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(a)

Missing Objects

A zebra brazing on green grass 
next to a pile of rocks.

An airport employee giving 
directions to an airplane.

StableDiffusion Ours
Mismatched Attributes

StableDiffusion Ours

A bedroom has green carpeting 
and a bed.

A red car is to the left of a 
 black mailbox.

Mislocated Objects
StableDiffusion Ours

The teddy bear is right of the 
suitcase.

(b) (c)

The brown teddy bear is placed 
high above the toilet.

Figure 1. Example generation by stable-diffusion-v1-4 and our method. Stable diffusion model makes three types of errors that include
missing objects, mismatched attributes, and mislocated objects. Errors are highlighted in red.

Abstract

Diffusion-based models have achieved state-of-the-art
performance on text-to-image synthesis tasks. However, one
critical limitation of these models is the low fidelity of gen-
erated images with respect to the text description, such as
missing objects, mismatched attributes, and mislocated ob-
jects. One key reason for such inconsistencies is the inac-
curate cross-attention to text in both the spatial dimension,
which controls at what pixel region an object should appear,
and the temporal dimension, which controls how different
levels of details are added through the denoising steps. In
this paper, we propose a new text-to-image algorithm that
adds explicit control over spatial-temporal cross-attention
in diffusion models. We first utilize a layout predictor to
predict the pixel regions for objects mentioned in the text.
We then impose spatial attention control by combining the
attention over the entire text description and that over the

local description of the particular object in the correspond-
ing pixel region of that object. The temporal attention con-
trol is further added by allowing the combination weights to
change at each denoising step, and the combination weights
are optimized to ensure high fidelity between the image and
the text. Experiments show that our method generates im-
ages with higher fidelity compared to diffusion-model-based
baselines without fine-tuning the diffusion model. Our code
is publicly available.1

1. Introduction
Diffusion models [14, 19, 46, 47, 48] have recently rev-

olutionized the field of image synthesis. Compared with
previous generative models such as generative adversar-

⇤Equal contribution.
1https://github.com/UCSB-NLP-Chang/

Diffusion-SpaceTime-Attn
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ial networks [1, 3, 11, 18] and variational autoencoders
[21, 38, 39], diffusion models have demonstrated superior
performance in generating images with higher quality, more
diversity, and better control over generated contents. Partic-
ularly, text-to-image diffusion models [2, 33, 36, 40, 42]
allow generating images conditioned on a text description,
which enables generation of creative images due to the ex-
pressiveness of natural language.

However, recent studies [10, 31] have revealed that one
critical limitation of existing diffusion-model-based text-to-
image algorithms is the low fidelity with respect to the text
descriptions – the content of the generated image is some-
times at odds with the text description, especially when the
description is complex. Specifically, typical errors made by
stable diffusion models fall into three categories: missing
objects, mismatched attributes, and mislocated objects. For
example, in Fig. 1(a), stable diffusion model ignores the air-
plane even though it is mentioned in text; in Fig. 1(b), the
model confuses “red car” and “black mailbox” and gener-
ates a red mailbox; in Fig. 1(c), the model locates teddy
bear behind the toilet, despite the description “teddy bear is
placed high above the toilet.”

Such infidelity problems suggest that the cross-attention
map on the text description may not be accurate. In partic-
ular, if we view the generation process of a diffusion model
as a sequence of denoising steps, then the cross-attention
on text descriptions can be considered as a function of both
spatial (pixels) and temporal (denoising steps) information.
Therefore, the inaccuracies of the cross-attention can result
from the loose control over both the spatial and temporal
dimensions. On one hand, spatial attention controls at what
pixels the model should attend to each object and the cor-
responding attributes mentioned in the text. If the spatial
attention is incorrect, the resulting images will have incor-
rect object locations or miss-associated attributes. On the
other hand, temporal attention controls when the models
should attend to different levels of details in the text. As
previous works have revealed, diffusion models tend to fo-
cus on generating object outlines at earlier denoising steps
and on details at later [50]. Thus loose control over the
temporal aspect of attention can easily lead to overlooking
certain levels of the object details. In short, to improve the
fidelity of text-to-image synthesis, one would need to ex-
plicitly control both spatial and temporal attention to follow
an accurate and optimal distribution.

