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Abstract

Recent advances in whole-slide image (WSI) scanners
and computational capabilities have significantly propelled
the application of artificial intelligence in histopathology
slide analysis. While these strides are promising, cur-
rent supervised learning approaches for WSI analysis come
with the challenge of exhaustively labeling high-resolution
slides—a process that is both labor-intensive and time-
consuming. In contrast, self-supervised learning (SSL)
pretraining strategies are emerging as a viable alterna-
tive, given that they don’t rely on explicit data annotations.
These SSL strategies are quickly bridging the performance
disparity with their supervised counterparts. In this con-
text, we introduce an SSL framework. This framework aims
for transferable representation learning and semantically
meaningful clustering by synergizing invariance loss and
clustering loss in WSI analysis. Notably, our approach out-
performs common SSL methods in downstream classifica-
tion and clustering tasks, as evidenced by tests on the Came-
lyon16 and a pancreatic cancer dataset. The code and addi-
tional details are accessible at https://github.com/
wwyi1828/CluSiam.

1. Introduction
Histopathology slide analysis remains the gold stan-

dard for cancer diagnosis and prognosis. In recent years,
researchers have seen the burgeoning adoption of digital
histopathology slides in pathology laboratories, thanks to
the availability of digital pathology scanners and advance-
ments in computer vision, revolutionizing computational
pathology [24]. While adoption of digital slides has ac-
celerated, progress has been hindered by the exceptionally
high resolution of whole slide images (WSIs), often exceed-
ing 40, 000×40, 000 pixels, which makes directly applying

standard computer vision models to WSIs not feasible. Fur-
thermore, downsampling WSIs to a more manageable mag-
nification level results in a substantial loss of fine-grained
visual information.
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Figure 1: The framework of CluSiam. View 1 and View
2 are distinct augmentations of the same images, pooled
together for clustering. The invariance loss (solid line)
aligns representations of the two views, while the cluster
loss (dashed line) pushes cluster centroids apart.

To address the challenges, WSIs are commonly sub-
divided into more manageable patches through sliding-
window techniques. These patches are then labeled using
annotations, forming training data for a patch-level classi-
fier. Features extracted by the trained patch-level classifiers
are aggregated to infer slide-level label [21, 42, 43, 40, 33].
However, this annotation-reliant approach has a signifi-
cant drawback. It’s heavily dependent on precise annota-
tions, which are expensive to obtain. Annotating WSIs is
a painstaking and error-prone task that requires pixel-by-
pixel scrutiny from highly skilled pathologists. The elusive
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borders between different tissue patterns introduce variabil-
ity among pathologists. Additionally, tissue morphology’s
inherent variability often further diminishes the accuracy of
annotations. Therefore, obtaining precise and consistent an-
notations remains an uphill battle, even with substantial ex-
pertise and time invested by trained pathologists. Inaccurate
annotations can potentially lead to inaccurate and inconsis-
tent WSI analysis models [39, 1].

To mitigate the impact of inaccurate annotations, noise-
aware learning models have emerged. These methods im-
prove the performance of patch-level feature extractors by
either filtering or down-weighting the noisy patches [1, 28,
13]. However, these models are still constrained by the an-
notation bottleneck. Even acquiring noisy annotations for
WSIs demands substantial time and expertise, which moti-
vates the need for annotation-free techniques. They reduce
costs and save time. They also eliminate the impact of inac-
curate annotations.

In this challenging landscape, annotation-free techniques
have emerged as a promising solution. By requiring only
whole-slide labels, they not only cut costs and save time
but also eliminate the effects of annotation inaccuracies.
Among these, Chen et al. [9] proposed a method that lever-
ages a unified memory mechanism to train convolutional
neural networks (CNNs) directly with numerous images.
However, this approach is constrained to lower magnifi-
cation levels, restricting pixel sizes to above 2 µm. Con-
versely, other studies [33, 30, 14, 15] have shown that
achieving better results is possible by employing higher or
multi-scale magnification levels across a variety of model
designs.

