
Exploring Transformers for Open-world Instance Segmentation

Jiannan Wu1, Yi Jiang2, Bin Yan3, Huchuan Lu3, Zehuan Yuan2, Ping Luo1,4

1The University of Hong Kong 2ByteDance
3Dalian University of Technology 4Shanghai AI Laboratory

(a) Deformable-DETR (b) OLN (c) SWORD† (d) Ground-truth

Figure 1: Comparison of SWORD† with different methods. The images are from the validation set of COCO [31]. All
the models are trained on the PASCAL-VOC [12] classes of COCO dataset, where elephants and zebras are not seen during
training. (a) Deformable-DETR [55] fails to segment the objects not labeled in the training set. (b) OLN [26] could localize
the novel objects, however, it also produce many false positives. (c) Our proposed SWORD† can predict the correct and
accurate masks for unseen categories.

Abstract

Open-world instance segmentation is a rising task,
which aims to segment all objects in the image by learning
from a limited number of base-category objects. This task
is challenging, as the number of unseen categories could
be hundreds of times larger than that of seen categories.
Recently, the DETR-like models have been extensively stud-
ied in the closed world while stay unexplored in the open
world. In this paper, we utilize the Transformer for open-
world instance segmentation and present SWORD. Firstly,
we introduce to attach the stop-gradient operation before
classification head and further add IoU heads for discov-
ering novel objects. We demonstrate that a simple stop-
gradient operation not only prevents the novel objects from
being suppressed as background, but also allows the net-
work to enjoy the merit of heuristic label assignment. Sec-
ondly, we propose a novel contrastive learning framework
to enlarge the representations between objects and back-

ground. Specifically, we maintain a universal object queue
to obtain the object center, and dynamically select positive
and negative samples from the object queries for contrastive
learning. While the previous works only focus on pursuing
average recall and neglect average precision, we show the
prominence of SWORD by giving consideration to both cri-
teria. Our models achieve state-of-the-art performance in
various open-world cross-category and cross-dataset gen-
eralizations. Particularly, in VOC to non-VOC setup, our
method sets new state-of-the-art results of 40.0% on ARb

100

and 34.9% on ARm
100. For COCO to UVO generalization,

SWORD significantly outperforms the previous best open-
world model by 5.9% on APm and 8.1% on ARm

100.

1. Introduction
The standard instance segmentation models [21, 42, 11]

are developed to segment the objects from a predefined tax-
onomy, which is not often reflective of the diversity of ob-
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Table 1: The open-world generalization setups, which are
established by the recent advanced approaches [26, 38, 46].
The values in the bracket indicate the class numbers.

Dataset Train Evaluate Image Mask

Cross-cateory Generalization
COCO VOC(20) non-VOC(60) 95k 493k
LVIS COCO(80) non-COCO(1123) 100k 455k

Cross-dataset Generalization
UVO COCO(80) non-COCO(-) 118k 860k

Objects365 COCO(80) non-COCO(285) 118k 860k

ject classes encountered in the real world. Recently, class-
agnostic open-world instance segmentation introduced by
the advanced approaches [26, 38, 46] has gained increasing
attention in the community. It requires the models to seg-
ment all objects of arbitrary categories in the image while
only base-category objects can be seen during training. This
task is highly challenging, as the number of unseen cate-
gories can be orders of magnitude larger than the number of
seen categories. As shown in the second row of Table 1, for
COCO to LVIS setup, there are 1123 non-COCO classes for
out-of-domain evaluation while only objects belonging to
80 COCO classes are annotated in the training set. Besides,
a critical challenge in the open-world scenario is that the
novel objects and background co-exist in the un-annotated
regions. Consequently, the closed-world instance segmen-
tation models fail to recognize unseen objects (Figure 1a)
as they equally treat the novel objects and background as
negative samples during training.

Recently, DETR-like [3, 55] models based on Trans-
formers [43] have exhibited superior performance in stan-
dard object detection and instance segmentation tasks.
However, the study of these Transformer-based models in
the field of open-world instance segmentation is still a blank
page to the community, as the previous works have exclu-
sively relied on the Mask-RCNN [21] architecture. In this
work, we aim to fill in the gap by delving deeply into the
recent advanced Deformable-DETR [55].

