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Abstract

In this paper, we consider enhancing medical visual-
language pre-training (VLP) with domain-specific knowl-
edge, by exploiting the paired image-text reports from the
radiological daily practice. In particular, we make the fol-
lowing contributions: First, unlike existing works that di-
rectly process the raw reports, we adopt a novel triplet ex-
traction module to extract the medical-related information,
avoiding unnecessary complexity from language grammar
and enhancing the supervision signals; Second, we pro-
pose a novel triplet encoding module with entity translation
by querying a knowledge base, to exploit the rich domain
knowledge in medical field, and implicitly build relation-
ships between medical entities in the language embedding
space; Third, we propose to use a Transformer-based fu-
sion model for spatially aligning the entity description with
visual signals at the image patch level, enabling the abil-
ity for medical diagnosis; Fourth, we conduct thorough
experiments to validate the effectiveness of our architec-
ture, and benchmark on numerous public benchmarks e.g.,
ChestX-ray14, RSNA Pneumonia, SIIM-ACR Pneumotho-
rax, COVIDx CXR-2, COVID Rural, and EdemaSeverity.
In both zero-shot and fine-tuning settings, our model has
demonstrated strong performance compared with the for-
mer methods on disease classification and grounding.

1. Introduction
With the rapid development of deep learning, numerous

works have been proposed to facilitate computer-aided di-
agnosis in the medical field [46, 20, 55, 19]. Despite the
tremendous progress, these models are normally trained to
recognize or segment the structures that fall into a certain
closed set of anatomical or disease categories, whenever a
new disease comes to be of interest, a costly procedure for
data annotation, model re-training are required, fundamen-
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Figure 1: Our method mainly considers combining medical
knowledge with VLP. We propose Triplet Extraction and
Entity Translation modules, so that the network can be su-
pervised with detailed entity-level signals.

tally limiting its practical values. As an alternative, recent
research considers to train the model on the corpus, consist-
ing of large amount of multi-modal data, that is generated
from daily clinical routine, for instance, the most common
example is the dataset of X-ray images with paired radio-
logical reports [18, 28, 31].

This paper presents our preliminary investigation on
vision-language representation learning in the medical do-
main, with the goal of better zero-shot disease diagnosis
(classification) and grounding. Undoubtedly, these tasks
have also been widely investigated in the computer vi-
sion community, with significant progress made on devel-
oping Foundational Models in the past years, for exam-
ple, CLIP [50], ALBEF [33], BLIP[32], etc. However, to
achieve such a goal in the medical domain, different chal-
lenges must be resolved, that requires research efforts from
the community: First, data availability, training Foundation
Models in computer vision normally require over millions
of image-text pairs, while in the medical domain, only a
few hundred thousand pairs are available [31]. The lim-
ited data challenges language models to understand the re-
ports in free form [6]. Second, the problem considered in
computer-aided diagnosis is naturally fine-grained, that re-
quires distinguishing the medical concepts to understand
the disease, as a consequence, domain knowledge is essen-
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tial; Third, robustness is crucial, it is, therefore, preferable
to have explainability, where diagnosis results come along
with the visual grounding, to help radiologists understand
the system, and build trust between human and machines.

Existing work in medical VLP (Vision-Language Pre-
training) [68, 47, 25, 6] follows a straightforward training
paradigm by matching raw reports with image scans, as
shown in Fig.1A, ignoring the medical prior knowledge,
and, thus, we propose a novel knowledge-enhanced visual-
language model as shown in Fig. 1B. First, we propose
a triplet extraction module to extract useful medical enti-
ties (keywords) from raw reports, and simplify each report
into sets of triplets, denoted as {entity,position, exist}.
Decomposing reports into triplets leads to an effective rep-
resentation of the reports with minimal information loss
due to the structural prior in reports; Second, we trans-
late the medical entities into fine-grained descriptions by
leveraging a well-defined medical word knowledge base,
that tends to explain diseases with common vocabulary.
Thus, computing text embeddings for these descriptions
enables to implicitly establish relationships between med-
ical entities; Third, we view the entities as a query set and
adopt a transformer-based architecture for aligning the im-
age patches with entity descriptions, that enables explicit
supervision signals at entity level. Consequently, we can
simultaneously infer the likelihood of certain diseases with
the visual evidence in the form of a spatial heatmap, i.e.,
providing rough grounding for explainability.

We pre-train the model on one widely-used medical
image-report dataset MIMIC-CXR [31], and rigorously
evaluate on the task of disease diagnosis across numerous
public benchmarks, e.g., ChestX-ray14 [58], RSNA Pneu-
monia [51], SIIM-ACR Pneumothorax [1], COVIDx CXR-
2 [48], COVID Rural [54, 15], and EdemaSeverity [7]. We
get state-of-the-art performance on zero-shot classification
and grounding on different diseases, spanning different im-
age distributions, with further fine-tuning, our model still
exceeds previous models significantly.

