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Abstract

Contrastive learning models based on Siamese struc-
ture have demonstrated remarkable performance in self-
supervised learning. Such a success of contrastive learn-
ing relies on two conditions, a sufficient number of pos-
itive pairs and adequate variations between them. If the
conditions are not met, these frameworks will lack seman-
tic contrast and be fragile on overfitting. To address these
two issues, we propose Hallucinator that could efficiently
generate additional positive samples for further contrast.
The Hallucinator is differentiable and creates new data in
the feature space. Thus, it is optimized directly with the
pre-training task and introduces nearly negligible compu-
tation. Moreover, we reduce the mutual information of hal-
lucinated pairs and smooth them through non-linear opera-
tions. This process helps avoid over-confident contrastive
learning models during the training and achieves more
transformation-invariant feature embeddings. Remarkably,
we empirically prove that the proposed Hallucinator gener-
alizes well to various contrastive learning models, includ-
ing MoCoV1&V2, SimCLR and SimSiam. Under the linear
classification protocol, a stable accuracy gain is achieved,
ranging from 0.3% to 3.0% on CIFAR10&100, Tiny Ima-
geNet, STL-10 and ImageNet. The improvement is also ob-
served in transferring pre-train encoders to the downstream
tasks, including object detection and segmentation.

1. Introduction

In the recent computer vision community, there has been
rapid progress in self-supervised learning (SSL), gradu-
ally closing the performance gap with supervised learn-
ing [23, 29, 10, 7, 51]. Among the diverse approaches of
SSL, contrastive learning, such as MoCoV1&V2 [29, 11],
SimCLR [10], and SimSiam [12], shows promising results.
Generally, contrastive learning treats each image as one
class which will be augmented into two separate views.
These two views form one positive pair and should ide-
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Figure 1: The motivation of the proposed hallucination
methods. Given one pair of images with the same seman-
tic meaning, such as a pair of horses, a person can envi-
sion further similar pairs by imagining one of the horses in
different poses and surroundings. If a contrastive learning
model could do such hallucination, it could have additional
novel pairs to contrast given the same data. Note that this
hallucination process is for illustration only. In the imple-
mentation, all the hallucinated samples are computed in the
feature space.

ally be close if mapped to feature space. With sufficient
contrast in the feature space, contrastive learning models
show a strong capacity to learn transformation-invariant
features that are transferable to various downstream tasks,
such as classification, object detection, and segmentation
[18, 30, 39].

To ensure sufficient contrast, researchers from previous
work address the issue from two essential practices, either
introducing large amounts of positive pairs or adding addi-
tional variants&transformation among them. For example,
SimCLR uses a batch size that generates thousands of pos-
itives to facilitate the convergence of models [10]. Work
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from [51, 9] reduces mutual information of positive pairs
using stronger data augmentation, i.e., color distortion and
jigsaw transformation. Likewise, the work from [44] intro-
duces ContrastiveCrop, and the work from [49] proposes
Un-Mix, respectively, to reduce the similar semantic mean-
ing of sample pairs in the original image space. Beyond the
data augmentation and image operations, researchers from
[68] propose to apply a linear operation to generate hard
positive samples in feature space.

Despite the success of prior approaches, we argue that
large batch sizes are not always achievable. Meanwhile, all
proposed techniques only focus on improving the original
pairs. Given one positive pair of positive samples, humans
are born with the amazing ability to come up with additional
positives by imagining a sample from different surround-
ings and perspectives without much effort, as demonstrated
in Figure 1. This process of self-imagination, in turn, will
benefit the human neurological system, improving recog-
nition capacity [24]. Similarly, if we could empower con-
trastive learning models with the ability to hallucinate or
imagine an object to a novel view, additional positive pairs
could be provided for the learning tasks.

Unfortunately, exploring feasible methods to hallucinate
novel positive pairs is challenging. Firstly, while genera-
tive models produce realistic images that could form ad-
ditional positive views [22, 1, 42, 4], realistic data do not
necessarily benefit learning tasks [55]. More importantly,
applying these approaches forces us to fall back into a com-
putational dilemma to the previous method. In other words,
image-level hallucination still suffers from expensive com-
putation as we still need to encode the hallucinated images
into feature space. Lastly, if the generated positive pairs
are similar to each other, training a discriminative model
would be too trivial, thus showing poor generalization ca-
pacity [44, 51, 68].

