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Abstract

3D single object tracking (SOT) is an indispensable part
of automated driving. Existing approaches rely heavily on
large, densely labeled datasets. However, annotating point
clouds is both costly and time-consuming. Inspired by the
great success of cycle tracking in unsupervised 2D SOT,
we introduce the first semi-supervised approach to 3D SOT.
Specifically, we introduce two cycle-consistency strategies
for supervision: 1) Self tracking cycles, which leverage la-
bels to help the model converge better in the early stages
of training; 2) forward-backward cycles, which strengthen
the tracker’s robustness to motion variations and the tem-
plate noise caused by the template update strategy. Further-
more, we propose a data augmentation strategy named SOT-
Mixup to improve the tracker’s robustness to point cloud
diversity. SOTMixup generates training samples by sam-
pling points in two point clouds with a mixing rate and as-
signs a reasonable loss weight for training according to
the mixing rate. The resulting MixCycle approach gen-
eralizes to appearance matching-based trackers. On the
KITTI benchmark, based on the P2B tracker [16], Mix-
Cycle trained with 10% labels outperforms P2B trained
with 100% labels, and achieves a 28.4% precision improve-
ment when using 1% labels. Our code will be released at
https://github.com/Mumuqiao/MixCycle.

1. Introduction
3D single object tracking (SOT) plays a critical role in

the field of autonomous driving. For example, given object
detection [15, 33] results as input, it can output the neces-
sary information for trajectory prediction [8]. The goal of
SOT is to regress the center position and 3D bounding-box
(BBox) of an object of interest in a search area, given the
point cloud (PC) patch and BBox of the object template.
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Figure 1. Comparison of MixCycle and fully-supervised meth-
ods [16, 25, 34], all trained with 1% labels on KITTI [5]. ‘Succ.’
and ‘Prec.’ represent Success and Precision, respectively.

This is a very challenging task because (i) point clouds ob-
tained with, e.g., LiDAR sensors, suffer from occlusions
and point sparsity, complicating the tracker’s task of finding
the object of interest; (ii) the point distribution for an object
may vary significantly, making it difficult for the model to
learn discriminative object features.

To tackle the above challenges, existing 3D SOT mod-
els [6, 16, 4, 9, 10, 25, 34, 18, 35] rely on large scale an-
notated point cloud datasets for training. Unfortunately,
obtaining annotations for this task, as for many 3D tasks,
is extremely time-consuming. Furthermore, as shown in
Fig. 1, the performance of these methods degrades dramat-
ically as the number of labeled samples decreases. Never-
theless, no semi-supervised or unsupervised methods have
been explored so far in 3D SOT.

As shown in Fig. 2, the matching-based tracker of [34]
can still track the target at the very beginning of a sequence
by predicting a motion offset relative to the reference coor-
dinate, even though there are no points in the template for
appearance matching. This indicates that the appearance
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Figure 2. We observe that appearance matching-based trackers can
learn the objects motion distribution and track them even in the
absence of points for appearance matching. For instance, BAT [34]
manages to track objects in extremely sparse point clouds.

matching-based trackers can learn motion information. By
contrast, in 2D SOT, many trackers [23, 24, 36, 29] employ
cycle consistency to leverage unsupervised data. Specifi-
cally, they encourage forward and backward tracking to pro-
duce consistent motions. In principle, we expect to apply
this idea to 3D SOT and make trackers to learn the object’s
motion distribution in unlabeled data. However, transfer-
ring these 2D methods directly to 3D is challenging. First,
since the point cloud is sparse and the environment is clut-
tered with objects, it is hard to find meaningful patches to
use as pseudo labels for training. Second, unsupervised 2D
SOT methods rely on the assumption that the target appears
in every frame of the sequence. Unfortunately, this assump-
tion is not always satisfied in point cloud datasets such as
KITTI [5], NuScenes [1], and Waymo [20]. This is because
they are built for the multi-object tracking task, and can-
not guarantee that the tracking object exists in the whole
sequence.