2. Related Work

General Vision-Language Pre-training (VLP) Models.
In computer vision, such line of research has gained tremen-
dous success in the recent literature, generally speaking, the
developed architectures can either be two-stream [4, 33, 30],
i.e., dual encoders, or those based on single-stream meth-
ods [35, 9], that favors visual-language fusion. In particu-
lar, several works [13, 38, 66] consider considers to com-
bine the commonsense knowledge into the vision-language
pre-training, however, in this paper, we focus on medical
domain, which is clearly more fine-grained and requires sig-
nificantly more expertise.

Medical Named-Entity-Recognition (NER) Models. Var-

ious natural language processing (NLP) approaches have
been proposed to extract information from radiology re-
ports [49, 28, 44, 52]. These early methods considered only
the disease, thus causing information loss. Further state-of-
the-art works [29, 61] are proposed to extract relationship
between different entities without demand of pre-defined
close disease set, retaining most of useful information with
high accuracy. In weakly supervision [67] and report gen-
eration fields [14], NER methods have shown great impact,
and greatly inspired us for more effective vision-language
pre-training with medical domain knowledge injected.

Medical Knowledge Enhanced Models. In general NLP,
many works considering combining knowledge, e.g., K-
BERT [41] while they condider general knowledge more
and focuses on language encoding. In medical commu-
nity, leveraging external medical knowledge to enhance
deep learning models is also a quite important topic [62].
Depending the approaches of using medical knowledge,
They can be classified into model-based or input-based. In
model-based approaches, the authors aim to imitate the ra-
diological or diagnosis practice to design models [34, 23,
57, 26, 45, 21, 12]. While in input-based approaches,
the knowledge is treated as an extra input for comput-
ing features [65, 63, 53, 11] or to guide the final training
loss [8, 27, 37, 39, 43], commonly used in report generation
tasks [59, 64, 40, 11, 36]. However, none of these works
are targeting on vision-language pre-training in medical do-
main with image-report.

Concurrent Works in Medical VLP. Existing medical
VLP methods follow the two-stream flow [68, 25, 7, 47, 60,
10], i.e., use contrastive learning and without fusion mod-
ule, for example, ConVIRT [68] initially proposed to use
contrastive loss as a proxy task for aligning the medical scan
and corresponding reports, LoVT and GLoRIA then fo-
cus on improving the local alignment performance [25, 7].
BioViL notices the language pattern in reports is different
from natural texts and re-designs the language model [6].
The recent arxiv preprint, MedCLIP [60], considers lever-
aging unpaired data to make up data scarcity. The most
related to ours is CheXzero [56], which targets at zero-shot
diagnosis. Align [10] focuses on leveraging external med-
ical knowledge to improve the performance of VLP model
on medical Visual Question Answering (VQA). However,
they treat knowledge as an additional loss and we adopt
a new training scheme leveraging medical knowledge by
aligning entity, instead of raw reports, with images. De-
spite significant contribution has been made by existing
work [68, 25, 7, 47, 60, 56], they still treat medical texts
and images as common natural data and do not explicitly
leverage the rich prior knowledge from medical domain. In
this paper, we consider to incorporate domain knowledge,
re-design the pre-training pipeline delicately and target at
accurate diagnosis in X-ray scans.

21373



Visual 
Encoder

Visual 
Encoder

Fusion ModuleFusion Module Contrastive Loss CE Loss
……

+

CE HeadCE HeadContrastive HeadContrastive Head

……

……

C. Training Flow

Entity Query Set

Corresponding Encoded 
Triplets: {e, p, l}Whole Encoded Triplets

B. Knowledge-enhanced Triplet Encoding

Text EncoderText Encoder

Entity Translation
Knowledge Base：
Pneumonia is an  condition of  …

Pneumothorax is an abnormal  …

Opacity is defined as an area  …

… 

Entity Translation
Knowledge Base：
Pneumonia is an  condition of  …

Pneumothorax is an abnormal  …

Opacity is defined as an area  …

… 

Position 
Prompt 
Position 
Prompt 

TokenizeTokenize

Triplet：{Entity, Position, Exist}

Encoded Triplet: {e, p, l}

Entity Position Exist

A. Report Pre-processing

Triplet Extraction

Impression: Increased right lower 
lobe opacity, concerning for infection. 
No evidence of pneumothorax.

Report
Impression: Increased right lower 
lobe opacity, concerning for infection. 
No evidence of pneumothorax.

Report

l

Triplets：{Entity,Position,Exist}
Entity Position Exist

Opacity Right lower lobe TRUE

Pneumothorax Unspecified FALSE

Triplets：{Entity,Position,Exist}
Entity Position Exist

Opacity Right lower lobe TRUE

Pneumothorax Unspecified FALSE

Sample Neg 
Positions  

p+

Top Common

Visual 
Encoder

Fusion Module Contrastive Loss CE Loss
…

+

CE HeadContrastive Head

…

…

C. Training Flow

Entity Query Set

Corresponding Encoded 
Triplets: {e, p, l}Whole Encoded Triplets

B. Knowledge-enhanced Triplet Encoding

Text Encoder

Entity Translation
Knowledge Base：
Pneumonia is an  condition of  …

Pneumothorax is an abnormal  …

Opacity is defined as an area  …

… 

Position 
Prompt 

Tokenize

Triplet：{Entity, Position, Exist}

Encoded Triplet: {e, p, l}

Entity Position Exist

A. Report Pre-processing

Triplet Extraction

Impression: Increased right lower 
lobe opacity, concerning for infection. 
No evidence of pneumothorax.