In this paper, we propose a new text-to-image algorithm
based on a pre-trained conditional diffusion model with ex-
plicit control over the spatial-temporal cross-attention map
on text. The proposed algorithm introduces a layout predic-
tor and a spatial-temporal attention optimizer. The layout
predictor takes the text description as input and generates a
spatial layout for each object mentioned in the text. Alter-
natively, the layout can also be provided by the user. Then

the spatial-temporal attention optimizer imposes direct con-
trol over the spatial and temporal aspects of the attention
according to the spatial layout. In particular, for the spatial
aspect, we parameterize the attention map such that the at-
tention outputs in the designated pixel region for an object
are a weighted combination of attention over the entire text
description and that over the local description that specif-
ically describes the corresponding object. In this way, we
manage to emphasize the attention over the object descrip-
tions. For the temporal aspect, we allow the combination
weights to change across time and optimized according to
a CLIP objective that measures the agreement between the
generated images and the text description. In this way, we
allow the attention to focus more on the entire description
at the early stage and gradually shift to the detailed local
descriptions as the denoising process proceeds. The entire
pipeline resembles a typical painting process of a human,
where each object’s position is determined beforehand and
the focus gradually shifts from global information to the lo-
cal details of each object.

We conduct extensive experiments on datasets that con-
tain real and template-based captions [6, 26] and our newly
created synthetic dataset that contains complex text de-
scriptions. Results show that our method generates im-
ages that better align with descriptions compared to other
stable diffusion-based baselines. As shown in Fig. 1, our
method effectively resolves the above-mentioned three er-
rors. Particularly, controlling spatial attention locates ob-
jects at the desired position, and controlling temporal at-
tention promotes the occurrence of objects with associated
attributes. Our findings shed light on fine-grained control of
diffusion models in text-to-image generation tasks.

2. Related Work

Diffusion Models Diffusion models are a class of gen-
erative models that have demonstrated state-of-the-art per-
formance on image synthesis tasks [8, 14, 19, 46, 47, 48].
These models synthesize images by sampling a noisy im-
age from the standard Gaussian distribution and iteratively
denoising it back to a clean image. Their impressive per-
formance has advanced research in multiple computer vi-
sion areas including inpainting [30, 41, 51], image edit-
ing [7, 12, 32, 50], super-resolution [15, 43], video synthe-
sis [13, 16, 55], and applications beyond computer vision
[22, 23, 52]. Among these, text-to-image diffusion models
have gained significant attention [2, 36, 37, 42, 58]. Taking
text descriptions as inputs, these models generate high qual-
ity images that are semantically aligned with the input text,
which have led to many creative and artistic applications.

Enhancing the Controllability of Text-to-Image Diffu-
sion Models While diffusion-based text-to-image mod-
els have shown promising results, recent works have high-
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A red car is to the left  
of a black mailbox. Layout Predictor

A photo of a 
red car.

A photo of a 
black mailbox.

A red car is to the 
left of a black 
mailbox.