Therefore, our key insight is that the sample-generation
process should aim for three critical elements: (i) feature-
space operation (ii) sufficient variance of positive pairs (iii)
a differentiable module optimized directly related to the
learning task. To achieve this, we propose Hallucinator
to improve the performance of contrastive learning with
Siamese structures. The Hallucinator is plugged in af-
ter the encoder to manipulate feature vectors and improve
the feature-level batch size for further contrast. To ensure
adequate variance is introduced, we propose an asymmet-
ric feature extrapolation method inspired by the work from
[68]. More importantly, we present a non-linear hallucina-
tion process for the extrapolated samples. Such a process is
differentiable (i.e. learnable), therefore essentially boosting
Hallucinator to generate smooth and task-related features.

The proposed Hallucinator delivers extra positives and
simultaneously enlarges the variance between newly intro-
duced pairs. Moreover, this approach only relies on pos-

itive samples. Therefore, it can be easily applied to any
Siamese structure by adding it after the encoders as a plug-
and-play module. Without the tedious exploration of hyper-
parameters and much additional computation, we empir-
ically prove the effectiveness of the proposed Hallucina-
tor on popular contrastive learning models, including Mo-
CoV1&V2, SimCLR and SimSiam. We notice a stable im-
provement ranging from 0.3% to 3.0% under the linear clas-
sification protocol, crossing the CIFAR10&100, Tiny Ima-
geNet, STL-10 and ImageNet. We also observe that mod-
els trained with Hallucinator show better transferability in
downstream tasks like object detection and segmentation.

Our contributions can be summarized as follows:
• We investigate a critical yet under-explored aspect of

contrastive learning: introducing additional positive
pairs with further variation in feature space.

• To the best of our knowledge, this is the first attempt
to incorporate the concept of “Hallucination” into con-
trastive representation learning. We propose Halluci-
nator to realize this idea, which effectively generates
smooth and less similar positive feature vectors. The
Hallucinator is simple, effective, and agnostic to con-
trastive frameworks.

• We empirically illustrate that the proposed approach
significantly benefits the various contrastive learning
models within multiple datasets.

2. Related Works
In this section, we introduce related literature on con-

trastive learning and hallucination techniques.

2.1. Contrastive Learning

The key idea of contrastive learning is to minimize the
distance of positive pairs and repulse negative pairs in the
feature space [27]. This idea has been successfully ap-
plied to unsupervised visual representation tasks, showing
promising results in various downstream tasks [10, 29, 11,
23, 12, 2, 32, 17, 54, 41, 43, 50, 57, 60, 63, 61, 8, 37].
One of the breakthroughs of contrastive learning models
is SimCLR [10], which introduces a simple but effective
visual representation learning method. Without negative
pairs, SimCLR learned transformation-invariant represen-
tation with a large batch size. Contemporaneous impres-
sive work is MoCo from [29]. To ensure MoCo can be
trained smoothly with computational-friendly batch sizes,
the authors of MoCo propose a memory bank to store nega-
tive features and momentum-updated backbones. After this,
SimSiam [12] presents a Siamese-based network that can
learn high-quality representation with stop-gradient, suc-
cessfully avoiding the collapse of contrastive learning mod-
els. Other designs of contrastive learning rely on an online
network to predict the output of the target network or con-
trasting cluster assignments [23, 7].
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Figure 2: Illustration of contrastive learning (MoCoV2 [11]) with Hallucinator. The Hallucinator is added after the back-
bones and projector for feature-level manipulation. While Hallucinator feeds original feature vector q forward, it additionally
provides hallucinated feature q̂ for further contrast.

To further boost the models’ performance, researchers
explore diverse ways to hard positives and reduce the
mutual information of positive samples so that more
transformation-invariant embeddings can be learned [51,
48, 45, 13]. For image-level enhancement, typical works
focus on improving the data augmentation in pixel space
using Mixup, color distortion, or jigsaw transformation
[49, 51, 9]. More recent work is presented by [44] us-
ing ContrastiveCrop, which creates better positive views
through the localization box. For feature-level operation,
the authors from [34] prove the effectiveness of hard neg-
ative samples. More recent and close work to this paper is
[68], which applies symmetric extrapolation to create hard
positives but introduces no non-linearity. Importantly, in-
stead of replacing the original positive samples, this paper
proposes a differentiable hallucinator to generate an addi-
tional positive sample with less mutual information and bet-
ter smoothness. Such a setting ensures maximal and adap-
tive contrast during the training, generalizing well to diverse
contrastive learning models.