Weakly supervised techniques have gained popularity
as an annotation-free approach that retains high-resolution
details by utilizing slide-level labels instead of exhaustive
patch-level annotations. Obtaining slide-level labels is less
laborious compared to exhaustive patch-level annotations.
Thus, weakly supervised learning has become particularly
popular for histology slide classification tasks [36, 37, 46].
These methods employ slide-level labels as weak supervi-
sion for all patches within a slide. Multiple instance learn-
ing (MIL) models leverage this by treating slides as positive
or negative bags, with patches as instances [29, 30, 22, 46, 3,
34]. However, MIL models have some limitations. They of-
ten neglect important contextual cues across a whole slide.
Additionally, off-the-shelf feature extractors pretrained on
natural images fail to sufficiently capture tissue morphol-
ogy. These drawbacks motivate exploring self-supervised
approaches for histology slides.

Self-supervised learning (SSL) enables models to learn
feature representations without the need for labels. SSL
methods are rapidly closing the performance gap with su-
pervised approaches. However, SSL typically requires a
large sample size. but this is mitigated for high-resolution

histopathology images by splitting WSIs into numerous
small patches. In computational pathology, self-supervision
methods become an appealing solution for annotation-free
WSI analysis [30, 27, 26, 44, 7]. These methods uti-
lize multiple-instance learning to aggregate self-supervised
patch representations. They have demonstrated the capabil-
ity to match the performance of state-of-the-art supervised
methods while reducing the annotation burden on patholo-
gists by eliminating the need for manual annotations.

One of the key paradigms of SSL is contrastive-based
SSL [19, 11, 35, 38, 25]. They may not be the most ef-
fective in histopathology image analysis because adjacent
patches from a WSI can be very similar in their morpho-
logical features, making them unsuitable as negative sam-
ple pairs. These methods also rely on a large number of
negative pairs. To avoid the need for negative pairs, some
knowledge-distillation-based methods [12, 6, 18] concen-
trate solely on positive sample pairs, which are defined us-
ing augmented views of the same image. However, only fo-
cusing on positive pairs might prevent them from learning
global information, as their objective functions only con-
sider augmentations from the same image.

Apart from SSL representation learning, another pivotal
technique gaining attention is clustering. Clustering is an
unsupervised learning approach where similar samples are
grouped to ensure intra-cluster cohesion and inter-cluster
separation. In the domain of WSI retrieval, clustering could
be instrumental. Wang et al. [41] employed a K-Means
clustering-driven architecture, while Chen et al. [8] inte-
grated a self-supervised variational autoencoder with the K-
Means algorithm, both for WSI retrieval systems. Given
the growing prominence of such methods in WSI retrieval,
there’s an increasing demand to refine these clustering algo-
rithms within computational pathology. Clustering shares
similarities with representation learning. This has inspired
clustering-based SSL methods that use pseudo-labels from
iterative K-Means clustering algorithms for training feature
encoders. Although these methods can learn effective im-
age representations, they may not improve the performance
of the actual clustering tasks as they cluster images into
thousands of groups, which might hinder their direct use for
histopathology image retrieval. Large cluster counts make
identifying relevant groups challenging.

To address the shortcomings, we propose Cluster-Siam
(CluSiam), a framework that decouples clustering from
representation learning and retains only the most relevant
and interpretable clusters for medical applications. Clu-
Siam takes advantage of an existing self-supervised back-
bone to extract representations. We introduce a cluster loss
to guide the backbone in learning effective representations
while generating accurate, interpretable cluster assignments
for histopathology images. (Figure 1). Our experiments
demonstrate that CluSiam outperforms baselines on down-
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stream classification tasks. Additionally, our adaptive clus-
tering algorithm outperforms K-Means in clustering, result-
ing in improved cluster assignments. In addition, our clus-
ter assigner emerges as a by-product of the representation
learning process, thus introducing only a small additional
computational cost once the training is complete.

The contributions of this paper can be summarized as
follows:

• We propose CluSiam, a SSL framework for image rep-
resentation learning and clustering that combines in-
variance loss and cluster loss (Figure 2)

• We compare the performance of different SSL frame-
works and demonstrate that CluSiam outperforms pop-
ular SSL methods on multiple histopathology datasets.

• CluSiam provides an efficient and accurate way to
cluster histopathology images without either patch-
level annotations or slide-level labels, with cluster-
ing performance better than the widely used K-Means
clustering in digital pathology.

