6 48.4 21.2 35.9 37.9 30.7 38.7 17.2 38.5 34.2 40.7 46.6 36.0
iOD + Ours (75) 42.5 45.3 32.4 22.1 30.0 59.9 62.0 42.9 24.2 48.2 24.4 39.0 42.1 38.5 42.1 18.6 46.7 37.1 45.1 47.2 39.5

Table 2. Performance (%) analysis of class-incremental object detection. ‘iOD + Ours’ indicates that our method is plugged into iOD [25].
Here, ‘50’ and ‘75’ separately represent that the mAP metric is calculated when the IOU threshold is set to 0.5 and 0.75.

Method
VOC VOC-COCO-20 VOC-COCO-40 VOC-COCO-60

mAPK↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN [38] 80.10 18.39 15118 58.45 0 22.74 23391 55.26 0 18.49 25472 55.83 0
FR-CNN† [38] 80.01 18.83 11941 57.91 0 23.24 18257 54.77 0 18.72 19566 55.34 0
PROSER [58] 79.68 19.16 13035 57.66 10.92 24.15 19831 54.66 7.62 19.64 21322 55.20 3.25
ORE [22] 79.80 18.18 12811 58.25 2.60 22.40 19752 55.30 1.70 18.35 21415 55.47 0.53
DS [35] 80.04 16.98 12868 58.35 5.13 20.86 19775 55.31 3.39 17.22 21921 55.77 1.25

OpenDet [13] 80.02 14.95 11286 58.75 14.93 18.23 16800 55.83 10.58 14.24 18250 56.37 4.36
OpenDet + Ours 80.26 12.73 10727 60.21 16.22 14.92 13638 57.98 12.09 12.57 16668 57.51 5.12

Table 3. Performance analysis of OSOD. We report close-set performance (mAPK) on VOC, and both close-set (mAPK) and open-set
(WI, AOSE, APU ) performance of different methods on VOC-COCO-{20, 40, 60}. Here, ‘20’, ‘40’, and ‘60’ indicate that the testing
COCO images separately contain 20, 40, and 60 non-VOC classes. ‘†’ means a higher score threshold (i.e., 0.1) for testing.

classified unknown objects.

6.2. OOD-OD Performance Analysis

In Table 1, we show the performance of unsupervised
OOD-OD. Although different methods own similar perfor-
mance for ID objects, the detection performance for OOD
objects differs significantly. This shows that existing detec-
tors are easily affected by OOD objects. Besides, we can see
that our method achieves the best performance. Particularly,
based on BDD-100k [57], compared with VOS [6], our
method separately reduces FPR95 by 13.56% and 12.87%,

which demonstrates the effectiveness of our method. Mean-
while, directly adding noise into the extracted features de-
grades the performance. The reason may be that this oper-
ation destroys the semantic structure, which results in the
synthesized OOD features being far away from the classifi-
cation boundary of ID and OOD objects. This further indi-
cates replacing adding noise with Gaussian Blur is effective
for synthesizing OOD features, which alleviates the impact
of lacking OOD data for training and improves the ability
of discriminating OOD objects from ID objects.

Fig. 4 shows several OOD detection examples. Com-
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(a) Input Image (b) Enhanced Map (c) Virtual OOD Map (d) Input Image (e) Enhanced Map (f) Virtual OOD Map

Figure 5. Visualization of the Enhanced map E (i.e., E = Ψ([F0, F0 − FT ])) and Virtual OOD map FT (Eq. (3)) based on the OOD data
(MS-COCO). For each feature map, the channels corresponding to the maximum value are selected for visualization.

Blur Enhance Deblur FPR95 ↓ AUROC ↑ mAP↑
✓ 40.04% 89.06% 30.8%
✓ ✓ 36.76% 90.12% 31.1%
✓ ✓ 35.82% 90.38% 31.2%
✓ ✓ ✓ 30.71% 90.74% 31.4%

Table 4. Ablation analysis of DFDD for unsupervised OOD-OD.
‘Blur’ indicates we only perform the forward blur process and do
not calculate LDFDD . ‘Enhance’ represents E = Ψ([F0, F0 −
FT ]). ‘Deblur’ denotes we utilize the deblurred maps to compute
the KL-divergence loss (Eq. (7)).

Iteration Number T FPR95 ↓ AUROC ↑ mAP↑
1 38.45% 88.76% 30.8%
3 36.94% 89.12% 31.1%
5 30.71% 90.74% 31.4%

Table 5. Analysis of the iteration number T in the reverse stage.

pared with VOS [6], our method detects OOD objects ac-
curately. Taking the first image as an example, VOS [6]
misclassifies the dog into the pedestrian category. Whereas,
our method could localize and recognize OOD objects ef-
fectively, which further demonstrates that our method is in-
deed instrumental in improving the discrimination.

6.3. Performance Analysis of IOD and OSOD

To further demonstrate the effectiveness of our method,
we verify our method on two different tasks, i.e., IOD [25]
and OSOD [13]. We directly plug our method into the two
state-of-the-art methods [25, 13]. Meanwhile, we do not uti-
lize the uncertainty loss. The training and testing processes
are the same as the two baselines [25, 13]. Table 2 shows the
IOD performance. We can see that when the IOU thresh-
old is separately set to 0.5 and 0.75, plugging our method
improves the performance of the baseline method [25] ef-

Variance σT FPR95 ↓ AUROC ↑ mAP↑
0.4 36.65% 89.67% 31.3%
0.6 34.02% 90.48% 31.2%
0.8 30.71% 90.74% 31.4%
1.0 32.43% 90.56% 31.4%

Table 6. Analysis of the variance σT in Gaussian Blur.

fectively. For example, for the “19 + 1” setting, when the
IOU threshold is set to 0.75, our method outperforms iOD
[25] by 3.5%. Besides, in Table 3, we show the perfor-
mance of OSOD. Compared with unsupervised OOD-OD,
during testing, OSOD usually requires to indicate the num-
ber of unknown categories [13]. Plugging our method sig-
nificantly improves the baseline’s performance based on all
the metrics. These results all demonstrate that the proposed
diffusion method could synthesize expected virtual features,
which is beneficial for enhancing the discrimination ability
of the object detector.