2.2. Hallucination

Hallucination is initially proposed to solve the scarcity
of data in the classification task [28]. Then, this idea is
kept updated and applied in different areas [46, 55, 66,
67, 6, 65, 25, 47], such as object detection, aerial navi-
gation, skeleton-based action recognition, and face gener-
ation. While image-level hallucination benefits few-shot
recognition by synthesis of novel view [3] or introducing
random noises [55], most of the work applies hallucina-
tion in the feature space. The work from [28] generates
novel class features by transforming shared features in base
classes. Authors of [67] build a hallucination framework in
the region of interest feature space object to enhance object

detection performance. More recent work shows that this
hallucination mechanism also benefits 3D human pose esti-
mation by generating novel motion sequences [21]. While
hallucination is effective in different learning tasks, to the
best of our knowledge, the performance and application of
hallucination in SSL are fully unexplored.

2.3. Feature-Level Augmentation

Hallucination relies on effective feature-level augmenta-
tion or manipulations. The primary goal of feature augmen-
tation is to extend the limited labeled dataset without relying
on expensive computation such as auto-encoder[33], Gener-
ative Adversarial Networks[40] or simulation tools[52, 58,
5]. For instance, in the work by [16], a task-agnostic feature
augmentation approach is proposed to enrich training data
with minimal additional computation. The authors of [36]
also explore similar ideas in the domain of few-shot learn-
ing. Building upon this, the concept is adapted to sentence
representation learning [62, 19] and few-shot learning tasks
in remote sensing[56]. More recently, [38] applies feature
augmentation based on a meta-learning technique.

3. Method

In this section, we first introduce the overall process of
hallucination for contrastive representation learning in Sec-
tion 3.1. Secondly, we highlight the center cropping method
we used, which is crucial to effective hallucination or gen-
eration of new samples in Section 3.2. Then, we introduce
the Hallucinator incorporated into our contrastive models
in Section 3.3. Finally, we visualize and discuss the critical
properties of the hallucination method from two perspec-
tives in Section 3.4: the similarity of positive samples and
the uniformity of the feature distribution.
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3.1. The Overall Pipeline

Taking MoCo [11] as an example, we illustrate how
a Hallucinator can be plugged into a contrastive learning
model in Figure 2. Our architecture takes one image x as
input. Then, the input x is augmented into two views x1 and
x2. Each view will be processed by an encoder consisting
of a backbone (e.g., ResNet) and a projector (e.g., an MLP
head). After the encoders, output vectors q and k are ob-
tained, forming one positive pair (q, k). Then, this positive
pair (q, k) is fed to a Hallucinator. Notably, Hallucinator is
only added to one branch of the framework to generate an
additional positive feature q̂. Together with feature vector
k, q̂ and k form as an extra positive pair (q̂, k) during the
training. Based on different contrastive learning models,
the loss functions keep intact, and the average loss of these
two positive pairs is computed for back-propagation. The
same paradigm could be applied to SimCLR, SiamSiam and
other contrastive learning models. We illustrate further de-
tails about pipelines and loss functions of other models in
this paper in the Supplementary Material (Section 1.1).

3.2. Center Cropping

In contrastive learning, data augmentations aim to ensure
the performance of pre-trained representations invariant to
nuisances. Among all these methods, random crop plays
the most critical role in all the contrastive learning mod-
els. Generally, views (cropped tiles) generated by random
cropping are diversified, successfully covering all the se-
mantic information over the whole image. However, such a
cropping method is likely to generate false positives patches
[44]. In other words, patches randomly cropped from the
original images do not necessarily share the overlapped pix-
els and sufficient common information. Therefore, these
false positive pairs may be fooling models during training,
causing representations to be sub-optimal. Importantly, the
issue will be exacerbated if we generate further hallucinated
samples based on false positive pairs, which misleads the
overall training beyond the sweet spot.