Minimize
off-diagonals

Encoder

Images

View 1

View 2 Assigner

Maximize
on-diagonals

Batch Cluster

Predictor

Figure 2: The details of the CluSiam framework. The in-
variance loss maximizes the on-diagonal elements of the
similarity matrix between views. The cluster assigner takes
the concatenated views as input and generates cluster as-
signments. The cluster loss minimizes the off-diagonal ele-
ments of the similarity matrix between cluster centroids.

2. Related Works
2.1. Self-supervised learning

Self-supervised learning (SSL) methods have recently
demonstrated effectiveness for computer vision tasks by
learning representations without reliance on manual labels.
SSL techniques leverage the intrinsic structure and con-
sistency of the data itself as a supervisory signal. Sev-
eral paradigms have arisen, including contrastive-based,

knowledge-distillation-based, clustering-based, and infor-
mation maximization-based approaches. Typically, these
techniques function by generating augmented pairs of views
from a single data instance and directing the model to pro-
duce similar outputs for each view.

Contrastive learning stands out as a key self-supervised
approach in representation learning, with the goal of deriv-
ing informative and concise representations from unstruc-
tured data. A slew of methods grounded in contrastive
learning have been proposed, including Contrastive Predic-
tive Coding (CPC) [35], SimCLR [11], MoCo [19], and
NNCLR [17]. CPC, recognized for its widespread applica-
tion, employs an autoregressive model to predict future ob-
servations based on past observations, rendering it particu-
larly apt for sequential data. MoCo and SimCLR, two other
popular contrastive learning techniques for instance dis-
crimination, generate positive pairs by utilizing two differ-
ent views (augmentations) of the same image and negative
pairs by pairing augmentations of different data points. The
principle behind contrastive learning is to distance negative
pairs while converging positive pairs. However, achieving
optimal performance with these methods often necessitates
a plethora of negative pairs. MoCo addresses this issue
by implementing momentum encoders and a memory bank
mechanism, while SimCLR capitalizes on large batch sizes
for negative pair comparisons. In NNCLR, the model learns
representations by minimizing the distance between an an-
chor and its nearest neighbor in the momentum encoder’s
output space while maximizing the distance to other neg-
ative samples. This method streamlines the utilization of
negative samples in a batch, curtailing the need for large
batch sizes and memory banks while maintaining compet-
itive performance compared to other contrastive learning
methods.

Knowledge-distillation-based methodologies, such as
BYOL [18] and SimSiam [12], aim to enhance performance
with smaller batch sizes and without the need for nega-
tive samples. In stark contrast to their contrastive coun-
terparts, these non-contrastive techniques employ only pos-
itive pairs, eliminating the demand for large batch sizes
or a memory bank mechanism. BYOL stands out with
its momentum update mechanism, which renders negative
pairs unnecessary. It establishes a target network by apply-
ing an exponential moving average to the online network’s
weights. This ”moving target” offers the online network a
stable benchmark to aim for during training, pushing the
network away from trivial solutions and encouraging richer
representations. SimSiam, influenced by BYOL, stream-
lines the process by forgoing the moving target. Instead, it
adopts a symmetric architecture, where dual networks re-
ciprocally predict each other’s outputs. To ensure the repre-
sentations are non-trivial, SimSiam utilizes a stop-gradient
operation. Nonetheless, despite their batch efficiency, both

21406



BYOL and SimSiam remain susceptible to collapsing into
trivial solutions.

Clustering-based SSL methods, such as DeepCluster [4]
and Prototypical Contrastive Learning (PCL) [31], offer an
innovative angle to representation learning by capitalizing
on iterative pseudo-labeling to cluster the learned represen-
tations. DeepCluster updates its network parameters ac-
cording to pseudo-labels produced by the K-Means clus-
tering algorithm. This aligns the network more closely with
the inherent data distribution. Expanding on the founda-
tion laid by MoCo, PCL integrates the ProtoNCE loss and
K-Means clustering, aiming to refine image embeddings by
nudging them closer to their respective prototypes by op-
timizing the ProtoNCE loss function. SwAV [5], another
clustering-based SSL method, shares similarities with Sim-
Siam architecture but differentiates itself with a swap pre-
diction mechanism. Specifically, SwAV aligns the cluster
assignments of one augmentation with the representations
of another version of the same image. These assignments
are fine-tuned using the Sinkhorn algorithm, ensuring a bal-
anced distribution. In embracing this strategy, SwAV learns
invariant features that encapsulate crucial semantic infor-
mation.