(x1, y1)
(x2, y2) Human Input

OR

M1M2

Figure 2. Overview of our text-to-image generation pipeline at one denoising step. Given input text D, we first parse it and extract
all objects mentioned, constructing local descriptions Li. Next, the layout predictor predicts the pixel region for each object in the text.
The diffusion model attends to the global description D and additionally attends to the local description Li in object i’s region. The final
attention output is a weighted combination of attention to both global and local descriptions, where the combination weights sum up to 1
for each pixel and are optimized for each denoising step to achieve a high fidelity with D.

lighted cases where models fail to generate high-fidelity im-
ages with respect to the input text [10, 31]. To this end,
prior works have explored various ways to enhance the con-
trollability of text-to-image diffusion models. One line of
work enhances the controllability by improving diffusion
models’ ability to understand natural language, which in-
cludes using a more powerful text encoder that is separately
trained on language modeling tasks [2, 42], incorporating
linguistic structures in the text to guide the cross-attention
between image and text [10], and decomposing a complex
text description into multiple components that are easy to
generate [28]. Another line of work conditions diffusion
models’ generation on auxiliary inputs such as object layout
[2, 9, 24, 54] and silhouette [17, 34, 45, 56, 57]. By modify-
ing diffusion models’ attention operation according to these
auxiliary information or directly fine-tuning diffusion mod-
els to take these auxiliary inputs, they are able to control the
location and shape of the objects in the image. Finally, some
work adds temporal aspect control on diffusion models by
modifying the input text condition at each denoising step,
which allows them to disentangle a desired attribute from
other contents [50]. Different from prior works, our method
imposes both spatial and temporal control in cross-attention
layer. Moreover, our method does not require auxiliary in-
puts and does not fine-tune the diffusion model.

3. Methodology
3.1. Problem Formulation

We focus on the standard text-to-image problem. Given
a text description, denoted as D, our goal is to generate an
image that is consistent with D. For a concrete exposition,
we will use an example description “A red car is to the left
of a black mailbox” in the following. Our work aims to

improve the fidelity of the generated image to text, which
includes three requirements:

• Object Fidelity: The generated images should include
all the objects mentioned in D. In our example, the gen-
erated image should contain a car and a mailbox.

• Attribute Fidelity: The attributes of each object in the
image should match those in D. In our example, the car
should be red and the mailbox should be black.

• Spatial Fidelity: The relative spatial positions of the ob-
ject should match the description in D. In our example,
the car should be on the left and the mailbox on the right.

We will tackle these problems using a pre-trained, fixed sta-
ble diffusion model.

3.2. Method Overview
To achieve high-fidelity text-to-image generation, we

propose an algorithm consisting of the following four steps.
Step 1: Object Identification We extract all the objects
mentioned in D, denoted as O1:N , by eliciting the noun
phrases using spaCy.2 N is the total number of objects. In
our sample, O1 =“a red car” and O2 =“a black mailbox”.
Step 2: Layout Prediction For each object Oi, we use
a layout predictor to predict its pixel region, Ri, which is a
set of pixels roughly specifying where the object should be.
The layout can also be provided by human users.
Step 3: Local Description Generation For each object
Oi, we generate a local text description, Li, containing only
that object information using a simple template. In our ex-
ample, there are two local descriptions. L1 =“A photo of a
red car” and L2 =“A photo of a black mailbox”.

2https://spacy.io/.
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Step 4: Attention Optimization During the generation
process, we guide the diffusion model to combine attention
to both the global description D and the local descriptions
L1:N according to the object layout. The attention combi-
nation weights are optimized for each input description.

The following subsections will provide further details
about steps 2 and 4.

3.3. Layout Predictor
Our layout predictor is adapted from [53], which aims to

predict the center coordinate Ci = [Xi, Yi] for each object
Oi

3. Specifically, the layout predictor is a transformer that
takes the text description D as the input. At the output posi-
tion where the input mentions the object Oi, we let the trans-
former output a set of Gaussian mixture model (GMM) pa-
rameters to fit the object’s center coordinate Ci. Formally,
denote fi(D;✓) as the output of the layout predictor at the
location of the mentioning object Oi. Then

fi(D;✓) =
K[

k=1

{µik,⌃ik, wik}, (1)

where µik, ⌃ik, and wik denote the mean, covariance ma-
trix and the prior probability of mixture k; ✓ denotes the
network parameters.