In this paper, we introduce a label-efficient way to train
3D SOT trackers. We call it MixCycle - a 3D SOT ap-
proach based on a novel SOTMixup data augmentation
strategy for semi-supervised Cycle tracking. Specifically,
we first develop a tracking framework exploiting both self
and forward-backward tracking cycles. Self tracking con-
sistency is performed to cover the object point cloud ap-
pearance variation, and forward-backward consistency is
built for learning the object’s motion distribution. Second,
we present a data augmentation method for 3D SOT called
SOTMixup, which is inspired by the success of mixup [31]
and Manifold mixup [22]. Without changing the total num-
ber of points in the search area, SOTMixup samples points
in a random point cloud and the search area point cloud ac-
cording to the mixing rate and generates training samples.
Specifically, the random point cloud is sampled from the la-
beled training set. SOTMixup thus increases the tracker’s
robustness to point cloud variations. We evaluate MixCycle
on KITTI, NuScenes, and Waymo. As shown in Fig. 1, our
experiments clearly demonstrate the label efficiency, gener-
alization and remarkable performance of our method on the
3D SOT task.
Contributions: (i) We propose the first semi-supervised

3D SOT framework. It exploits self and forward-backward
consistency as supervision and generalizes to appearance
matching-based trackers. (ii) We introduce a SOTMixup
augmentation strategy that increases the tracker’s robust-
ness to point distribution variations and allows it to learn
motion information in extreme situations. (iii) Our frame-
work demonstrates a remarkable performance in terms of
label efficiency, achieving better results than existing super-
vised methods in our experiments on KITTI NuScenes, and
Waymo when using fewer labels. In particular, we surpass
P2B [16] trained on 100% labels while only using 10% la-
bels.

2. Related Work
3D Single Object Tracking. Since LiDAR is insensitive
to illumination, the appearance matching model has be-
come the main choice in the field of 3D single object track-
ing. Giancola et al. [6] proposed SC3D which is the first
method using a Siamese network to deal with this prob-
lem. However, it is very time-consuming and inaccurate
due to heuristic matching. Zarzar et al. [30] built an end-
to-end tracker by using 2D RPN in 2D bird’s eyes view
(BEV). Unfortunately, the lack of information in one di-
mension leads to limited accuracy. The point-to-box (P2B)
network [16] employs VoteNet[15] as object regression
module to construct a point-based tracker. A number of
works [4, 9, 10, 25, 34, 18] investigate different architec-
tures of trackers based on P2B [16]. Zheng et al. [34] de-
picted an object using the point-to-box relation and pro-
posed BoxCloud, which enables the model to better sense
the size of objects. Hui et al. [9] discovered the pri-
ori information of object shapes in the dataset to obtain
dense representations of objects from sparse point clouds.
Zheng et al. [35] presented a motion centric method M2-
Track, which is appearance matching-free and has made
great progress in dealing with the sparse point cloud track-
ing problem. However, M2-track is limited by the LiDAR
frequency of datasets as object motion in adjacent frames
varies with the LiDAR sampling frequency.

All the above methods rely on large-scale labeled
datasets. Unfortunately, 3D point cloud annotation is labor-
and time-consuming. To overcome this, we propose Mix-
Cycle, a semi-supervised tracking method based on cycle
consistency constraints with SOTMixup data augmentation.
Label-Efficient Visual Tracking. Wang et al. [23] pro-
posed unsupervised deep tracking (UDT) with cycle consis-
tency, based on a Siamese correlation filter backbone net-
work. UDT achieved remarkable performance, revealing
the potential of unsupervised learning in visual tracking.
Yuan et al. [29] improved the UDT approach to make the
target features passed forward and backward as similar as
possible. The self-supervised fully convolutional Siamese
network [19] uses only spatially supervised learning of tar-
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Figure 3. MixCycle framework. The label is only contained in P s
0 of point cloud (PC) sequence {P s