Report

l

Triplets：{Entity,Position,Exist}
Entity Position Exist

Opacity Right lower lobe TRUE

Pneumothorax Unspecified FALSE

Sample Neg 
Positions  

p+

Top Common

Figure 2: The whole framework of our method. We first pre-process the report into triplets leveraging triplet extraction mod-
ule. Then we encode the extracted triplets and it is worth emphasizing that we translate the entities into detailed descriptions
during encoding, by querying the medical knowledge base. Finally we change the training flow with triplets, i.e., we query a
transformer-based fusion module at entity level, which provides more detailed supervision signals.

3. Method

In this section, we start by describing the considered
problem scenario in Sec. 3.1, followed by our report pre-
process operation with triplet extraction in Sec. 3.2. Then
we introduce our proposed knowledge-enhanced architec-
ture in Sec. 3.3, including, visual encoder, knowledge-
enhanced triplet encoder, and the fusion module for aligning
visual-language signals. In Sec. 3.4, we describe the train-
ing procedure with the paired image-reports sourced from
the daily routine X-ray scans and, in Sec.3.5, we introduce
the procedure for inference.

3.1. Problem Scenario

Assuming we are given a training set with N samples,
i.e., Dtrain = {(X1, T1), . . . , (XN , TN )}, where Xi, Ti re-
fer to the X-ray image and its corresponding medical re-
port generated in the daily routine scans, respectively, our
goal is to train a visual-language model that enables us to
diagnose the existence of certain diseases and localize the
visual evidence spatially. Specifically, at inference time,
we can freely ask the system to identify the likelihood of
the patient getting a certain disease (seen or unseen during
training):

ŝi, m̂i = Φfusion(Φvisual(Xi),Φtextual([description])), (1)

where Xi ∈ RH×W×3 refers to an image sample from
the test set, with H,W denoting height and width respec-
tively. ŝi ∈ [0, 1] refers to the inferred likelihood of the
patient having a certain disease indicated by the input de-
scription, and m̂i ∈ RH×W×1 denotes a predicted spatial
heatmap, with high activation on pixels that potentially pro-
vide the visual indication for such disease. In the following
section, we will introduce our report pre-process operation
with triplet extraction.

3.2. Report Pre-processing

To start with, we propose to pre-process medical reports
with a Triplet Extraction module by removing the un-
necessary complexity from language grammar. Note that,
we hereon only consider single sampled image-reports pair
(Xi, Ti), and ignore the subscript in notations for simplicity.

We condense the original reports with an off-shelf medi-
cal Named Entity Recognition (NER) method, namely Rad-
Graph [29, 67], transforming reports into a set of triplets, as
shown in Figure 2A. In detail, the medical key words can
be extracted and classified as “entity” or “position” with
the NER module. “Entity” refers to some clinical obser-
vations, like “Opacity”. “Position” refers to the anatomi-
cal body part that occurs in a radiology report, like “right
lower lobe”. Besides, the NER module will also provide
an “exist” label to conclude whether an entity is claimed to
be exist, absent or uncertain in reports. Based on this, we
can use a set of triplets, i.e., {entity, position, exist}, to re-
formulate the sentence in reports, for example, the triplet
{Opacity,Right lower lobe,True} represents “It is true that
there is opacity located at right lower lobe”. Note that, the
triplets with a specific “position” are not always termed as
True in “exist” as radiologists may point out entities absent
at some specific position.

Therefore, given a report T with multiple sentences,
T = {s1, s2, ..., sM}, the extraction module independently
operates on each of the sentences, and construct a number
of triplets from the report:

Φex(sj) = {entityn, positionn, existn}, n ∈ [0, tj ], (2)

where tj represents the total number of entities contained
in one sentence, with n = 0 indicating the special case that
there is no valid entity. After the triplet extraction, each
report is equal to a set of triplets.
Discussion. In contrast to natural texts, information in med-
ical reports tends to be more condensed, with radiologists
pointing out the existence of abnormality and their positions
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in the image. Meanwhile, medical terminologies tend to be
professional, and within certain vocabulary (mostly listed in
UMLS [5]), specially designed NER methods [29] demon-
strate great performance on reports. Therefore, adopting the
Triplet Extraction operation in medical VLP can avoid un-
necessary complexity from understanding grammar, while
still retaining the useful information in reports.

3.3. Architecture

In this section, we detail our proposed framework,
consisting of three components, namely, visual encoding,
knowledge-enhanced triplet encoding, and fusion module,
as shown in Fig. 2B and Fig. 2C.