To improve the fidelity of the object positions in the pre-
dicted layout, we introduce a hybrid training objective in-
cluding an absolute position objective and a relative posi-
tion objective.

Absolute Position Objective The absolute position ob-
jective provides direct supervision of the exact position of
each object. Formally, we assume access to an image cap-
tioning dataset Dreal with description D as well as the ex-
tracted labels of all the objects {Oi} and their center co-
ordinates {Ci}. Then the training objective is to minimize
the negative log-likelihood of the ground-truth coordinates
under the predicted GMM distribution, i.e.

Labs(✓) = ED,{Ci}⇠Dreal

h NX

i=1

`nll(Ci;fi(D;✓))
i
, (2)

where `nll(Ci;fi) denotes the negative log-likelihood of
ground truth Ci under the GMM specified by fi.

Relative Position Objective In many cases, the text de-
scription only mentions the relative positions of the objects,
and thus it is more important to ensure the relative position
of the predicted position is correct than the absolute posi-
tion. To further enforce the fidelity of the relative positions,
we introduce the following relative position objective.

To start with, we construct a synthetic dataset, Dsyn,
which consists of text description D with explicit descrip-
tions of relative spatial relations. We first randomly select N

3More details of the layout predictor can be found in Appendix D.

objects with attribute modifiers. We then select M pairs of
objects to specify their relative spatial relation. For object
pair (Oi, Oj), their spatial relation, Rij , is randomly drawn
from “left of”, “right of”, “above” and “below”. Finally,
we prompt GPT-3 [4] to generate the text description D that
mentions all the objects and their relative positions. Our fa-
miliar “A red car is to the left of a black mailbox” is one
such example. Further details are provided in Appendix B.

Next, we introduce a loss to penalize violating the rela-
tive position. If object i is to the left of object j, we enforce
that the rightmost mixture mean of object i is to the left of
the leftmost mixture mean of object j. Formally,

`rel(Rij = “left”;fi,fj) = max{max
k

µik(0)�min
k

µjk(0),��},
(3)

where µik(0) denotes the zeroth element (the x-coordinate)
of µik, and � is a pre-specified margin. The `rel of the other
three types of relations are defined similarly. The relative
position loss is thus the aggregation of `rel across the syn-
thetic dataset:

Lrel(✓) = ED,{Rij}⇠Dsyn

h X

i,j:Rij 6=;

`rel(Rij ;fi,fj)
i
, (4)

where fi is short for fi(D;✓).

Training and Inference To sum up, the final training ob-
jective is the combination of both:

Llayout(✓) = Labs(✓) + ⇠Lrel(✓), (5)

where ⇠ is a hyperparameter. During inference time, we
randomly draw the center coordinate Ci from the predicted
GMM. The pixel region for object Oi, Ri, is defined as a
circular region centered at the drawn Ci with a fixed radius
r. As would be shown in Appendix D, Ri only roughly reg-
ulates the position of the generated objects, and the actual
size of the object can go beyond or below the size of Ri.
Thus a fixed r is sufficient for this purpose.

3.4. Spatial-Temporal Attention Optimization
Recall that D is the global description and {Li} are local

descriptions for each object. Our goal is to guide the diffu-
sion model to attend to not only D, but also Li in object i’s
region, Ri, so that the model is more strongly prompted to
generate the specific object as specified in the layout.

Spatial-Temporal Attention Recall that the standard
cross-attention [49] is defined as

Attention(Q,K,V ) = softmax
�
QK

T
/

p
d
�
V , (6)

where Q 2 Rh⇥w,d is the queries vectors for each pixel,
and K,V 2 Rl,d are key and value vectors for each text
description token; h and w represent the image height and
width, l represents the text description length; d represents
the dimension of each attention vector.
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Since we have multiple text descriptions, we define
KD,VD as the key and value vectors for the global descrip-
tion D, and KLi ,VLi for the local description Li. Further,
we introduce a set of binary mask matrices {Mi} to indicate
the region for each object, i.e.