6.4. Ablation and Visualization Analysis

In this section, we utilize BDD-100k as the ID data for
training and MS-COCO as the OOD data to perform an ab-
lation analysis of our method.

Analysis of DFDD. Our method mainly includes the for-
ward blurring process and the reverse deblurring process. In
Table 4, we make an ablation experiment of our method. We
can see that only performing the blur operation on the ex-
tracted features could improve the ability of detecting OOD
objects. This shows that blurring current features is indeed
beneficial for promoting virtual OOD features to be close to
the classification boundary of ID and OOD objects. Next,
we observe that using FT to make feature enhancement and
leveraging the deblurring process to perform feature aug-
mentation all improve the detection performance. This fur-
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(a) Input Image (b) Original F0 (c) Enhanced E

Figure 6. Visualization of the feature F0 and enhanced feature E.

ther demonstrates that our method could indeed synthesize
expected virtual features, which enhances the discrimina-
tion of the object detector.

The size of Gaussian kernel. In general, the size of a
Gaussian Kernel can be set up to ⌊(6σ + 1) × (6σ + 1)⌋.
Thus, based on our σ setting, when the kernel size is set
larger than 5× 5, the performance is minimally affected.

The iteration number T in the reverse stage. To pro-
mote the recovered features to contain rich object-related
information, we employ the same model to perform the de-
blurring operation continually (as shown in Algorithm 1).
Here, we make an ablation analysis of the iteration number.
We do not change our method and training details. Table 5
shows the results. Since the output of the forward process is
very blurry, it is difficult to use a small number of iterations
to recover the deblurred results, which could not strengthen
the discrimination. This indicates that using more iterations
is beneficial for obtaining the augmented features contain-
ing plentiful object-related information, which improves the
detection performance of the model.

Analysis of the variance σT . To reduce the impact of
lacking OOD data, the forward process gradually performs
Gaussian Blur to obtain expected virtual OOD maps. Here,
we make an analysis of the variance σT (Eq. (3)). In Table
6, we can see that setting a small value for σT weakens the
blur strength of the synthesized features, which could not
be used to well enhance the discrimination ability. Instead,
setting a large value is prone to promote the synthesized
features to be far away from the classification boundary of
ID and OOD objects. For our method, when σT is set to
0.8, the performance is the best.

Analysis of hyper-parameters. For our method, we
utilize the hyper-parameter β for the KL-divergence loss
(Eq. (7)), the hyper-parameter λ for the loss LDFDD (Eq.
(9)), and the hyper-parameter τ for the loss Luncertainty (Eq.
(9)). Since the uncertainty loss Luncertainty is directly re-
lated to the current task, the value of τ should be set larger
than β and λ. Meanwhile, if β and λ are set to a small
value, the role of the two corresponding losses will be weak-
ened in optimization. Here, we make an ablation analysis of
these hyper-parameters. And we only change these hyper-
parameters and keep other modules unchanged.

(1) The hyper-parameter β in Eq. (7) is to balance the
detection loss and the loss that aims to minimize the KL-
divergence between the prediction probabilities from Pin

and P̂in. In the experiments, we observe that when β is
set to 0.01, 0.001, and 0.0001, the performance of FPR95 is
32.92%, 30.71%, and 31.86%.

(2) The goal of the hyper-parameter λ in Eq. (9) is to
weigh the importance of the module of DFDD. In the ex-
periments, we find that when λ is set to 0.01, 0.001, and
0.0001, the corresponding FPR95 performance is 33.15%,
30.71%, and 32.28%.

(3) The hyper-parameter τ in Eq. (9) is to constrain the
uncertainty loss Luncertainty. In the experiments, we ob-
serve that when τ is set to 0.5, 0.1, and 0.01, the FPR95
performance is 33.95%, 30.71%, and 32.53%.

Visualization analysis. Since there is no OOD-related
information available, we explore making the synthesized
virtual OOD map to be different from the original feature
map while retaining certain input-related information. In
Fig. 5, we can see that the enhanced map E contains plenti-
ful object-related information and less object-irrelevant in-
formation. Moreover, after the blurring operation, the syn-
thesized virtual OOD map FT still involves input-related
information. Meanwhile, it is hard to discriminate the cor-
responding categories. This indicates that our method could
synthesize expected virtual OOD features, which improves
the performance of detecting OOD objects.

Fig. 6 further shows some ID examples. Compared with
F0, E contains much stronger object-related information.
After Gaussian Blur operations, the object-related informa-
tion in FT is blurred, facilitating F0 − FT to weaken the
object-irrelevant information. By concatenation operation
and optimization, E is promoted to reduce attention to the
object-irrelevant information.

7. Conclusion
In this paper, we convert the challenges of unsupervised

OOD-OD to the diffusion problem for feature synthesis and
propose a new method, i.e., Deep Feature Deblurring Dif-
fusion. Specifically, the forward process is to gradually per-
form Gaussian Blur to synthesize expected OOD maps uti-
lized to enhance the ability of detecting OOD objects. The
reverse process is to recover the deblurred features continu-
ally, which improves the discrimination of the object classi-
fier. Extensive experimental results on three different tasks
demonstrate the effectiveness of our method.
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