3.3.1 Visual Encoding

Given an X-ray image scan X ∈ RH×W×3, we can com-
pute the features with a visual backbone:

V = Φvisual(X ) ∈ Rh×w×d, (3)

h,w, d refer to the height, width, and feature dimension of
the output, in our case, we adopt ResNet-50 as the visual
backbone, and take the output from the 4th residual block.
Note that, we make the architectural choice for fair compar-
ison with existing work [68, 47, 25, 6], while other visual
backbones, e.g., ViT [17], can equally be applied.

3.3.2 Knowledge-enhanced Triplet Encoding

The goal of this module is to encode the triplets extracted
from reports by incorporating medical domain knowledge
as shown in Fig.2B.

Given a triplet as {entity, position, exist}, it is easy to
code the “exist” as it only has three outcomes. We use
l ∈ {0, 1,−1} to tokenize it, 1 for True, 0 for False, −1 for
uncertain. For the “entity” words, we translate them into de-
tailed descriptions by querying some easy-access medical
knowledge bases 12, e.g., Description([“Pneumonia”])=“It
is a condition of the lung primarily . . . present with opacities
and pleural effusion . . . ”. Despite its simplicity, converting
the entities into descriptions is crucial for more reliable and
zero-shot diagnosis, as it further decomposes the profes-
sional medical entities into basic attributes that are shared
by different diseases, encouraging the model to capture a
deep understanding of the visual evidence. For the “posi-
tion” words, we use a prompt as “It is located at {position}”
to form a sentence. Finally, we use ClinicalBERT [3] as
a pre-trained text encoder, to compute the embedding for
the “entity” and “position”, and then adopt a linear MLP to

1Wikipedia https://en.wikipedia.org/wiki/
2UMLS [5] https://www.nlm.nih.gov/research/umls/

project the embedding to desired dimensions:

e = Φtextual(Description({entity}) ) ∈ Rd, (4)

p = Φtextual(“It is located at {position}”) ∈ Rd′
. (5)

Each triplet has now been embedded into {e, p, l}.

Discussion. The extracted entities are medical terminolo-
gies that are only understandable to audiences with a medi-
cal background, while enriching them with detailed descrip-
tions helps the model to capture a deep understanding of vi-
sual evidence for diseases. Such patterns can be generalized
across diseases, as many attribute descriptions tend to be
shared, enabling the model to build implicit relationships on
seen classes and understand descriptions for unseen ones.

3.3.3 Fusion Module

With the triplets from reports, we can supervise the model
on the entity level instead of the entire report level. The
“position” and “exist” parts in triplets can be naturally seen
as more fine-grained supervision labels. Specifically, we
adopt a Transformer-based architecture, use the embedding
of entities as query, iteratively attending the image embed-
dings, and output exist and position predictions of entities.

In detail, we select the top |Q| most commonly appear-
ing entities’ embeddings in all training reports, to form an
entity query set Q = {e1, e2, ..., e|Q|}. The details of the
entity query set is provided in the supplementary mate-
rial (Sec. A). Then Q will be passed into a fusion module
with the image representation V for alignment. The fusion
module consists of multiple Transformer Decoder layers,
with Q as Query, and V as Key and Value. The outputs
are further fed into two MLPs, independently infer the ex-
istence of the entity and the entity’s position:

{ŝ, p̂, m̂} = Φfusion(V, Q), (6)

where ŝ ∈ R|Q| represents the existence prediction for each
entity query, and p̂ ∈ R|Q|×d′

represents the predicted posi-
tion for all entities. Note that, m̂ ∈ RH×W denotes the av-
erage of the cross-attention maps sourced from Transformer
layers and is up-sampled to the size of input image with
nearest interpolation. m̂ is used for grounding at inference,
as it naturally acts as a segmentation heatmap. During train-
ing, we will not directly calculate any loss on it.

Discussion. Adopting Transformer decoder enables to
compute correspondences between entities and images at
patch-level. Consequently, image features V are more suit-
able for downstream segmentation tasks and the average of
cross-attention maps in each layers can be used directly for
zero-shot grounding, providing explainable for diagnosis.
Besides, the default self-attention on queries in Transformer
structure can also build relationships across entities.
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3.4. Training

Given a set of encoded triplets {e, p, l} extracted form
the pairing reports T , we can compute training loss on the
output of fusion module. For the existence prediction ŝ,
we use binary cross-entropy with the corresponding “exist”
labels l, and if l is −1 we just pass this label, denoted as
Lcls. To supervise the position prediction for each entity
query, we adopt contrastive learning. We form a position
set with top |P | common position embeddings as a position
set, P = {p1, p2, · · · , p|P |}, randomly sample M negative
position embeddings from it, and use the corresponding po-
sition embedding p from triplets as positive:

Lloc = − 1

|Q|

|Q|∑
k=1

e⟨p̂k,pk⟩

e⟨p̂k,pk⟩ +
∑M

u=1 e
⟨p̂k,PI(k,u)⟩

, (7)

where ⟨·, ·⟩ represents the inner product of two vectors and
I(·, ·) is a random index sampling function. The position
embeddings are un-normalized in calculation. Note that,
some entities may not be mentioned in the report and thus,
we can not find corresponding labels in triplets. We simply
ignore the corresponding predictions while computing loss.