Mi(x, y) = 1, if (x, y) 2 Ri, and 0, otherwise. (7)

Then the output of the attention layer of the denoising net-
work at time t is defined as

O(t) =
NX

i=1

�itMi � Attention(Q,KLi ,VLi)

+
⇣
1�

NX

i=1

�itMi

⌘
� Attention(Q,KD,VD),

(8)

where �it are the attention combination weights, and � de-
notes element-wise multiplication. Note that the combi-
nation weights are functions of time t, which is motivated
by the observation that different denoising steps control the
generation of different levels of details. When synthesizing
images, the combination weights �it are optimized on the
fly for each corresponding mask and time. By introducing
this time dependency, we allow the diffusion model to focus
more on the global description at earlier time steps and shift
to local descriptions later.

Optimization Objective All the attention combination
weights, � = {�it}, are determined by maximizing the con-
sistency between the generated image and the text descrip-
tion as measured by the CLIP similarity [35]. We intro-
duce two CLIP similarities, a global CLIP similarity that
compares the entire image and the global description, and
a set of local CLIP similarities that compare the images at
each object region and the corresponding local descriptions.
Formally, denote the generated image as I(�), and its local
patch at each object’s region as IOi(�).4 Note that we adopt
the deterministic PLMS denoising process [27] (i.e., with
� = 0), so both I and IOi are deterministic functions of �.
Then the loss for optimizing � is given by

Lattend(�) = �CLIP(I(�),D)��

NX

i=1

CLIP(IOi(�),Li), (9)

where CLIP(·) denotes the CLIP similarity, and � is a hyper-
parameter.

4. Experiments
We conduct experiments to evaluate our method’s perfor-

mance and generalizability. We also perform ablation study
on important design choices of our method.
Implementing Details: We adopt RoBERTa-base [29] as
the base model for layout predictor and use 5 mixtures in

4To standardize the image patch sizes, IOi is obtained by cropping the
original image with a minimum square that encompasses Ri and resizing
it to 224⇥224.

GMM. We use stable-diffusion-v1-4 [40] pre-trained on the
laion dataset [44] and freeze it throughout all experiments.
All generated images are in the size of 512 ⇥ 512. We use
PLMS sampler [27] to synthesize images with 50 denoising
steps, and we use Adam [20] to optimize the layout pre-
dictor and attention combination weights. More details on
hyperparameters and optimization are in Appendix A.

4.1. Evaluation on Fidelity of Generated Images
We first evaluate our method on object, attribute, and

spatial fidelities as introduced in Sec. 3.1 using both ob-
jective and subjective metrics.
Baselines: We identify four baseline methods on generat-
ing images from complex text descriptions. (1) VANILLA-
SD [40] is the pre-trained text-to-image stable diffusion
model that directly generates images conditioned on the
text description. (2) COMPOSABLE-DIFFUSION [28] is a
diffusion-based compositional generation method. To gen-
erate images from a text description, the text is first decom-
posed into the conjunction of multiple components (e.g., for
the example in Sec. 3.1, the components are “A red car is to
the left of a black mailbox.” AND “A red car” AND “a
black mailbox”). Each component is separately modeled
by the diffusion model and then composed to generate an
image by merging the outputs of each denoising step. (3)
STRUCTURE-DIFFUSION [10] improves VANILLA-SD on
generating images with better object and attribute fidelities.
They do so by first extracting noun phrases at different lev-
els of the parsing tree. The model then separately attends to
each noun phrase and combines the attention outputs by tak-
ing their arithmetic mean. Different from our method, they
perform cross-attention on the whole image instead of the
region specific to an object. (4) PAINT-WITH-WORDS [2]
assumes that users provide the pixel region of each object
to be generated. Pixels in the region then increase their at-
tention weights to the text that describes the corresponding
object, and the amount of increase is determined by heuris-
tic rules. For a fair comparison, we use the pixel region
predicted by our layout predictor, and we report the perfor-
mance with the ground truth region in Appendix E.
Datasets and Metrics: We conduct experiments on three
datasets. (1) MS-COCO [25] contains photos taken by
photographers and manually annotates the caption for each
photo. We use the caption as the input text description. (2)
VSR [26] is proposed for probing spatial understanding of
vision-language models. Constructed from a subset of MS-
COCO, it uses templates to generate captions that describe
spatial relations in the image (e.g., “The horse is to the left
of the person.”). (3) GPT-synthetic is the synthetic dataset
introduced in Sec. 3.3. We manually check the test set to fil-
ter out sentences that do not conform to the specified spatial
relation. Compared with VSR, this dataset has more diverse
and complex text descriptions. The final dataset contains
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MS-COCO VSR GPT-synthetic
Object (100) " Attribute (100) " Overall Object (100) " Spatial (100) " Overall Object (100) " Attribute (100) " Spatial (100) " Overall