Information maximization-based SSL approaches strive
to learn representations by maximizing the invariance of
corresponding features while minimizing the covariance
between different features. Noteworthy methods in this
realm include VICReg [2] and Barlow Twins [45]. VI-
CReg specifically enforces feature representation invariance
by amplifying their variance and curtailing the covariance
between different features. This strategy ensures that the
learned representations are not only informative but also
capture the core attributes of the data. Contrasting with VI-
CReg, which explicitly maximizes the variance of individ-
ual features, Barlow Twins centers its focus on minimizing
cross-correlations across feature dimensions. It achieves
this by mitigating the cross-correlation between the outputs
of twin networks, each processing a distinct augmentation
of the same image while concurrently accentuating the in-
variance of matching features.

2.2. SSL in Pathology

The advent of whole-slide scanners has enabled the dig-
itization of histopathological slides, gradually transforming
the field of anatomical pathology into a data-abundant do-
main. Recognizing this, SSL techniques are being increas-
ingly employed in computational pathology to take advan-
tage of the abundance of unlabeled data. In conjunction
with smaller labeled datasets, these techniques promise to
elevate diagnostic precision and bolster predictive model-
ing.

In the realm of computational pathology, SSL is gradu-
ally gaining adoption as a means to tackle challenges such

as acquiring annotations for pathology slides, managing
high-resolution images, and addressing the substantial vari-
ability in their features. Numerous studies have leveraged
SSL for extracting features from WSIs and have utilized
these features to achieve promising results in downstream
histopathology image analysis tasks [10, 16, 26, 30]. With
the escalating adoption of SSL in computational pathology,
there is a growing necessity to determine the applicability
of general self-supervised methods to histopathology im-
ages. A recent benchmarking study [27] gauged various
SSL methods across diverse pathology datasets for various
downstream tasks, such as classification and nuclei instance
segmentation tasks. Their results indicate that SSL can con-
siderably uplift the performance on downstream tasks on
histopathology images compared to ImageNet pre-trained
and supervised models, especially when labeled data is
scarce.

3. Method
We recap SimSiam and then present our method for self-

supervised representation learning and clustering.

3.1. Preliminaries: SimSiam

Self-supervised visual representation learning is a
method for learning an embedding function that maps an in-
put image x to a representation. This is typically achieved
by using a similarity measure designed to enforce similar-
ity between augmented views. Starting with sets of data
transformations, T1 and T2, we randomly sample trans-
formations t1, t2 ∼ T1, T2 and produce augmented views
x1 = t1(x) and x2 = t2(x). An encoder f is used to
produce representations y1 = f(x1) and y2 = f(x2),
which are then fed to a projector h to produce projections
z1 = h(y1) and z2 = h(y2). As in SimSiam, we pass z1
through a predictor g to produce the prediction p1 = g(z1).
Additionally, we swap the views and produce a symmetric
loss as follows:

Linv = sim(p1, sg(z2)) + sim(p2, sg(z1)) (1)

where
sim(p, z) = − p

∥p∥2
· z

∥z∥2
, (2)

∥·∥ is the ℓ2−norm, and sg(·) is the stop-gradient operation
to prevent collapse.

3.2. CluSiam: Cluster-Constrained SSL

We build upon the SimSiam architecture by adding a
cluster assigner q that operates on the projections produced
by h. We use the outputs of h as the inputs to q because
the batch normalization layers (BN ) in h stabilize the dis-
tribution of q’s inputs. We also introduce BN in q because
controlling the input scale is crucial for generating cluster
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assignment probabilities using softmax. Given batches of
views X1, X2, we produce projections Z1 = {h(f(x(1)

i )) :

x
(1)
i ∈ X1}, Z2 = {h(f(x(2)

i )) : x
(2)
i ∈ X2}. We then con-

catenate these projections to obtain Z = concat(Z1, Z2).
The cluster assigner q maps the concatenated projections Z
to cluster representations A defined as:

A =
exp(Ai)/τ∑
i exp(Ai)/τ

∈ R2·N×K (3)

where Aij is the element at the i-th row and j-th column
of A, τ is the temperature, and K is the exploration space
that represents the maximum number of clusters allowed
during the training. This operation is applied along each
row, meaning that for every data point i, the sum of Aij

over all clusters, j’s, equals 1. Finally, we map the cluster
representation to the clusters as follows:

C = nonzero
(

argmax(AT ) · sg(Z)

∥argmax(AT ) · sg(Z)∥2

)
∈ Rk×D. (4)

Notably, argmax(A) is not differentiable, so there is no real
gradient for this operation. We approximate the gradient
similar to the straight-through estimator and just copy gra-
dients from A to argmax(A), ∇argmax(A)C = ∇AC, mak-
ing it possible for backpropagation. sg(·) denotes the stop-
gradient operation, nonzero(·) filters out vectors along the
row dimension that are all zeros, and k represents the count
of non-zero centroids. The dimension D corresponds to the
feature dimension and is consistent with the dimensions of
p and z.

In our clustering module, unlike common clustering
methods that use inter-class similarity or other SSL tech-
niques that focus on the invariance between two different
views, we do not impose any restrictions on inter-class sim-
ilarity or the assignments between two different views, ai
and an+i. Our cluster loss is solely defined by inter-cluster
separation. This separation is defined as:

Lcluster = −
∑

i

∑
i ̸=j(C

TC)ij

2C2
k

. (5)

Importantly, all the tensors in (5) are ℓ2 normalized, so
equation (5) can be interpreted as representing the average
cosine similarities between clusters. Furthermore, the stop-
gradient operation is applied to all elements in (4) to pre-
vent the cluster assigner from collapsing to a trivial solution
where all samples are assigned to the same set or cluster.
We can view A = a1, · · · , a2n as a latent variable, with our
goal being to minimize L(A,Z). This optimization prob-
lemcan be solved by an alternating algorithm that fixes one
set of variables and solves for the other set.

The intra-class similarity term was not introduced in
this design because we neither use a contrastive formula-

tion loss function like SimCLR nor an additional projec-
tion head to introduce the knowledge distillation architec-
ture like BYOL. Directly optimizing for high intra-class
similarity is prone to collapsing all samples into the same
representation, which is a trivial solution and does not cap-
ture any meaningful information.

However, our cluster learning is still prone to collapse
due to the presence of the softmax and argmax functions.
The hard cluster assignment of the softmax and argmax
functions limits the model to updating only the maximum
scoring cluster during training. This does not encourage ex-
ploration of different combinations of cluster assignments,
and other potential cluster assignments are left out of the
backpropagation updates. As a result, the model is prone to
getting stuck in a trivial single-cluster solution during train-
ing, a phenomenon known as “collapsing”. This is espe-
cially likely as the number of valid clusters decreases. Us-
ing softmax and argmax based cluster assignment can exac-
erbate this problem, leading to the rapid collapse of a single
cluster. This prevents the model from learning the intended
cluster structures and, in turn, leads to meaningless repre-
sentations since the cluster loss cannot be effectively opti-
mized with only a single active cluster.

The task of cluster assignment can be viewed as a
decision-making process in which the cluster assigner de-
termines which samples belong in the same cluster. Strik-
ing a balance between exploration and exploitation is cru-
cial in this decision-making process. Exploration refers to
trialing different actions to learn more about the environ-
ment and their associated losses, while exploitation refers to
choosing the action currently known to possess the lowest
expected loss. To prevent the collapse of clustering due to
continual updates only to the neuron with the highest prob-
ability value, we introduce randomness into the decision-
making process by adding Gumbel noise [23]. Gumbel
noise is a random variable sampled from a Gumbel distri-
bution. It proves useful in discrete action spaces, where a
model must choose between a finite set of actions, as in
our cluster assignment task. By replacing (3) with (6), the
cluster assigner can explore different cluster combinations
based on their probabilities, thereby learning more about
different cluster combinations and their associated losses.

A =
exp(ai + gi)/τ∑
i=1 exp(ai + gi)/τ

, gi ∼ G(0, 1), (6)

where G represents the Gumbel distribution.
Therefore, CluSiam can be trained effectively using the

composite loss function, as shown in equation (7). In
this equation, α serves as a hyperparameter, adjusting the
magnitude of the weights. In our implementation, we set
α = 0.5 by default.