The final loss is the sum of the two:

Ltotal = α1Lloc + α2Lcls, (8)

where α1, α2 refer to two hyper-parameters controlling the
ratio of the two losses, and we set them to be 1.0 by default.

Discussion. In contrast to the existing approaches [68] that
align images with entire reports, our training paradigm with
triplets provides supervision at a more fine-grained entity
level, rather than the global alignment between image and
reports as has often done in existing approaches.

3.5. Inference

At inference time, given a test image, we can directly
infer the existence of certain entities/disease, and ground
their visual evidence. In particular, for the entities that have
appeared in the entity query set Q, we simply adopt the cor-
responding elements from Q, while for those unseen ones,
we replace the entity with a brief description provided by
the user, and treat it as an extra query added to entity query
set Q, resembling zero-shot inference. The existence out-
put ŝ can be directly applied for classification, the average
cross-attention m̂ between the target entity and the visual
features are used for grounding.

4. Experiment
In this section, we start by introducing the dataset used

for experiments, e.g., pre-training, and various downstream
datasets. Then we describe the implementation details and
the considered baselines.

4.1. Pre-training Dataset

MIMIC-CXR v2 [31, 22] consists of over 227k studies of
paired image-report data, they are sourced from 65,379 pa-
tients at different scanning. Each study can have one or two
images (different scan views), totaling 377,110 images.

4.2. Datasets for Downstream Tasks

ChestX-ray14 [58] contains 112,120 frontal-view X-ray
images of 30,805 unique patients, collected from the year
of 1992 to 2015 by NIH(National Institutes of Health), with
labels of 14 common diseases provided. We split the dataset
into 0.8/0.1/0.1 for train/valid/test.
RSNA Pneumonia [51] contains more than 260k frontal-
view chest X-rays with corresponding pneumonia opac-
ity masks collected by RSNA (Radiological Society of
North America). Commonly, it is treated as a classifica-
tion tasks [25, 6]. We split the dataset into 0.6/0.2/0.2 for
train/valid/test.
SIIM-ACR Pneumothorax [1] contains more than 12k
frontal-view chest X-rays with pneumothorax masks col-
lected by SIIM-ACR (Society for Imaging Informatics in
Medicine and American College of Radiology). Similarly
to RSNA Pneumonia dataset, it can be both used as clas-
sification and segmentation tasks. We split the dataset into
0.6/0.2/0.2 for train/valid/test.
COVIDx CXR-2 [48] and COVID Rural [54, 15] aim to
evaluate on diagnosing COVID-19. COVIDx CXR-3 con-
tains 29,986 images from 16,648 patients with COVID-19
classification labels. We use it as a classification dataset and
split it into 0.7/0.2/0.1 for train/valid/test. Additionally,
we use COVID Rural dataset for COVID-19 segmentation.
It contains more than 200 chest X-rays with segmentation
masks, and we split it into 0.6/0.2/0.2 for train/valid/test.
Edema Severity [7] contains 6,524 examples from MIMIC-
CXR with pulmonary edema severity labels (0 to 3, increas-
ing severity) extracted from the radiology reports. Of these,
141 radiologists were examined by radiologists, and con-
sensus was reached on severity level. It can be seen as a
typical fine-grained classification task. We split the dataset
into 0.6/0.2/0.2 for train/valid/test.

4.3. Implementation

This section describes the implementation for architec-
tures. In Pre-training, the triplets extraction module and
text encoders used in triplets encoding are all fixed, while
the visual encoder and fusion module are trained end-to-
end on the image-text pairs. In Fine-tuning, we adopt
ResNet50 [24] initialized with image encoder for classifica-
tion, and ResUNet [16] initialize its encoder with our pre-
trained image encoder for segmentation. More details about
exact values of different parameters and training progress
can be found in supplementary material (Sec. B)
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Dataset RSNA Pneumonia SIIM-ACR Pneumothorax ChestX-ray14
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

ConVIRT [68] 0.8042 0.5842 0.7611 0.6431 0.4329 0.5700 0.6101 0.1628 0.7102
GLoRIA [25] 0.7145 0.4901 0.7129 0.5342 0.3823 0.4047 0.6610 0.1732 0.7700

BioViL [6] 0.8280 0.5833 0.7669 0.7079 0.4855 0.6909 0.6912 0.1931 0.7916
CheXzero [56] 0.8579 0.6211 0.7942 0.6879 0.4704 0.5466 0.7296 0.2141 0.8278

Ours 0.8694 0.6342 0.8002 0.8924 0.6833 0.8428 0.7676 0.2525 0.8619

Table 1: Comparison with other state-of-the-art methods on zero-shot classification task. AUC, F1 and ACC scores are
reported. For ChestX-ray14, the metrics all refer to the macro average on the 14 diseases.