VANILLA-SD 66 62 42% 64 66 48% 60 58 60 38%
COMPOSABLE-DIFFUSION 53 48 30% 63 60 18% 63 60 47 28%
STRUCTURE-DIFFUSION 60 63 48% 54 64 32% 58 54 58 32%
PAINT-WITH-WORDS 75 74 52% 54 59 30% 65 52 57 32%
Ours 75 74 – 68 77 – 84 83 86 –

Table 1. Subjective evaluation of our method and baselines. Best numbers are in bold. Spatial relation is not available on MS-COCO
because very few of its captions contain spatial relations. Attribute is not available on VSR as its captions do not consider attribute. Object,
Attribute, and Spatial show the total score of 50 evaluations, where a model with the highest fidelity would achieve a score of 100. Overall
denotes the percentage of generation of each method that is rated better than our method.

MS-COCO VSR GPT-synthetic
Object SPRel Object SPRel Object SPRel
Recall Precision Recall Precision Recall Precision

VANILLA-SD 58.0% – 62.1% 56.0% 42.4% 56.8%
COMPOSABLE-DIFFUSION 51.8% – 60.8% 72.2% 34.4% 52.6%
STRUCTURE-DIFFUSION 61.7% – 62.3% 58.3% 43.0% 59.3%
PAINT-WITH-WORDS 57.3% – 63.8% 47.1% 45.9% 53.5%
Ours 69.6% – 65.1% 75.0% 47.2% 66.7%

Table 2. Automatic evaluation of our method and baselines.
SPRel Precision: Spatial Relation Precision. Best numbers are
in bold. SPRel precision is not available on MS-COCO since most
captions do not have an explicit spatial relation.

500 descriptions, and we downsample MS-COCO and VSR
to have the same size. Statistics including the number of
objects and spatial relations are shown in Appendix B.

For automatic evaluations, we consider two metrics. (1)
Object Recall measures the percentage of successfully syn-
thesized objects over objects mentioned in the text. We use
DETR [5] to detect objects in generated images. To calcu-
late recall, we divide the number of detected objects in the
text by the total number of objects in the text that also be-
long to one of the MS-COCO categories. It measures the
object fidelity of generated images. (2) Spatial Relation
Precision (SPRel Precision) measures the percentage of the
correct spatial relations among all the relations whose corre-
sponding objects are successfully synthesized. This metric
measures the spatial fidelity of generated images. We con-
sider the relation of left, right, above, and below because
their correctness can be evaluated by comparing the bound-
ing box centers. Qualitative examples of spatial relations
beyond these four are shown in Appendix G. We also re-
port the CLIP similarities between generated images and
the input description in Appendix C. We observe that dif-
ferent methods have very close CLIP similarities, though
our method still achieves competitive results.