LCluSiam = (1− α) · Linv + α · Lcluster (7)
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4. Experiments
In our experiments, we evaluated the performance of our

proposed model on two clinically relevant whole-slide im-
age datasets: the Camelyon16 [32] and the Pancreatic Can-
cer dataset [43]. To extract representative image patches
from the WSIs, we first removed the background and em-
ployed a sliding window technique to generate patches of
size 224×224 at a 20× magnification level (0.5 µm/pixel)
from the tissue regions of a slide, with no overlap be-
tween patches. The Camelyon16 dataset is a publicly avail-
able dataset designed for the task of metastasis detection in
breast cancer. It includes two classes, positive and negative
slides, and consists of 271 training images and 129 testing
images. After applying our patch extraction algorithm, we
obtained approximately 2.6 million training and 1.2 million
testing patches at 20× magnification for this dataset. The
Pancreatic Cancer dataset includes three classes: negative
(background class), neoplastic, and positive. This dataset
includes 104 training slides and 39 testing slides, yielding
approximately 300,000 training and 83,000 testing patches.

In our study, we compared our proposed CluSiam
method against a supervised model and several commonly
used SSL architectures as baselines. All SSL models,
as well as the supervised model, were trained using a
ResNet18 [20] backbone for 50 epochs with a batch size
of 512. The hyperparameters for training were set to be as
identical as possible to their default values specified in the
original studies with comparable settings. The detailed hy-
perparameter settings can be found in the appendix. It’s
important to note that different architectures often incor-
porate varying image augmentation techniques, optimizers,
and hyperparameters. As a result, comparisons between
baseline methods may not be entirely fair due to inherent
configuration differences. Our approach (CluSiam) used
identical hyperparameter settings as SimSiam, which allows
for a direct and equitable comparison between these two ar-
chitectures. As a metric for evaluation, we employed two
downstream tasks: clustering and classification.

4.1. Clustering

In the clustering task, we evaluated the performance of
clustering algorithms using the Rand Index (RI). The per-
formance was compared using different representations and
clustering algorithms (Table 1). Importantly, our cluster
assigner’s output is different from traditional methods like
K-Means. Unlike K-Means, which provides a hard clus-
ter assignment for each patch, our assigner outputs a K-
dimensional vector. This structure allows for more flexi-
bility in generating cluster assignments beyond the typical
use of argmax. Such probabilistic outputs grant our method
greater adaptability in clustering, especially when con-
trasted with the rigid assignments derived from K-Means.
We visualized the cluster assignments of two WSIs gener-

ated simply using argmax, alongside their respective ground
truths, in Figure 3.

Encoder Cluster Camelyon16 Pancreatic
SimSiam K-Means 0.509 0.329
CluSiam K-Means 0.538 0.357
CluSiam Assigner 0.897 0.569

Table 1: Rand Index on the testing set.

4.2. Classification

For the classification task, we evaluated model perfor-
mance using accuracy and Area Under the ROC Curve
(AUC) metrics. We aggregated patch-level predictions to
slide-level predictions using two multiple-instance learning
techniques: Max-Pooling (Max) and Dual-Stream Multiple-
Instance Learning (DSMIL). Given that optimal hyperpa-
rameters for the MIL models may differ based on the repre-
sentations learned by various SSL methods, we conducted
grid searches over learning rates [1e-2, 1e-3, 1e-4] and
weight decays [1e-2, 1e-3, 1e-4], yielding 9 hyperparam-
eter combinations per MIL model. This ensured a fair eval-
uation after optimizing each method’s settings. The MIL
models were trained for 50 epochs with a 5-epoch warmup
and cosine annealing learning rate schedule. To select the
best checkpoint for each representation, we split the train-
ing sets into 75% training and 25% validation partitions.
The checkpoints with the highest validation set performance
were chosen for final evaluation on the held-out test set (Ta-
ble 2 and 3).

4.3. Ablation Study

To investigate the influence of the core components of
our CluSiam model, we conducted an ablation study on the
Camelyon16 dataset. We created and trained several model
variants with different combinations of the invariance loss
term, cluster loss term, and Gumbel noise to evaluate their
impacts.