Prompt Type Direct Covid-19 Covid-19 Description
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

ConVIRT [68] 0.6159 0.7057 0.6113 0.5208 0.6902 0.5266
GLoRIA [25] 0.6319 0.6938 0.5710 0.6659 0.7007 0.6083

BioViL [6] 0.6137 0.6958 0.5461 0.5382 0.6910 0.5375
CheXzero [56] 0.6462 0.7369 0.6629 0.6667 0.6400 0.6578

Ours 0.6561 0.7066 0.5917 0.7396 0.7670 0.7006

Table 2: Comparison with other state-of-the-
art methods on zero-shot Covid-19 classifica-
tion task. AUC, F1 and ACC scores are re-
ported. “Direct covid-19” refers to directly use
“Covid-19” to construct the prompt sentence
while “Covid-19 Description” refers to replace
the name “Covid-19” with its description.

4.4. Baselines

We compare with various existing state-of-the-art med-
ical image-text pre-train methods, namely, ConVIRT [68],
GLoRIA [25], BioViL [6] and CheXzero [56]. Since Con-
VIRT and GLoRIA are pre-trained on an in-house dataset,
we re-train their models on MIMIC-CXR dataset for fair
comparison. For BioViL, we use the officially released
models by the authors. For zero-shot setting, we use the
prompt as mentioned by BioViL [6] and compare to the very
recent method (CheXzero [56]) that has shown to have bet-
ter zero-shot diagnosis ability than radiologists. For fine-
tuning, we all use the same setting as described in Sec. 4.3.

4.5. Metrics

AUC, F1 and ACC are measured for classification tasks.
F1 comprehensively measures the recall and precision of the
model, and ACC is the short of Accuracy. The final binary
prediction threshold is chosen to maximise the F1 score.
The ACC score is also calculated under this threshold.
Pointing Game is used for evaluating the grounding perfor-
mance. In specific, we extract the region with max response
in the output heat-map, for one instance, if the region hit
the ground-truth mask, it is considered a positive prediction,
otherwise negative. Finally, accuracy can be calculated as
the pointing game score.
Dice and IOU are commonly used for segmentation tasks.
For zero-shot segmentation, we search the segmentation
threshold with 0.01 interval for all methods, and report the
maximal Dice score for each model.
Precision and Recall refer to the detection Precision and
Recall. For medical, it is important that lesions are de-
tected even without fine segmentation. Additionally, in
some hard cases, especially for the zero-shot setting, Dice
and IOU may be too strict to reflect the performance differ-

ence. Precision and recall scores can compensate for these.
We choose the IOU threshold as 0.1 to calculate the scores.

5. Results

In this section, we will report the experimental results. In
general, we split the results into two parts: zero-shot setting
and fine-tuning setting. In the zero-shot case (Sec. 5.1), we
carry out the ablation study and compare it with the other
SOTA image-text pre-train methods. We mainly consider
classification and segmentation tasks; In the fine-tuning
case (Sec. 5.2), we evaluate the model’s transferability by
fine-tuning the model with 1%, 10%, and 100% data por-
tion. Additionally, we also add a disease grading down-
stream task, which can be seen as a fine-grade classification
task, showing that our pre-trained model can be transferred
to the downstream tasks at ease.

5.1. Zero-shot Evaluation

In this section, we compare our method with other state-
of-the-art methods under zero-shot setting, on classification
and grounding. Due to the space limitation, we include the
entire ablation study in the supplementary material (Sec. C),
referring to it for more details and analysis, and all com-
parisons here are made using our best model with position
contrastive loss and entity description encoder.

5.1.1 Classification

Seen Diseases. As shown in Tab. 1, we compare with ex-
isting methods on three widely-used datasets, demonstrat-
ing consistent performance improvement. Specifically, on
pneumonia and pneumothorax datasets, despite the images
being collected by different clinics with different diseases,
our model improves the AUC score from 0.83 to 0.87 on
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Methods Pointing Game↑ Recall↑ Precision↑ IoU↑ Dice↑
GLoRIA [25] 0.7607 0.8330 0.1621 0.2182 0.3468

BioViL [6] 0.8342 0.8521 0.5034 0.3029 0.4386

Ours 0.8721 0.8661 0.6420 0.3172 0.4649

(a) Zero-shot grounding on Pneumonia

Methods Pointing Game↑ Recall↑ Precision↑
GLoRIA [25] 0.0651 0.2377 0.0585

BioViL [6] 0.0252 0.1963 0.1429

Ours 0.1975 0.3562 0.1940

(b) Zero-shot grounding on Pneumothorax

Table 3: Comparison with other state-of-the-art methods on zero-shot region grounding tasks. (a) shows the results on RSNA
Pneumonia dataset. (b) shows the results on SIIM-ACR Pneumothorax dataset. The pneumothorax region tends to be thin
and narrow and much more challenging for grounding, we thus only consider pointing game, recall, and precision. Our
method can achieve better performance on different metrics, especially on the pointing game score. ConVIRT and CheXzero
can not realize this function.