Results: The results are shown in Table 2. As shown in
the table, our method outperforms all baselines on both ob-
ject recall and SPRel precision. Specifically, compared with
baselines that do not have spatial attention control (all but
PAINT-WITH-WORDS), our method is significantly better
on SPRel precision, which illustrates the effectiveness of
spatial control and indicates that it is difficult for the stable
diffusion model to generate correct spatial relations with-
out guidance on the layout. Our method moves the burden
of generating objects at the correct location from diffusion

models to a separate layout predictor, allowing the whole
pipeline to achieve better spatial fidelity. On the other hand,
compared with PAINT-WITH-WORDS that does not impose
the temporal attention control, our method achieves bet-
ter object recall, showing that our optimized combination
weights across the temporal dimension strike a better bal-
ance between local and global descriptions.

Fig. 3 demonstrates examples of text descriptions and
images generated by our method and baselines. We observe
that our method resolves three types of errors in baselines.
First, our method alleviates the missing object issue (in the
top panel). Baselines tend to focus on one object in the text
and ignore other objects (e.g., focusing on the elephant and
ignoring the man in the second row), whereas our method
generates all objects. Second, as shown in the middle panel,
our method mitigates the mismatched attribute issue. Par-
ticularly, baselines struggle when multiple objects are men-
tioned in the text, where they mismatch the attribute and
object (e.g., red truck in the first row). Finally, the bottom
panel shows examples where our method reduces the num-
ber of mislocated objects. Note that our method is effective
both on the four relations and other spatial relations. More
examples can be found in Appendix G.

Subjective Evaluation: To further evaluate the fidelity and
quality of the generated images, we perform a subjective
evaluation on Amazon Mechanical Turk. Specifically, we
randomly sample 25 text descriptions for each dataset in Ta-
ble 2. Each subject was presented with the text description
and corresponding image generated by a single method or a
pair of methods and asked the following four questions: (1)
(Object Fidelity) Does the image contain all objects men-
tioned in the text? (2) (Attribute Fidelity) Are all synthe-
sized objects consistent with their characteristics described
in the text (e.g., color and material)? (3) (Spatial Fidelity)
Does the image locate all objects at the correct position such
that the spatial relations in the text are satisfied (if an object
in the relationship is missing, it is considered as an incor-
rect generation)? and (4) (Overall) Which image in the pair
has higher fidelity with the text and has better quality? The
first three questions are evaluated for each method individ-
ually with a score of 0, 1, or 2, where 2 denotes all ob-
jects/attributes/relations are correct and 0 denotes none of
them is correct. The last question is evaluated on a pair of

7771



The motorcycle is parking to the right of a bus.

M
is

si
ng

 O
bj

ec
ts

Composable 
Diffusion

Structure 
Diffusion Ours (1)Paint-with- 

words
M

is
m

at
ch

ed
 A

tt
ri

bu
te

s
M

is
lo

ca
te

d 
O

bj
ec

ts

A man riding on top of an elephant into water surrounded by forest.

The white truck was parked besides a red building.

The yellow banana is to the left of a red gem.

The cat is within the backpack.

A red cup is situated to the left of a blue bag.

Ours (2)Vanilla SD

Figure 3. Example images generated by our method and baselines. Typical errors of baselines include missing objects, mismatched
attributes, and mislocated objects. Ours (1)/(2) show the results with two different random seeds.

images, one generated by our method and the other by a
baseline. Each generated image is evaluated by two sub-
jects, so the total score of the first three questions is 100.
More details are in Appendix H.

Table 1 shows the results. Our method achieves signifi-
cantly better performance in most cases, especially on GPT-
synthetic dataset that contains multiple objects and relations

in the same description. The results show that our method
is effective at generating images with high fidelity without
sacrificing perceptual quality.

4.2. Additional Analyses

Performance on Each Text Complexity Level: To explore
the capability of our method, especially on complex text, we
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Figure 4. Performance when the number of objects and spatial re-
lations in the text increase.