The stop gradient operation is crucial to prevent our
model from collapsing, similar to its role in SimSiam. Addi-
tionally, incorporating Gumbel noise when assigning clus-
ters is critical. Without this noise, the cluster assigner will
collapse early in training, assigning all samples to one clus-
ter. This collapsed state becomes equivalent to SimSiam
training, as a single cluster removes the off-diagonal ele-
ments required to calculate the cluster loss Lcluster. The
gradient from Lcluster thus becomes zero in this situation.
However, by introducing randomness in cluster assignment,
the noise prevents updates from concentrating solely on the
most probable cluster dimensions, thereby preventing early
collapse. Together, the stop gradient and noise allow our
model to escape these trivial single-cluster solutions, en-
abling effective joint optimization of Linv and Lcluster. As
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Figure 3: Cluster visualization for the unseen test set. Uncolored regions were filtered out during the preprocessing stage.

evidenced in Table 4, CluSiam outperforms the other mod-
els. We observed a collapse in the joint model’s cluster
assigner, with one dimension consistently dominating the
others. This is likely because only the largest dimension
receives updates, continually amplifying its magnitude and
leading to a single dominant cluster. The joint model was
expected to mirror SimSiam’s performance, as its train-
ing dynamics should be identical to SimSiam after the as-
signer’s collapse. However, its performance was inferior
compared to SimSiam. This discrepancy may originate
from the cluster assigner offering suboptimal initialization
for the subsequent pure SimSiam training before its col-
lapse.

In the aftermath of our ablation studies on the new mod-
ules introduced to SimSiam, we delved into investigating
the pivotal roles of original SimSiam components in ensur-
ing training stability. A prime area of focus was the scale
of inputs to the cluster assigner, as it might significantly
influence this stability. The SimSiam projector, which in-
terleaves BN layers between its linear layers and concludes
with a BN layer, could be foundational for the clustering
module’s effectiveness. To empirically assess the role of

controlled input scaling, we devised an experiment on two
different projectors. The first projector, originating from
SimSiam, concludes with a BN layer. The second pro-
jector, from BYOL, ends with a linear layer. We began
by replacing the SimSiam-style projector with the BYOL
variant in our CluSiam model, leading to the creation of
the CluBYOL model with the cluster assigner module in-
tegrated into the BYOL architecture. The CluBYOL was
initially trained using the BYOL-style projector. Subse-
quently, we utilized the SimSiam-style projector and un-
dertook another training round for the CluBYOL model.
Notably, both situations using the BYOL-style projector re-
sulted in collapse, akin to the joint model depicted in Ta-
ble 4, with a single cluster predominantly emerging. As
highlighted in Table 5, the SimSiam-style projector, charac-
terized by its concluding with a BN layer, is instrumental
in preventing such collapses.

To further analyze the behavior of the clustering module,
we examined the impact of the exploration space size, de-
noted as K. When Gumbel noise is introduced, some sam-
ples exhibit the highest probability of remaining in the clus-
ter with the highest output value, while also possessing a
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Agg. Rep. Acc.
AUC

Neg. Pos.

Max

Supervised 0.628 0.421 0.501
SimCLR 0.860 0.346 0.951
SwAV 0.853 0.517 0.845
PCL 0.496 0.370 0.510

Barlow. 0.868 0.407 0.941
BYOL 0.659 0.455 0.834

SimSiam 0.690 0.316 0.680
CluSiam 0.884 0.453 0.952

DSMIL

Supervised 0.651 0.635 0.635
SimCLR 0.822 0.845 0.874
SwAV 0.876 0.866 0.859
PCL 0.488 0.535 0.496

Barlow. 0.860 0.873 0.945
BYOL 0.558 0.501 0.586

SimSiam 0.721 0.656 0.680
CluSiam 0.907 0.945 0.952

Table 2: Results on Camelyon16 dataset. The magnification
level is 0.5 µm/pixel. All the representations were trained
using a batch size of 512 and the ResNet18 architecture.

Agg. Rep. Acc.
AUC

Neg. Neo. Pos.

Max

Supervised 0.359 0.313 0.562 0.494
SimCLR 0.462 0.565 0.549 0.720
SwAV 0.462 0.497 0.451 0.726
PCL 0.692 0.556 0.935 0.731

Barlow. 0.538 0.438 0.509 0.843
BYOL 0.462 0.314 0.719 0.589

SimSiam 0.359 0.598 0.531 0.694
CluSiam 0.641 0.598 0.966 0.851

DSMIL

Supervised 0.356 0.296 0.617 0.529
SimCLR 0.718 0.497 0.904 0.700
SwAV 0.538 0.669 0.840 0.726
PCL 0.744 0.710 0.969 0.797