An inspiring open-world method OLN [26] proposes a
classification-free network and estimates the scores of re-
gions purely by localization quality (e.g., IoU score). In
this manner, novel objects would not be penalized as back-
ground due to the absence of classification learning. And
the localization quality score is proven to be a better ob-
jectness cue for discovering novel objects. Inspired by
this spirit, a straightforward solution for Transformer-based
models in open-world instance segmentation is to replace
the classification head with IoU heads. However, this could
lead to two negative effects: (i) The Transformer-based
models are optimized with set prediction loss [3], where
the classification score is indispensible for label assign-

OLN
GGN
LDET
SWORD†

Figure 2: SWORD† achieves the state-of-the-art perfor-
mance on various settings compared with other open-world
methods. The results are reported based on ARm

100 by de-
fault. The metric of Objects365 [39] is ARb

100 since it does
not provide mask annotations.

ment. Therefore, simply removing the classification head
could be harmful to the process. (ii) The network would
inherit the limitation of OLN that lacks the discriminative
ability to differentiate the objects and background. This
is because OLN is only trained with positive samples and
thus fails to perceive the background. As a result, it would
produce numerous false positives (Figure 1b) and result in
fairly low average precision (AP). For example, in COCO
to UVO (all) generalization, ARm

100 of OLN [26] increases
from 36.7% to 42.1% while APm significantly drops from
20.7% to 14.0% when compared with Mask-RCNN [21].

In this work, we cut off the above obstacles and propose
SWORD, unsealing the secrets of Transformer-based mod-
els for open-world instance segmentation. We first intro-
duce to attach a stop-grad operation before the classi-
fication head and further add the IoU heads for predicting
object scores. This not only prevents the novel object from
being suppressed as background so as to improve the re-
call ability of network, but also allows the DETR-like mod-
els to preserve the classification head for heuristic label as-
signment. Using stop-grad alone, however, would in-
evitably reduce the network’s discrimination. Therefore,
we then design a novel contrastive learning framework for
learning the discriminative representations between objects
and background. The core idea is to ensure similar rep-
resentations among objects while enlarging the distinction
between the objects and background in the feature space.
Specifically, we maintain a universal object queue to store
the annotated object embeddings during training. The av-
eraged feature of the queue, i.e., object center, captures the
common characteristics of objects and plays as the role of
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query in contrastive learning. The positive and hard nega-
tive samples are dynamically selected from query embed-
dings according to the matching cost [44, 34] with ground-
truth. Contrastive learning is the key to reducing false posi-
tives for network and greatly improves average precision.

To this end, SWORD not only reveals the strong abil-
ity in recalling novel objects, but also achieves high av-
erage precision. We further develop a model SWORD†,
which has exactly the same architecture of Deformable-
DETR [55] but is trained on the combination of annotations
and pseudo ground-truths generated by SWORD. SWORD†

shows clear performance gains compared with its counter-
part under the open-world setups. To summarize, the con-
tributions of this work are:

• A simple yet effective framework SWORD is presented,
which is the first study of Transformer-based model for
open-world instance segmentation.

• We introduce the stop-grad operation to kill two birds
with one stone: preventing the side-effect of classification
learning to discover novel objects in open-world setups,
and enabling the heuristic label assignment for DETR-
like models.

• We design a novel contrastive learning method to learn
the discriminative representations between objects and
background, which is essential for achieving high aver-
age precision for the network.

• Extensive experiments demonstrate that our models
achieve state-of-the-art performance on several bench-
marks including COCO [31], LVIS [16], UVO [47] and
Objects365 [39], as shown in Figure 2.

2. Related Work

Open-world Instance Segmentation. Towards building
more practical applications in the real world, the open-
world-related problems [2, 6, 17, 6, 35, 27, 40, 53, 29, 52]
have raised great attention recently. Kim et al. [26] firstly
establish the protocol of open-world instance segmenta-
tion. Literally, open-world models should not only seg-
ment all the previously seen objects, but also localize
the unseen objects during inference. There are several
works [26, 38, 46, 51, 23, 45, 24] attempting to solve the
problem from various aspects. We refer the readers to Ap-
pendix A for a comprehensive review of these works.