To tackle this issue, we first apply center cropping Ccrop

to the original image, getting a relatively smaller image
Îx,y . Then, random cropping Rcrop is applied to Îx,y . More
specifically, the center cropping can be formulated as

Îx,y = Ccrop(Ix,y, p), (1)

where Ix,y is the input image with (x, y) as the coordi-
nate of the images’ center. After center cropping, we keep
the center of Îx,y unchanged. Meanwhile, with the orig-
inal shape of Ix,y defined as (h,w), we define the shape
of cropped image Îx,y as (ĥ, ŵ). The p denotes a ratio of
cropped length over the original length, i.e., p = ŵ

w = ĥ
h .

Only if particularly mentioned, we set p = 0.5 for all ex-
periments in this paper.
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Figure 3: The Hallucinator. Stage 1: The original feature
vector q is extrapolated to the opposite direction of feature
vector k, forming q̂ in a linear way. Stage 2: We introduce
non-linear transformation to smooth extrapolated features
concatenated with q and q′. Stage 3: output original q and
hallucinated q̂.

While center cropping effectively avoids false positive
pairs, it reduces the operable region for random cropping
and generates positive views with a similar appearance.
We, therefore, adopt center-suppressed sampling [44] with
a sampling method following a beta distribution β(α, α)
(i.e., a U-shaped distribution). Concretely, β(α, α) assigns
a lower probability to the center of the Îx,y and gives greater
probability to its boundary, increasing the variance between
views x1 and x2. Together, we summarize the process to
obtain these two views as

x1 = T (Rcrop(Îx,y|α)), s.t. α < 1

x2 = T (Rcrop(Ix,y|α)), s.t. α < 1, (2)

where T denotes data augmentations, including color jitter-
ing, random grayscale, Gaussian blur and horizontal flip-
ping. Rcrop(...|α) represents random cropping following
the β(α, α) distribution. α is set to less than 1 to ensure an
increasing sampling probability as the pixel’s coordinates
go beyond the center. A visualization of the center sampling
method can be found in Supplementary Material (Section
1.2).

3.3. Hallucinator

Asymmetric Feature Extrapolation. The first objective of
this module is to introduce an additional positive pair with-
out introducing extra computations. Therefore, the feature-
level operation is preferred compared to image-level opera-
tions. To achieve this, Hallucinator is plugged in after the
views x1 and x2 are encoded. As a result, the hallucinated
(generated) feature is purely based on the two feature vec-
tors q and k.

Meanwhile, since harder positives improve pre-trained
encoders’ generalization capacity [51], the hallucinated fea-
tures in positive pairs are favorable if they share less mu-
tual information. Previous work illustrates that a symmetric
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positive extrapolation is effective in generating hard exam-
ples for MoCo [68]. Concretely, two positive features are
combined with weighted addition, pushing positive features
apart. However, the hallucination process is asymmetric,
i.e., Hallucinator is only added in one of the branches of the
model. Then, we propose to apply the singe-side feature ex-
trapolation to the feature vector q, as shown in the first stage
of Figure 3. Additionally, we simplify the sampling strat-
egy of weights for extrapolation from a beta distribution to
a uniform distribution. To be specific, we summarize the
positive extrapolation in our method as follows:

q′ = (1 + λ)q − λk s.t. λ ∼ U(β1, β2), (3)

where λ is sampled from a uniform distribution U(β1, β2).
β1 and β2, which are the boundary of the uniform distribu-
tion, are set to 0 and 0.1 by default.
Hallucination. Positive extrapolation is based on mixup
[64], i.e., a linear transformation. While positive extrap-
olation has been proven beneficial to generating hard ex-
amples, this linear feature transformation might have a rel-
atively limited capacity to synthesize new feature vectors.
This assumption is based on the more satisfactory perfor-
mance of the non-linear mixup over the original one [26].
Similarly, if non-linearity is introduced to the feature gener-
ation, the generated vector will benefit more from the train-
ing and boost the performance of downstream tasks.