Prompt Type Direct covid-19 Covid-19 Description
Methods Pointing Game↑ Recall↑ Precision↑ IoU↑ Dice↑ Pointing Game↑ AR↑ AP↑ IoU↑ Dice↑

GLoRIA [25] 0.0364 0.2906 0.1073 0.0645 0.1141 0.2727 0.2821 0.1336 0.0596 0.1075
BioViL [6] 0.4000 0.2564 0.2703 0.1198 0.1967 0.1818 0.2393 0.1637 0.0861 0.1427

Ours 0.1818 0.1880 0.1497 0.0747 0.1289 0.5818 0.5214 0.4959 0.1373 0.2278

Table 4: Comparison with other state-of-the-art methods on zero-shot covid-19 opacity region grounding task. “Direct covid-
19” refers to directly use “Covid-19” to construct the prompt sentence for entity encoding while “Covid-19 Description”
refers to replace the name “Covid-19“ with its description. Our method can achieve better performance on different metrics.

RSNA pneumonia dataset and from 0.71 to 0.89 on SIIM-
ACR pneumothorax dataset, as shown in Tab. 1. This
shows that our method can better deal with the multi-center
and multi-disease data distribution in medical. While on
ChestX-ray14 dataset, we improve the average AUC scores
from 0.69 to 0.77, we refer the reader to supplementary ma-
terial (Sec. D) for detailed comparison of 14 diseases.

Unseen Diseases. Here, we are considering a strict set-
ting for openset classification, in particular, we use covid-
19 to evaluate the systems. Covid-19 is a new disease that
only appeared in 2019, MIMIC-CXR reports collected in
the year 2015 do not include any entity of covid-19, thus
it requires the system to have the ability to diagnose truly
unseen diseases. As shown in Tab. 2, existing approaches
that only rely on disease name struggles to make the correct
diagnosis. While, our proposed approach, after introduc-
ing medical knowledge, i.e., using entity descriptions, can
understand the complex medical entity descriptions unseen
in the training set, and significantly boost the performance
from 0.66 to 0.74 on AUC and from 0.59 to 0.70 on ACC,
demonstrating entity translation is vital for unseen diseases.

5.1.2 Grounding

In addition to the plain diagnosis, explainability can be
equally critical in healthcare, improving the reliability and
trustiness of the machine learning systems. Here, we con-
sider providing explainability by grounding the abnormal-
ity in the prediction and compare against the existing ap-
proaches. Similarly, we split the diseases into seen and
unseen ones, depending on whether their names have ap-

peared in the medical reports. Specifically, “Pneumonia”
and “Pneumothorax” are treated as seen, and “Covid-19” is
treated as unseen. Due to the space limitation, we include
visualization results in supplementary material (Sec. E).

Seen Diseases. We show the results for grounding on
RSNA Pneumonia opacity and SIIM-ACR Pneumothorax
collapse in Tab. 3. As shown in Tab. 3a, our proposed model
surpasses existing approaches on all metrics, for example,
we improve the pointing game score from 0.83 to 0.87, the
detection Recall from 0.85 to 0.87, the detection precision
from 0.50 to 0.64, the IOU from 0.30 to 0.32 and the Dice
from 0.44 to 0.46. While on SIIM-ACR dataset (Tab. 3b),
the pneumothorax region tends to be thin and narrow, local-
izing it can often be more challenging than that of opacity
grounding [6], we thus only consider pointing game, recall,
and precision. Similarly, our method can achieve signifi-
cantly better performance than prior approaches.

Unseen Diseases. We also conduct the zero-shot ground-
ing experiment on the unseen disease, namely, Covid-19, as
shown in Tab. 4. Our model has shown consistent improve-
ments in all metrics, e.g., boosting the pointing game score
from 0.40 to 0.58. One observation to be noticed is that, re-
sults in Tab. 4 are mostly consistent with those in Tab. 2, i.e.,
better classification results tend to lead to better grounding.
Overall, our model with knowledge-enhanced language en-
coding has facilitated the visual encoder to learn underlying
evidence relating to the diseases, therefore, leading to more
interpretable representations than prior approaches.
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Dataset Pneumonia Pneumothorax Covid-19 ChestX-ray14
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 0.7107 0.8150 0.8626 0.4347 0.6120 0.6571 0.7861 0.9162 0.9554 0.6005 0.7365 0.7924
ConVIRT [68] 0.8398 0.8562 0.8761 0.7134 0.7826 0.9004 0.8675 0.9541 0.9726 0.6615 0.7658 0.8128
GLoRIA [25] 0.8599 0.8666 0.8846 0.7439 0.8538 0.9014 0.9065 0.9381 0.9728 0.6710 0.7642 0.8184

BioViL [6] 0.8233 0.8538 0.8836 0.6948 0.7775 0.8689 0.8989 0.9529 0.9729 0.6952 0.7527 0.8245

Ours 0.8731 0.8799 0.8931 0.8527 0.9071 0.9188 0.9224 0.9657 0.9729 0.7721 0.7894 0.8323

Table 5: Comparison of AUC scores with other state-of-the-art methods on fine-tuning classification task. The macro average
of AUC scores on 14 diseases are reported for ChestX-ray14 dataset.