Discussion. To dig out the problems of current models in
open-world scenario, we visualize the predicted results of a
closed-world model Deformable-DETR [55] and an open-
world model OLN [26] in Figure 3. (i) For Deforamble-
DETR, we notice that the novel objects have low activa-
tions in the feature map, which we term as feature degra-
dation. This is because novel objects are treated as back-
ground during training. As shown in the middle picture of

(a)

(b)

Figure 3: Visualization results of (a) closed-world model
Deformable-DETR and (b) open-world model OLN. For
each example, we show the input images, feature maps and
predicted results from left to right. Note that elephant is the
unseen category in the training set.

Figure 3a, the elephant is the unseen category and its fea-
ture can hardly be distinguished from its surroundings. (ii)
OLN [26] has the generalized ability to localize novel ob-
jects. Nevertheless, it suffers from the problem of produc-
ing many false positives, e.g., parts of the man’s body in
Figure 3b. OLN [26] is trained with positive samples and
can not perceive backdrop. It would assign high scores for
all the object proposals. To conclude, there are two critical
issues for the open-world instance segmentation: prevent-
ing the feature degradation of novel objects and learning
the discrimination between objects and background.

Contrastive Learning. Self-supervised learning could
be divided into three groups: contrastive learning, self-
distillation [4, 54] and masked image modeling [19, 8, 41].
Among which, contrastive learning [20, 7, 15, 50, 48, 25,
1, 25, 18] has been dominant for a long time. The core
idea of it lies in that the positive samples are attracted while
the negative samples are pulled away in the feature space to
learn the discriminative representations. MoCo [20] main-
tains a memory queue to store a large number of negative
pairs and enables the momentum update of the memory en-
coder to guarantee the queue feature consistency. MoCo
v3 [10] discards the memory queue and conducts self-
supervised training on visual Transformers. SimSiam [9]
develops the extremely simple siamese network without any
negative sample, and points out a stop-gradient operation
plays an essential role in preventing mode collapse. In this
work, we absorb the ideas from contrastive learning to learn
the distinct representations of objects and background.

3. Method
3.1. Overview

Open-world instance segmentation problem introduced
by recent advanced works [26, 38, 46] can be formulated
as follows. Given an instance segmentation dataset (e.g.,
COCO with 80 classes), we have the object annotations on
the base category set Cbase (e.g., Cbase contains 20 PASCAL-
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Figure 4: The overall framework of SWORD. We first attach a stop-grad operation before the classification head and
add the IoU head to help discover novel objects. Further, a contrastive head is added on top of the Transformer decoder to
predict the query embeddings for contrastive learning. It is essential for the network to learn distinct representations between
objects and background. During inference, the classification scores and IoU scores are fused to produce the final scores.

VOC classes). Notably, there are also a large number of
novel objects co-appearing in the images while remain-
ing un-annotated. The models are trained with the base-
category annotations to provide a set of class-agnostic pro-
posals P = {si, bi,mi}pi=1 to localize all objects in the
image, where si ∈ R indicates the proposal score, bi ∈ R4

denotes the bounding box coordinates and mi ∈ RH×W

is the segmentation mask for the i-th prediction. The gen-
eralization of models is evaluated by segmenting the novel
objects from the unseen category set Cnovel (e.g., 60 non-
PASCAL-VOC classes) in a class-agnostic fashion.

The overall framework of our proposed SWORD is illus-
trated in Figure 4. Our network is based on the closed-world
model Deformable-DETR [55], and we explain how to con-
vert it into an open-world instance segmentation model in
Section 3.2. We then propose to utilize contrastive learn-
ing to generate distinct representations for objects and back-
ground in Section 3.3. Additionally, we introduce an exten-
sion of our model, denoted as SWORD†, through pseudo
labeling based self-training in Section 3.5.

3.2. Open-world Transformer

Our network is built upon the Deformable-DETR [55]
due to its simple architecture. First, we add the mask head
on top of the Transformer to generate the instance masks
by performing dynamic convolution [42, 11, 49]. Then, the
model is transformed into an open-world model for learning
class-agnostic mask proposals with following designs.

IoU Heads. Inspired by the philosophy of OLN [26] that
localization quality is a better objectness cue than the clas-
sification score in the open-world setting, we add the extra
two IoU heads on top of the Transformer decoder to predict

Table 2: The illustration of the key role of stop-grad
operation. ‘class’ and ‘IoU’ in the first column mean clas-
sification head and IoU head, respectively.