To empower our model with the capacity of non-linear
fitting, we introduce the hallucination process. Specifically,
we first concatenate q′ from the equation 3 and the feature
vector q together. Then, we use the concatenated feature
(q, q′) as an input of a non-linear transformation function
Hθ(.) that can be instantiated with n linear layers and a
ReLU layer between two successive layers. When n = 0,
Hθ(.) is a non-parametric module, forming an identity func-
tion. Such a setting performance is relatively sub-optimal,
as shown in the ablation study in Table 6. Empirically, we
find that n = {2, 3} performs well as the hallucinator be-
comes non-linear and more powerful. We set n = 3 by
default as its results are slightly better. With the transfor-
mation function Hθ(.), the hallucinated feature is defined
as

q̂ = Hθ(q, q
′), (4)

where θ is the parameters of Hθ(.). Notably, Hθ(.) is dif-
ferentiable, allowing us to back-propagate the loss of con-
trastive learning. Therefore, we update not just the parame-
ters of the encoders and projectors but also the parameters θ
of the hallucinator. The second stage of Figure 3 illustrates
the proposed hallucination process. Following that, we take
q and q̂ as the output of Hallucinator.
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Figure 4: Similarity of positive pairs in training. Smaller
values indicate less mutual information and better repre-
sentation [51, 44, 68]. As Hallucinator incorporates non-
linearity extrapolation, it guarantees smooth training and
harder positive features.

3.4. Discussion and Visualization

To better understand the behavior of Hallucinator, we
discuss two critical properties that may contribute to and ex-
plain its effectiveness. For visualization, we train MoCoV2
[11] with a standard ResNet-18 [31] on Cifar-10 [35].
Similarity of Positive Pair. We first investigate the similar-
ity of positive pairs during the training process. Concretely,
we quantize mutual information using the cosine similarity
of positive pairs S:

S ≜
q · k

∥q∥ ∥k∥
. (5)

While hard positives share less mutual information, thus
having a smaller cosine similarity value, the performance
of downstream tasks will be enhanced [68]. Based on Fig-
ure 4, the proposed Hallucinator generates harder posi-
tives with smaller values of similarity. Consequently, it
helps contrastive learning models obtain more nuisances-
invariant features. More importantly, different from linear
symmetric extrapolation, our training curve is relatively sta-
ble without many oscillations introduced. This observation
indicates that Hallucinator is successfully optimized with
the overall framework. Meanwhile, hallucinated features
nicely fit into the contrastive learning task.
Uniformity. We continue to analyze the performance of the
proposed model from the perspective of uniformity. No-
tably, feature vectors from contrastive learning should be
roughly uniformly distributed on a unit hyper-sphere, which
ensures maximal information is preserved in the feature
space [53]. In other words, the closer the feature distri-
bution is to the uniform distribution, the more the feature
benefits downstream tasks. To quantize uniformity, we fol-
low previous work [53] to compute the average value of the
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Figure 5: A measure of uniformity based on G2 potential. We plot 10,000 feature vectors with Gaussian kernel density
estimation (KDE) in R2. The left subplot illustrates the feature vectors from a uniform distribution. The three feature
distributions on the right in the first row visualize the features from MoCoV2 [11]. The other three feature distributions in
the second row demonstrate MoCoV2 with Hallucinator. Hallucinator benefits the uniformity with a smaller value of G2.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet STL-10

Hallucinator ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

MoCoV1 88.31 88.94 60.94 61.81 44.65 45.53 88.19 90.09
MoCoV2 87.21 89.23 59.70 61.26 47.12 47.95 89.32 90.46
SimCLR 89.66 90.11 60.94 61.43 45.22 46.30 89.07 89.98
SimSiam 90.47 90.78 63.39 64.38 43.66 44.96 87.79 88.16

Table 1: Linear classification results for different contrastive methods and datasets in small scales. We adopt ResNet-18 as
the backbone and report the classification results with or without Hallucinator.

Gaussian potential kernel (i.e., Radial Basis Function ker-
nel) of positive features:

Gt(q, k) ≜ e−t∥q−k∥2
2 s.t. t > 0, (6)

where t is a fixed parameter set as 2 for all the experiments.
We visualize the feature vectors by mapping them to two-
dimension feature space and applying l2 normalization in
Figure 5. G2 = 0.2070 for uniformly distributed samples,
whereas features from MoCoV2 have G2 = 0.2089. If
we plugin Hallucinator into MoCo, Hallucinator provides
further contrast during the training with extra positives in-
troduced, giving more uniformly distributed features and a
decreased G2 value,i.e., 0.2081. Additionally, we visual-
ize the features of two classes of Cifar-10. Each of these
features is well-clustered. With better uniformity, clusters’
overlapping decreases, forming more linearly separable fea-
tures. Therefore, we could observe that the overlapping
of feature clusters between class 1 and class 6 in MoCo is
larger than the one with Hallucinator plugged in.