The black motorcycle was placed on top of a yellow bus.
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Figure 5. Example images generated by our method and baselines
on novel object combinations.

analyze the performance at each complexity level. Specifi-
cally, we use the GPT-synthetic dataset where multiple ob-
jects and relations can appear in the same description. We
use the number of objects N and number of spatial relations
M introduced in Sec. 3.3 as proxies for text complexity and
plot the performance of each method as the text becomes
more complex. i.e., we plot the performance for each value
of N regardless of M , and vise versa for M . As shown in
Fig. 4, the performance of all methods decrease as the text
becomes more complex, but our method still outperforms
or is on par with others on complex descriptions. Note
that PAINT-WITH-WORDS uses the same layout predictor
as ours, which partially explains its strong performance.

Generalizability to novel object combinations is a critical
requirement for text-to-image models. However, since MS-
COCO dataset is collected from real photos, most of its cap-
tions contain object pairs and object-attribute pairs that are
common in daily life, which are also more likely to overlap
with stable diffusion’s pre-training data. Thus we addition-
ally evaluate our method on another synthetic dataset that
is created similarly to Sec. 3.3, but contains uncommon ob-
ject pairs, object-attribute pairs, and object spatial relations.
Fig. 5 shows sample images generated by our method and
baselines. It can be observed that our method successfully
generates novel object pairs (e.g., “zebra is looking at com-
puter”). Performance on this dataset and more generated
examples are shown in Appendix F. Overall, our method is
able to generalize to novel object combinations.

Object Recall SPRel Precision

Ours 47.2% 66.7%
No spatial control 39.6% 51.7%
No temporal control 43.8% 61.4%
No optimization 41.0% 55.6%

Table 3. Ablation performance on GPT-synthetic test set.

4.3. Ablation Study
In this section, we will investigate the influence of two

important steps in our method, namely, the layout predic-
tor and the spatial-temporal attention. We first study how
spatial-temporal attention affects our performance. To do
that, we consider three variants of attention.

First, we explore the attention without spatial control.
Concretely, the diffusion model still attends to both global
description and local descriptions. However, instead of only
attending to a local description in the pixel region of the ob-
ject, the model now attends to all local descriptions in the
whole image. The combination weights at each denoising
step are optimized with only the global CLIP similarity in
Sec. 3.4. Table 3 shows that its performance drops drasti-
cally, demonstrating the importance of spatial control.

Second, we explore the attention without temporal con-
trol, where combination weights remain the same for all
denoising steps. Note that the weights can be different for
each object and are optimized with Lattend(�) in Sec. 3.4.
The results in Table 3 show a significant degradation un-
der both metrics, indicating the benefits of temporal depen-
dency on attention.

Finally, we explore the attention without optimization.
Specifically, we fix the combination weight �it = 1

N
for all

i and t, where N is the number of objects. This value is also
the initialization point of {�it} in our method. As shown
in Table 3, the performance further drops compared to the
no temporal control variant. The results indicate that opti-
mizing the combination weights for a new text description
is critical for generating images with high fidelity.

We further study the effects of our layout predictor,
which includes the layout predictor trained with only one
of the absolute and relative position objectives, the compar-
ison with ground truth and user-provided pixel region, and a
different strategy to construct the pixel region for an object.
Results of these experiments are presented in Appendix E.

5. Conclusion
In this work, we study the text-to-image synthesis task

based on diffusion models. We find existing methods
lack explicit control on cross-attention in diffusion mod-
els, which leads to the generation of low-fidelity images.
We propose an algorithm that imposes control on cross-
attention in spatial and temporal aspects. Experiments
show our method outperforms baselines in generating high-
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fidelity images. Further ablation study verifies the effective-
ness of our spatial and temporal attention control. One limi-
tation of our method is the reliance on a time-consuming op-
timization scheme, which takes around 10 minutes for each
text-to-image generation. Future work may consider strik-
ing a better balance between performance and efficiency.
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