Variants
Network

Generalization
Heuristic

Label Assignment
class only ✗ ✓

IoU only ✓ ✗

class + IoU ✗ ✓

class + IoU + stop-grad ✓ ✓

the box IoU score cb and mask IoU score cm, respectively.
The IoU scores are helpful to discover the novel objects.

Stop-gradient Operation. The object-or-not learning of
classification can hurt the generalization of network, while
DETR-like models need to preserve the classification head
for heuristic label assignment (e.g., Hungarian match-
ing [3]). This leads to a conflict situation. To address this
issue, we propose a simple yet effective solution by intro-
ducing a stop-grad operation [36, 9] before the classi-
fication head. This operation prevents the gradient passing
from the classification head to the network, which avoids
suppressing all un-annotated regions as background. On
the other hand, it can be seamlessly applied on the ad-
vanced DETR-like detectors [3, 32, 28] to facilitate the
heuristic label assignment. As illustrated in Table 2, the
stop-grad operation can confer all the desired proper-
ties upon the DETR-like models, thus enabling the networks
to possess the open-world capacity in a manner akin to the
OLN paradigm.

3.3. Contrastive Learning

The use of stop-grad operation would also disable
the discriminative ability of network. To address the issue,
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in this subsection, we propose a contrastive learning [20, 15,
9] framework to learn the distinct representations between
objects and background.

Universal Object Queue. As shown in Figure 4, we further
add the contrastive head on top of the Transformer decoder
to learn the query embeddings. The parameters of the con-
strastive head are also copied to a momentum branch using
the exponential moving average (EMA) method:

θ
′

c ← αθ
′

c + (1− α)θc (1)

where θc and θ
′

c denote the parameters of the regularly and
EMA updated contrastive head, respectively. α is the mo-
mentum rate. We use a universal object queue Q to store
the object embeddings, where each element is the projected
feature from the momentum contrastive head. Given an im-
age, we select those queries best matched to the ground-
truth through bipartite matching and store their projected
embeddings into Q using the first-in-first-out strategy. We
then average all the features in the universal object queue
to get the object center v. Intuitively, the object center cap-
tures the common object characteristics and stays stable in
the feature space.

Positive and Negative Samples. It is well known that the
positive and negative samples play the essential role in con-
trastive learning. Here, we dynamically select the positive
and negative pairs according to a optimal transport assign-
ment method [13, 44, 34, 14]. Specifically, given an im-
age, we take the classification results into consideration and
compute the costs between predictions and ground-truths:

C = λcls · Ccls + λL1 · CL1 + λgiou · Cgiou (2)

where, Ccls is focal loss [30]. The box-related losses in-
clude the L1 loss and generalized IoU loss [37]. Ideally,
the predictions with the least cost are those objects close to
the ground-truths. To improve the quality of learned em-
beddings, for each ground-truth object, we first dynami-
cally choose k1 and k2 predictions with the least cost, where
k2 > k1. Then the k1 predictions are positive samples, and
the left k2−k1 predictions are considered as hard negatives.

Contrastive Loss. In the contrastive learning, we expect
the positive samples K+ should be close to the object cen-
ter v while the negative ones K− should pulled away. The
contrastive loss [20] is formulated as:

Lcon = −log
∑

k+∈K+ exp(v · k+)∑
k+∈K+ exp(v · k+) +

∑
k−∈K− exp(v · k−)

(3)

3.4. Training and Inference

Training. The label assignment for the network optimiza-
tion also relies on the matching cost as Eq. (2). The pre-
dictions with the least costs are assigned to ground-truths as

positive samples and others as negatives [14]. The overall
loss function for training is:

L = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou

+ λmask · Lmask + λdice · Ldice

+ λiou · Liou + λcon · Lcon

(4)

where, Lcls, LL1 and Lgiou are the same as the compo-
nents in Eq. 2. The mask-related loss is a combination of
the mask binary loss and DICE loss [33]. The IoU scores
are supervised by the binary cross entropy loss Liou.

Inference. We use the geometric mean of classification
scores and IoU scores as final scores, i.e., s = 3

√
cc · cb · cm.