4. Experiments and Results

In this section, we conduct various experiments on dif-
ferent datasets and contrastive learning models to demon-
strate the effectiveness of the Hallucinator. Firstly, we
introduce the datasets and details in experiments in Sec-
tion 4.1. Then, we continue to evaluate the performance
of the proposed method using linear probing protocol fol-
lowing the paradigm of previous work [10, 11, 12, 23] in
Section 4.2. Following this, we conduct ablation studies
to understand how each module contributes to the final re-
sults in Section 4.3. Lastly, we show the transferability of
pre-trained encoders in downstream tasks requiring dense
pixel predictions, including object detection and semantic
segmentation in Section 4.4.

4.1. Datasets and Training Details

Datasets and Baseline Models. We first evaluate the per-
formance of Hallucinator based on a wide range of datasets
crossing different scales. Specifically, these datasets in-
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Method Backbone Epoch IN-200 IN-1K

MoCoV1 ResNet-50 100 62.19 57.27
MoCoV1(Ours) ResNet-50 100 63.46 59.17

MoCoV2 ResNet-50 100 62.57 64.41
MoCoV2(Ours) ResNet-50 100 63.58 64.97

SimCLR ResNet-50 100 62.22 61.23
SimCLR(Ours) ResNet-50 100 63.02 61.71

SimSiam ResNet-50 100 62.80 63.11
SimSiam(Ours) ResNet-50 100 63.52 63.55

Table 2: Linear classification results on IN-200 and IN-1K.
Our method plugged in the proposed Hallucinator in base-
line methods. All the models are pre-trained for 100 epochs
and use identical training settings for fair comparisons.

clude CIFAR-10, CIFAR-R100 [35], Tiny ImageNet, STL-
10 [14] and ImageNet [15]. Meanwhile, we demonstrate the
performance of Hallucinator in several popular contrastive
learning frameworks, including MoCoV1 [29], MoCoV2
[11], SimCLR [10] and SimSiam [12].
Training and Evaluation Details. Importantly, we strictly
adopt the same training settings when evaluating the Hal-
lucinator’s performance. While additional gain could be
achieved with further exploration of hyper-parameter, it is
not the focus of this work. The ultimate goal of the proposed
Hallucinator is to provide further feature-level contrast for
self-supervised learning. With the Hallucinator plugin,
it benefits diversified self-supervised learning methods re-
gardless of their type of backbones and hyper-parameters
of training.

Datasets on relatively small scales include CIFAR-
10&100, Tiny ImageNet and STL10. To ensure fair com-
parisons, we keep training settings the same over all these
datasets. We follow the paradigm of previous work for pre-
training [44]. Concretely, we pre-train contrastive learning
models for 500 epochs with a batch size of 512 and ResNet-
18 as the backbone. To optimize the models, we use an SGD
optimizer and a cosine-annealed learning rate of 0.5. In the
linear classification task, we train models for 100 epochs.
With the initial learning set as 10, we divide it by 10 at the
60th and 80th epochs.

As the scale of the dataset expands to ImageNet, we use
ResNet-50 as the backbone. For MoCoV1, MoCoV2 and
SimSiam, all the pre-training settings follow the original
work. We use a batch size of 512 and an SGD optimizer
with a cosine-annealed learning rate of 0.5 for SimCLR,
the same as the settings in [44]. For the linear classifica-
tion task, we follow the original work in [29], training the
model for 100 epochs. We set the initial learning rate to 30.
Then, we divide the learning by 10 at the 60th and 80th with
a weight decay of 0.

We set p = 0.5 and α = 0.6 for center cropping and

Acc.(%) Center
Cropping

Asymmetric
Extrapolation Hallucination

62.57 ✗ ✗ ✗
63.58(+1.01) ✓ ✓ ✓

62.58(+0.01) ✓
62.82(+0.25) ✓
62.84(+0.27) ✓
63.07(+0.50) ✓ ✓

Table 3: Ablation of the different modules in the proposed
method.

p (%) 90 80 70 60 50 40

Acc.(%) 63.11 63.19 63.33 63.56 63.58 63.21

Table 4: Ablation of classification results w.r.t the p value.