Barlow. 0.615 0.672 0.957 0.831
BYOL 0.564 0.527 0.981 0.697

SimSiam 0.590 0.686 0.910 0.803
CluSiam 0.769 0.754 0.985 0.883

Table 3: Results on the Pancreatic Cancer dataset. The mag-
nification level is 0.5 µm/pixel. All the representations were
trained using a batch size of 512 and the ResNet18 architec-
ture.

high probability of transitioning to a nearby or similar clus-
ter. Some samples that are difficult to differentiate might be
allocated with near-equal probabilities across multiple cen-
troids. A larger value of K results in more refined cluster-
ing. Conversely, when K is small, achieving definitive clus-
tering becomes difficult. For instance, with K set to 3, the

Model Linv Lcluster Noise Acc. AUC
Neg. Pos.

SimSiam ✓ - - 0.721 0.656 0.680
Cluster - ✓ ✓ 0.426 0.502 0.627
Joint ✓ ✓ - 0.667 0.538 0.563

CluSiam ✓ ✓ ✓ 0.907 0.945 0.952

Table 4: Ablation study of CluSiam components on Came-
lyon16 using DSMIL aggregation.

Model Projector Acc. AUC
Ending with BN Neg. Pos.

CluSiam - 0.643 0.556 0.591
✓ 0.907 0.945 0.952

CluBYOL - 0.627 0.656 0.658
✓ 0.923 0.947 0.975

Table 5: Results on Camelyon16 using DSMIL aggregation.

cluster assigner can allocate some hard-to-distinguish sam-
ples into a third cluster, roughly equidistant from the first
two. Yet, with K set to 2, the assigner can only place sam-
ples into one of the two clusters. Importantly, when K is 1,
the model essentially becomes SimSiam since its loss func-
tion and backpropagation are equivalent to those in Sim-
Siam. In this scenario, the cluster assigner lacks the flexi-
bility to differentiate between samples by assigning them to
different clusters.

In our experiments, we assessed the influence of K on
model behavior by training two models with exploration
spaces of K = 10 and K = 100. Using a Top-1 KNN
classifier’s F1 score for patch-level performance evalua-
tion, both models displayed comparable classification per-
formance, as depicted in Figure 4. Despite this similarity in
classification, their clustering behaviors were distinct. The
model with K = 10 exhibited a larger number of clusters
and greater fluctuations in both cluster counts and the Rand
Index. In contrast, the larger exploration space of K = 100
allowed the assigner to stabilize on more definitive assign-
ments faster. This difference underlines the influence of
K in CluSiam’s clustering. Specifically, both the number
of clusters and the Rand Index fluctuate more with K=10.
This limited exploration space prevents highly fine-grained
cluster assignments. In contrast, a larger exploration space
of K=100 provides more granularity for refined clustering
actions, enabling the assigner to stabilize on more definitive
assignments rapidly. The cluster count also becomes more
consistent with K=100. These observations highlight the
impact of K on CluSiam’s clustering dynamics.

5. Conclusion
In this paper, we introduce CluSiam, a SSL technique

that integrates cluster constraints to enhance representation
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(a) Patch-level F1 scores using the Top-1 KNN classifier.
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(b) WSI-level clustering patterns with exploration space
K=10.
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(c) WSI-level clustering patterns with exploration space
K=100.

Figure 4: Comparison of models with different exploration
spaces K on Camelyon16.

learning for histopathology images. By subtly pushing apart
inter-cluster instances while aligning intra-cluster views,
CluSiam balances similarity and dissimilarity. It demon-
strates substantial improvements in downstream classifica-
tion and clustering tasks compared to baseline methods.
Additionally, CluSiam provides an efficient way to ana-
lyze histopathology images without requiring manual an-
notations.
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Kim, Young Sin Ko, and Mun Yong Yi. A loss-based patch
label denoising method for improving whole-slide image
analysis using a convolutional neural network. Scientific Re-
ports, 12(1):1392, 2022.

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-
creg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[3] Gabriele Campanella, Matthew G Hanna, Luke Geneslaw,
Allen Miraflor, Vitor Werneck Krauss Silva, Klaus J Busam,
Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J
Fuchs. Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images. Nature
medicine, 25(8):1301–1309, 2019.

[4] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 132–149, 2018.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Ad-
vances in neural information processing systems, 33:9912–
9924, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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