And the top-100 predictions are left for evaluation.

3.5. Extension: Pseudo Ground-truth Training

The advanced approach GGN [46] proves that using the
pseudo ground-truth for training can significantly boost the
performance of Mask-RCNN [21] in the open-world setup.
Therefore, we also adopt the pseudo labeling method and
develop an extension model, SWORD†. Following the ex-
isting practice of GGN [46], we use SWORD as teacher
model to generate the pseudo boxes/masks. After filtering
out those predictions having high box overlap with ground-
truth, we add the remaining top-k predictions to the ground-
truth annotations. Finally, the standard Deformable-DETR
is trained under the supervision of augmented annotations.
Please see more details in Appendix B.

4. Experiments
In this section, we first thoroughly evaluate the perfor-

mance of proposed models in two challenging open-world
settings: cross-category and cross-dataset generalizations.
Then we conduct extensive ablation studies to discuss the
key designs and analyze the crucial issues in Sec. 4.4.

4.1. Experiment Settings
Datasets. Our experiments are conducted on COCO [31],
LVIS [16], UVO [47] and Objects365 [39] datasets. COCO
is the widely used instance segmentation benchmark with
80 categories. LVIS shares the same images with COCO
while having a more complete label system. It has a large
taxonomy of 1203 categories in a long-tailed distribution.
UVO originates from the Kinetics400 [5] dataset and all the
instance masks are exhaustively annotated. Objects365 is
a large-scale object detection dataset with 365 categories
where all the COCO 80 categories are included.

We target at two challenging open-world generalization
setups [26, 38, 46]: (1) Cross-category generalization. On
COCO benchmark, we follow the common practice [26, 38]
to split the annotations into two non-overlapping class sets,
where the PASCAL-VOC [12] 20 classes are adopted as the
base set and the rest of 60 non-VOC classes are novel set.
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The second benchmark, i.e., LVIS, splits the 1203 classes
into 80 COCO classes for training and the remaining 1123
non-COCO classes for evaluation. For cross-category gen-
eralization, the results are reported on the unseen categories.
(2) Cross-dataset generalization. This is to evaluate the
model’s open-world generalization ability when used in the
wild. COCO is used as the training source and the models
are tested on new datasets, i.e., UVO 1 and Objects3652. In
this setting, we show the results on both novel categories
and all categories (including base and novel ones).

Evaluation Metrics. Following previous works [26, 38,
46], we use average recall (AR@k) and average precision
(AP) over multiple IoU thresholds [0.5 : 0.95] to measure
the performance. The proposal number k is set as 100 by
default. The superscripts ‘b’ and ‘m’ denote the boxes and
masks, respectively. And ARs/m/l represent AR@100 for
small, medium and large size of objects. Notably, the most
concerned metric in open-world scenario [26] is AR@100.

Implementation Details. In all setups, models are trained
and evaluated in a class-agnostic way. We use ResNet-
50 [22] as backbone by default and the Transformer network
has 6 encoders and 6 decoders with the hidden dimension of
256. We use 2000 object queries when the training source
is VOC(COCO), otherwise the query number is set as 1000.
The size of the universal object queue is set as 4096 and the
EMA rate α is 0.999. The values of k1 and k2 for con-
trastive learning are set as 10 and 100, respectively. In all
our experiments, we also train the Deformable-DETR using
the same setting as ours (i.e., object query number, training
epochs) for fair comparisons. Please see Appendix C for
more implementation details.

4.2. Cross-category Generalization
VOC to non-VOC. In Table 3, we compare our methods
with other state-of-the-art methods in VOC to non-VOC
setup. It shows that SWORD yields the significant 7.9%
gain on ARb

100 and 7.5% on ARm
100 compared with the

Deformable-DETR baseline. And our model outperforms
all the previous single model. The performance could be
further boosted by exploiting the pseudo ground-truth of
SWORD. SWORD† achieves state-of-the-art performance
in all metrics, e.g., 40.0% on ARb

100 and 34.9% on ARm
100.