(β1, β2) (-0.5, 0.0) (0.0, 0.5) (0.5, 1.0) (1.0, 1.5) (0.0, 1.0)

Acc.(%) 62.80 63.32 63.55 63.42 63.58

Table 5: Ablation of classification results w.r.t the extrapo-
lation range.

layer #: n 0 1 2 3 4

Acc.(%) 62.85 63.03 63.57 63.58 63.55

Table 6: Ablation of classification results w.r.t the number
of linear layers n.

center-suppressed sampling, respectively. For asymmetric
linear extrapolation, we set β1 = 0 and β2 = 0.1. In the
Hallucination process, n = 3 for all the results reported in
this paper. All the experiments are conducted on a server
with 8 GPUs.

4.2. Linear Classification Protocol

Following the previous protocol, we first evaluate the
proposed method by linear classification of frozen features.
For each dataset, we report the top-1 classification accuracy
on the validation set.
Results on Small-Scale Datasets. The classification results
on Cifar10&100, Tiny ImageNet and STL-10 are reported
in Table 1. With Hallucinator introduced, we notice a sta-
ble improvement over the baselines ranging from 0.31% to
1.98%. Notably, such improvements do not introduce extra
computations and generalize well to various models.
Results on ImageNet. For the results of ImageNet, we
report the results at two different scales. First, we evalu-
ate its performance on standard IN-1K (i.e. ImageNet-1K),
which consists of 1000 classes. Second, we test the pro-
posed method in IN-200 (i.e. ImageNet-200) with 200 ran-
domly selected classes. We report the corresponding results
in Table 2. We found that Hallucinator essentially benefits
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Method 1N-1k VOC detection COCO detection COCO instance segmentation
Top-1 AP AP50 AP75 AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75

Random init - 33.8 60.2 57.27 26.4 44.0 27.8 29.3 46.9 30.8
Supervised 76.1 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2
InfoMin [51] 70.1 57.6 82.7 64.6 39.0 58.5 42.0 34.1 55.2 36.3

MoCoV1 [29] 60.6 55.9 81.5 62.6 38.5 58.3 41.6 33.6 54.8 35.6
MoCoV1(Ours) 63.8 56.7 81.8 63.2 38.9 58.5 41.9 33.8 55.2 36.0

MoCoV2 [11] 67.5 57.0 82.4 63.6 39.0 58.6 41.9 34.2 55.4 36.2
MoCoV2(Ours) 68.0 57.4 82.7 63.9 39.3 58.8 42.3 34.6 55.5 36.4

Table 7: Fine-tuning results on object detection tasks on PASCAL VOC and COCO, and instance segmentation on COCO.
All models are pre-trained for 200 epochs on ImageNet-1K.

MoCoV1 with 1.27% and 1.89% improvements for IN-200
and IN-1K accordingly. For MoCoV2, SimSiam and Sim-
CLR, we notice a gain in accuracy ranging from 0.44% to
1.01%. On average, the gains are more salient in IN-200.

4.3. Ablation Studies

In this section of ablation studies, we investigate es-
sential modules in our proposed methods, including center
cropping, asymmetric extrapolation and the process of hal-
lucination. We conduct experiments using MoCoV2 with
ResNet-50 as the backbone. We report the results of the
classification task in IN-200 for all the following experi-
ments.
Contributions of Modules. We first report the results with
or without crucial modules introduced in Section 3. Ac-
cording to Table 3, center cropping shows a similar perfor-
mance to the original cropping method, successfully cov-
ering major semantic information of images. However, it
successfully avoids false positives in pre-training, which is
critical for hallucination. Asymmetric extrapolation ben-
efits the performance of representation learning with re-
duced mutual information. This observation is consistent
with the results shown in the symmetric extrapolation [68].
If we combine asymmetric extrapolation and the hallucina-
tion method, the performance of the model could be further
boosted. However, it is still sub-optimal because of possible
false positives in cropping.
Center Cropping. In this work, we apply center cropping
as a critical tool in one branch of contrastive learning to
avoid false positives. Therefore, we investigate how the
proposed model is influenced by the length ratio p in Ta-
ble 4. The classification results are favorable when p is in
the range (0.5, 0.6). We notice a performance drop when p
is less than 0.5. This drop is because the center cropping
failed to cover all semantic information in the images.
Extrapolation Range. We continue to report the extrap-
olation range given its differences in sampling method and