Diseases Pneumonia Pneumothorax Covid-19
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 0.4347 0.6047 0.7068 0.2133 0.3323 0.7447 0.1481 0.2367 0.3228
ConVIRT [68] 0.5706 0.6491 0.7201 0.5406 0.6121 0.7352 0.1995 0.2724 0.3737
GLoRIA [25] 0.6555 0.6907 0.7328 0.5673 0.5778 0.7694 0.1889 0.2809 0.3869

BioViL [6] 0.6824 0.7038 0.7249 0.6267 0.6998 0.7849 0.2113 0.3239 0.4162

Ours 0.7064 0.7162 0.7579 0.6659 0.7210 0.7937 0.2445 0.3539 0.4399

Table 6: Comparison of Dice scores with other state-of-the-art methods on fine-tuning segmentation tasks. Three diseases
are reported, and for each disease, three data portions, 1%, 10%, 100% are adopted to show the performance change under
different data amounts.

Methods 0 1 2 3 AVG
AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

Scratch 0.7631 0.7036 0.6738 0.5383 0.3593 0.3223 0.6692 0.4328 0.7012 0.8420 0.5694 0.8770 0.7031 0.5163 0.6436
ConVIRT [68] 0.8453 0.7769 0.7793 0.6099 0.3938 0.4629 0.7202 0.4843 0.6445 0.9047 0.6154 0.8809 0.7700 0.5676 0.6919
GLoRIA [25] 0.8304 0.7577 0.7520 0.6208 0.3991 0.4922 0.7339 0.4958 0.7037 0.9246 0.6667 0.9102 0.7774 0.5798 0.7145

BioViL [6] 0.8034 0.7378 0.7148 0.6035 0.3912 0.4570 0.6860 0.4497 0.6777 0.9229 0.6500 0.9160 0.7540 0.5572 0.6914

Ours 0.8502 0.7646 0.7539 0.6641 0.4140 0.5392 0.7605 0.5266 0.7031 0.8845 0.6250 0.9160 0.7898 0.5826 0.7280

Table 7: Comparison with other state-of-the-art methods on fine-tuning edema severity grading multi-class classification task.
AUC score is reported in the Table. “0,1,2,3” in the table represents the severity level and final average scores are reported.

5.2. Fine-tuning Evaluation

In this section, we consider the fine-tuning scenario, with
the pre-trained model as initialization, and trained end-to-
end on the downstream tasks. We test on three different
tasks, namely, classification, segmentation, and grading. In
classification and segmentation, the test splits and metrics
are the same as in the “zero-shot” section. Grading is a new
task we introduce in fine-tuning setting, which can be seen
as a fine-grained classification task.

5.2.1 Classification

We experiment on four different datasets, using 1%, 10%,
100% of the data for fine-tuning, that is consistent with the
existing work [68, 25, 6]. As shown in Tab. 5, our model has
demonstrated substantial improvements in the AUC scores
over the existing approaches across all datasets, reflecting
that our pre-trained representation is of higher quality than
existing models. We refer the readers to the supplementary
material (Sec. D) for more detailed comparison results.

5.2.2 Segmentation

In Tab. 6, we conduct fine-tuning experiments on three dif-
ferent diseases for segmentation. We pick 1%, 10%, 100%
of the data for fine-tuning. For all three different diseases
with different image distributions, our methods surpass the
existing state-of-the-art methods by a large margin, espe-
cially under the low-data regime.

5.2.3 Grading

Besides diagnosis, grading the disease severity level also
plays an important role. Here, we adopt our pre-trained fea-
tures and train them for the multi-class classification task,
with 0 to 3 representing different severity levels. As shown
in Tab. 7, for each level, the AUC, F1, and ACC scores are
calculated as one class against all other ones, for example,
0 vs {1, 2, 3}. Final macro average scores of four levels are
computed. On the majority of severity levels, our method
can achieve the best results.
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6. Conclusion

In this paper, we introduce a novel medical knowledge
enhanced VLP model. First, we propose a triplet extraction
module to extract useful medical-related triplets as more
useful supervision signals, simplifying complex raw reports
with minimal information loss. Second, we translate the en-
tities in extracted triplets into detailed medical descriptions
and embed them with a text encoder enabling the network
to understand complex medical expert-level knowledge. Fi-
nally, a transformer-based structure is proposed to do local
region alignment. In experiments, We evaluate our method
on different datasets under various settings. Our method
shows strong zero-shot classification and grounding abili-
ties, even facing unseen diseases. Additionally, with fine-
tuning, our method still outperforms state-of-the-art meth-
ods significantly, showing the superiority of our method.
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