COCO to LVIS. Table 4 summarizes the performance of
different methods in the COCO to LVIS setup. Compared
to the Deformable-DETR baseline, SWORD shows an ob-
vious performance gain, with +4.1% on AR100b and +4.0%

1The downsampled dense split of v1.0 contains two classes: “objects”
for COCO categories and “other” for non-COCO categories. The NOVEL
metrics are measured on the “other” categories. The previously released
v0.5 does not distinguish the object categories and all the objects are an-
notated as “objects”. We report the results of ALL metrics based on this
version following the previous works [38, 46]

2Objects365 only has box annotations, so we report the results regard-
ing the box metrics.

Table 3: State-of-the-art performance in VOC to non-VOC setup.

Method APb ARb
10 ARb

100 APm ARm
10 ARm

100

Mask-RCNN [21] 1.6 10.2 23.5 0.9 7.9 17.7
OLN [26] 3.7 18.0 33.5 - 16.9 -
LDET [38] 5.0 18.2 30.8 4.3 16.3 27.4
GGN [46] 5.8 17.3 31.6 4.9 16.1 28.7
GGN + OLN [46] 3.4 17.1 37.2 3.2 16.4 33.7
GOOD [23] - - 39.3 - - -
Deformable-DETR [55] 2.5 12.2 27.4 2.2 10.2 22.7
SWORD (Ours) 5.8 17.8 35.3 4.8 15.7 30.2
SWORD† (Ours) 6.2 22.0 40.0 5.8 20.2 34.9

Table 4: State-of-the-art performance in COCO to LVIS setup.

Method ARb
10 ARb

100 ARm
10 ARm

100

Mask-RCNN [21] 6.1 19.4 5.6 17.2
GGN [46] 7.6 22.4 7.2 20.4
Deformable-DETR [55] 6.3 19.4 5.5 16.4
SWORD (Ours) 8.8 23.5 8.0 20.4
SWORD† (Ours) 9.8 28.0 9.0 23.8

on AR100m. Additionally, SWORD† outperforms the pre-
vious best method GGN [46] by 5.6% ARb

100, which is a
relative improvement of 25%.

4.3. Cross-dataset Generalization
COCO to UVO. For COCO to UVO generalization, we
evaluate models trained with 20 PASCAL-VOC classes and
all 80 COCO classes. Table 5 presents a thorough compar-
ison of results for both novel and all objects. Deformable-
DETR performs considerable well in this setting, outper-
forming previous methods by a large margin. Our pro-
posed model, SWORD, further improved the performance
over the strong baseline for all metrics. Notably, in the par-
tially annotated VOC(COCO) to UVO scenario, SWORD
demonstrated a significant 9.6% ARm

100 gain for novel ob-
jects. This highlights the effectiveness of our model in dis-
covering novel objects.

Another observation is that pseudo ground-truth training
is effective in improving the average recall (AR) of models
but may decrease the average precision (AP). By compar-
ing Deformable-DETR and SWORD† (both have the same
architecture), we noticed a consistent gain in AR. However,
APb for all objects dropped from 29.1% to 28.1% in the last
rwo. The reason may attribute to that false positives in the
pseudo ground-truth labels can misguide the model training.

COCO to Objects365. The results of COCO to Objects365
generalization are listed in Table 6. Mask-RCNN-based
method LDET3 improves Mask-RCNN in terms of ARs but
decrease APs. SWORD significantly outperforms D-DETR
baseline for all metrics and achieve SOTA performance.

3We report the results of LDET [38] using the same class-agnostic eval-
uation for fair comparison, whereas results in the original paper are based
on the class-wise evaluation.
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Table 5: Comparison of state-of-the-art performance in COCO to UVO setup. Top rows: Models are trained with 20
PASCAL-VOC classes on COCO dataset. Bottom rows: Models are trained with all 80 COCO classes on COCO dataset.