single-side architecture compared with the previous method
[68]. Based on Table 5, the classification accuracy drops if
we set β1 = −0.5 and β2 = 0, respectively. Such obser-
vation is because hallucinated positives share more mutual
information, thus less beneficial to training. Generally, ex-
trapolation boosts accuracy by outperforming the baseline
by at least 0.75%. However, the improvement decreases
when β1 > 1.0. We eventually set β1 = 0.0 and β2 = 1.0,
given its best performance.
Hallucination. We investigate how the number of linear
layers influences the model’s performance. When n = 0,
the hallucination process is an identity transformation, in-
troducing no additional operation except for extrapolation.
When n = 2, non-linearity is introduced. Then we notice
a salient improvement over the baseline. We set n = 3 by
default since it gives better performance.

4.4. Transferring Features

The primary goal of representation is to learn trans-
ferrable features. We evaluate the transferability of features
from the proposed method following the previous proto-
col [29, 11, 10, 12]. Then, we compare the representation
quality by transferring them to downstream tasks, including
VOC [18] object detection and COCO [39] object detection
and instance segmentation. Notably, we re-implement all
these experiments using the same settings in MoCo’s detec-
tron2 codebase [59].
Object Detection on PASCAL VOC. Following the
paradigm of previous work [29], we use Faster R-CNN[20]
as the object detection method using R50-C4 as the de-
tector [30]. We train the model end-to-end on the train-
val2007+2012 and evaluate its performance on test2007.
As shown in Table 7, we observe a stable gain range from
0.3 to 0.8 under different metrics on MoCoV1 and Mo-
CoV2.
Object Detection and instance segmentation on COCO.
We continue to report the detection and segmentation re-
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sults on COCO using Mask R-CNN [30]. Similarly, we use
the R50-C4 as the backbone. The is model in an end-to-
end way on train2017. Then, the model is evaluated on
val2017. Again, the proposed method benefits the object
detection and segmentation tasks with various metrics as
demonstrated in Table 7.

5. Conclusion
In this work, we propose Hallucinator, which gener-

ates additional hard positive pairs for contrastive learning
models based on Siamese structure. Hallucinator generates
novel data samples in the feature space to provide the train-
ing with further contrast without additional computation.
We design an asymmetric feature extrapolation to avoid
trivial positive pairs and innovatively introduce non-linear
hallucination to smooth the generated samples. We empiri-
cally prove the effectiveness and generalization capacity of
Hallucinator to well-recognized contrastive learning mod-
els, including MoCoV1&V2, SimCLR and SimSiam. Fi-
nally, we hope this work could bring the concept of “Hal-
lucination” into the SSL domain and unlock future research
on sample generations&synthesis in contrastive learning.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021.

[9] Pengguang Chen, Shu Liu, and Jiaya Jia. Jigsaw clustering
for unsupervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11526–11535, 2021.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020.

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020.

[12] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
15750–15758, 2021.

[13] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, An-
tonio Torralba, and Stefanie Jegelka. Debiased contrastive
learning. Advances in neural information processing sys-
tems, 33:8765–8775, 2020.

[14] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on

16140



artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[16] Terrance DeVries and Graham W Taylor. Dataset augmen-
tation in feature space. arXiv preprint arXiv:1702.05538,
2017.

[17] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. With a little help from my
friends: Nearest-neighbor contrastive learning of visual rep-
resentations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9588–9597, 2021.

[18] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88:303–308, 2009.

[19] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse:
Simple contrastive learning of sentence embeddings. arXiv
preprint arXiv:2104.08821, 2021.

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[21] Kehong Gong, Bingbing Li, Jianfeng Zhang, Tao Wang, Jing
Huang, Michael Bi Mi, Jiashi Feng, and Xinchao Wang.
Posetriplet: co-evolving 3d human pose estimation, imita-
tion, and hallucination under self-supervision. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11017–11027, 2022.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020.

[23] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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