Method Train
Novel All

APb ARb
10 ARb

100 APm ARm
10 ARm

100 APb ARb
10 ARb

100 APm ARm
10 ARm

100

Mask-RCNN [21]

VOC
(COCO)

5.9 11.4 16.2 2.3 7.6 11.4 20.2 25.3 30.8 15.7 20.1 24.3
LDET [38] 9.3 16.0 31.9 4.9 12.3 25.2 22.7 28.1 43.3 18.7 23.9 36.0
Deformable-DETR [55] 7.2 13.5 33.5 3.4 9.5 25.3 23.4 29.4 49.8 19.1 24.0 39.4
SWORD (Ours) 11.2 16.8 43.1 6.1 13.3 34.9 24.9 30.6 55.3 19.6 25.3 45.2
SWORD† (Ours) 11.8 18.4 45.6 8.4 16.8 38.1 23.4 31.1 59.2 21.0 28.4 49.5
Mask-RCNN [21]

COCO

11.8 16.4 30.4 7.0 13.8 25.5 25.7 30.2 43.8 20.7 25.7 36.7
LDET [38] 12.9 19.0 35.9 8.2 15.9 30.5 26.0 30.9 47.0 22.1 27.3 40.7
GGN [46] - - - - - - 24.0 29.8 52.2 20.3 - 43.4
Deformable-DETR [55] 14.2 20.0 45.8 9.0 16.7 37.9 29.1 35.0 60.7 24.7 30.1 50.3
SWORD (Ours) 17.5 22.2 48.1 12.8 19.4 40.6 32.0 36.5 61.2 28.0 32.4 51.5
SWORD† (Ours) 16.6 22.7 50.0 12.7 20.9 42.8 28.1 35.2 62.0 25.7 32.5 53.0

Table 6: Comparison of state-of-the-art performance in COCO to Objects365 setup.

Method
Novel All

APb ARb
10 ARb

100 ARb
s ARb

m ARb
l APb ARb

10 ARb
100 ARb

s ARb
m ARb

l

Mask-RCNN [21] 13.0 19.3 32.8 18.2 36.4 43.5 25.1 23.9 40.3 22.7 42.8 53.4
LDET [38] 12.8 20.0 36.8 20.7 40.5 48.9 22.5 22.7 41.4 22.9 44.3 54.9
Deformable-DETR [55] 12.9 19.0 40.1 22.8 43.4 54.1 27.3 25.3 48.7 27.5 50.9 65.6
SWORD (Ours) 16.6 22.8 43.9 25.0 48.6 57.6 29.7 27.3 50.8 28.6 54.0 67.2
SWORD† (Ours) 16.3 23.5 45.9 25.9 50.5 60.7 28.7 27.2 51.9 29.4 55.4 68.4

4.4. Ablation Study
In this subsection, we conduct extensive ablation studies

to analyze the crucial composing of our method. The exper-
imental results are based on the COCO (80 classes) to UVO
setting and the backbone is ResNet50 otherwise specified.
We report the result in terms of mask metrics.

Analysis of Key Designs. Table 7 presents the ablation re-
sults to study the key designs of our method. In addition
to the standard Deformable-DETR, we also build an OLN
version Deformable-DETR by replacing the classification
head with IoU heads to make a comparison. Since COCO
is fully annotated and there are hardly any novel objects, the
co-existence of objects and background in un-annotated ar-
eas is not a significant issue. Therefore, we mainly focus on
the discussion of VOC(COCO) to UVO generalization.

Starting from the closed-world Deformable-DETR, we
first introduce the stop-grad operation to transform it
into an open-world model. This simple yet effective opera-
tion prevents un-annotated regions from being suppressed
as background. The obvious background-to-foreground
transition for novel objects leads to the simultaneous im-
provement of AP and AR for novel objects. However, the
use of stop-grad reduces the network’s discrimination,
resulting in many false positives predictions and a perfor-
mance drop in AP for all objects. Henceforth, the proposed
contrastive learning framework is indispensible. This de-
sign significantly improves APm for all objects by 6.5%,

and all ARs show steady performance improvement. The
two key designs are also validated in the COCO to UVO
setup, where stop-grad improves AR and contrastive
learning greatly increases AP. These results demonstrate the
effectiveness of our proposed approach.

From another perspective, our proposed SWORD also
demonstrates performance advantages over the OLN-
version Deformable-DETR. SWORD not only reveals con-
sistent performance advantages on ARs, but also shows 5.1
and 11.2 points gain on the APm for VOC to UVO and
COCO to UVO setups, respectively. These results proves
the superiority of our method.

Classification Cost for Sample Selection in Contrastive
Learning. To evaluate the effect of classification cost in the
contrastive learning, we set Ccls = 0 in Eq. (2) for the ab-
lation. From Table 8, we observe that performance drops
drastically without classification cost. Such phenomenon
stands with the view that classification score is crucial for
two potential reasons. First, the classification cost ensures
the network’s consistency in assigning labels during both
contrastive learning and network training. Second, the lo-
calization cost alone will introduce those predictions closest
to the ground-truths as positive samples, while classification
cost helps choose more discriminative samples.

The Values of k1 and k2 in Contrastive Learning. To
study the impact on the number of positive and negative
samples, we provide the ablation results of k1 and k2 in Ta-
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Table 7: Ablation on the key designs of our method. ’D-DETR’ represents Deformable-DETR [55]. The results of an
OLN version Deformable-DETR are also presented for comparison. We start from the Deformable-DETR baseline and
gradually add the key components. The final model is the proposed SWORD.

Variants
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

VOC(COCO) to UVO
D-DETR OLN-version 5.8 11.4 31.0 14.5 23.4 43.1
D-DETR 3.4 9.5 25.3 19.1 24.0 39.4
+ stop-grad 4.7 (+1.3) 11.6 (+2.1) 34.1 (+8.8) 13.1 (−6.0) 22.1 (−1.9) 45.1 (+5.7)
+ contrastive learning 6.1 (+1.4) 13.3 (+1.7) 34.9 (+0.8) 19.6 (+6.5) 25.3 (+3.2) 45.2 (+0.1)

COCO to UVO
D-DETR OLN-verision 10.0 17.5 40.9 17.8 28.0 51.2
D-DETR 9.0 16.7 37.9 24.7 30.1 50.3
+ stop-grad 10.3 (+1.3) 18.4 (+1.7) 41.6 (+3.7) 21.6 (−3.1) 30.5 (+0.4) 52.0 (+1.7)
+ contrastive learning 12.8 (+2.5) 19.4 (+1.0) 40.6 (−1.0) 28.0 (+6.4) 32.4 (+1.9) 51.5 (−0.5)

Table 8: Ablation on the classification cost for sample
selection in contrastive learning.

class cost
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

✗ 8.9 17.0 40.7 16.6 26.2 51.4
✓ 12.8 19.4 40.6 28.0 32.4 51.5

Table 9: Ablation on the values of k1 and k2 in con-
trastive learning.

k1 k2
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

1 100 11.4 19.7 40.1 25.5 31.6 50.7
10 100 12.8 19.4 40.6 28.0 32.4 51.5
50 100 8.9 17.0 40.3 19.3 28.9 51.5
10 20 12.1 19.2 40.3 27.4 32.2 51.5
10 200 13.0 20.8 39.7 28.3 32.8 50.6

ble 9. The first three rows show that increasing the number
of positive samples can result in a large number of false pos-
itives, which negatively affect the average precision (AP).
By comparing line 2-4-5, it indicates that more negative
samples benefit AP while hurt AR@100. This is reasonable
because more negative samples can aid contrastive learn-
ing in generating more distinct representations; however, it
may also incorrectly identify real objects as negative sam-
ples and suppress them as background.

4.5. Visualization
In Figure 5, we visualize the score distribution of dif-

ferent methods in VOC to non-VOC setting. Deformable-
DETR [55] can only find out the seen category objects and
thus its score distribution is mainly located on the low-
scoring areas. OLN [26] is trained with positive samples,
making it merely produce the high-scoring proposals. Al-
though it reveals the open-world ability to locate novel ob-
jects, it can not effectively discriminate the objects and

†

Figure 5: Comparing score distributions of proposals for
different methods on COCO [31] validation set. ‘D-DETR’
represents Deformable-DETR [55]. All models are trained
with 20 PASCAL-VOC classes. For fair comparisons, we
select the top-100 proposals per image for all the methods.

background. The proposed SWORD not only displays the
favorable open-world generalization but also provide dis-
tinct confidence scores for objects and background.

5. Conclusion
In this work, we present a Transformer-based frame-

work, SWORD, for open-world instance segmentation.
Specifically, we introduce the stop-grad operation to
prevent the feature degradation of novel objects and propose
a contrastive learning strategy to enlarge the discriminating
representations between objects and background. We also
develop an extension model, SWORD†, by exploiting the
pseudo labels of SWORD. Extensive experiments demon-
strate that the proposed models achieve state-of-the-art per-
formance in various open-world generalization setups.
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