0 , P
s
1 , . . . , P

s
n}. 1) Self tracking

cycle: we first sample a PC P s
r from the labeled training set. Then, we generate pseudo labels by applying SOTMixup and random rigid

transformation (Trans.) to P s
0 and P s

r . SOTMixup directly mixes P s
r and P s

0 based on the number of points with a mixing rate, assigning
a reasonable loss weight corresponding to the mixing rate. We employ the consistency between self tracking proposals and pseudo labels
to formulate the loss Lself . 2) Forward-backward tracking cycle: we leverage forward tracking proposals as pseudo labels and apply a
random rigid transformation to them. Then, we employ the consistency between ground truth (GT)/pseudo labels and backward tracking
proposals to formulate the losses Lcon0/{Lcon1, . . . ,Lcon(n−1)}.

get correspondences in still video frames. Wu et al. [26]
proposed a progressive unsupervised learning (PUL) net-
work, which distinguishes the background by contrastive
learning and models the regression result noise. PUL thus
makes the tracker robust in long-time tracking. Unsu-
pervised single object tracker [36] consists of an online-
updating tracker with a novel memory learning scheme.

In essence, the above unsupervised trackers all make the
implicit assumption that the tracked target exists in every
frame of the sequence. Unfortunately, this is not necessarily
true in KITTI [5], NuScenes [1], and Waymo [20]. There-
fore, the above methods are not directly applicable to 3D
SOT.
Mixup Data Augmentation. Data augmentation has be-
come a crucial pre-processing step for many deep learn-
ing models. Zhang et al. [31] introduced a data augmenta-
tion method called mixup, which linearly interpolates two
image samples, and Manifold mixup [22] transfers this
idea to high-dimensional feature spaces. By interpolating a
new sample, PointMixup [2] extends mixup to point clouds.
Mix3D [14] introduces a scene-aware mixup by taking the
union of two 3D scenes and their labels after random trans-
formations. Lu et al. [13] developed a directed mixup based
on the pixel values. Additionally, a variety of region mixup
techniques have been proposed [32, 12, 21, 11]. In the case
of outdoor scenes, Xiao et al. [28] combined two images
using random rotation. CosMix[17] and structure aware
fusion [7] combine point clouds using semantic structures.
Fang et al. [3] turned a CAD into a point cloud to combat
object occlusion.

However, the above-mentioned methods are made for the

multi-class classification scenario and are not suitable for
SOT, which only contains a positive and negative sample.

3. Method
3.1. Overview

The purpose of 3D SOT is to continually locate the
target in the search area point cloud sequence Ps =
{P s

0 , . . . , P
s
k , . . . , P

s
n|P s

k ∈ RNs×3} given the tracking ob-
ject template point cloud P o

0 ∈ RNt×3 and the 3D BBox
B0 ∈ R7 in the initial frame. This can be described as

(P̃ o
k+1, B̃k+1) = F(P s

k+1, P̃
o
k ) , (1)

where P̃ o
k , P̃ o

k+1 and B̃k+1 are the predicted target point
cloud and 3D BBox in frame k and k + 1, respectively. By
referring to P2B [16] and its follow-ups [4, 9, 10, 18, 25,
34], we summarize the typically 3D SOT loss as

L = ρ1 · Lcla + ρ2 · Lprop + ρ3 · Lreg + ρ4 · Lbox , (2)

where ρ is the manually-tuned hyperparameter, Lcla, Lprop,
Lreg and Lbox are the losses for foreground-background
classification, confidences for the BBox proposals, voting
offsets of the seed points, and offsets of the BBox propos-
als, respectively.

To address this task, we propose MixCycle, a novel semi-
supervised framework for 3D SOT. Illustrated in Fig. 3,
MixCycle relies on a SOTMixup data augmentation strat-
egy to tackle data sparsity and diversity (Sec. 3.2). Fur-
ther, it utilizes self and forward-backward cycle consisten-
cies as sources of supervision to cover the object appear-
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ance and motion variation (Sec. 3.3). Additionally, we ap-
ply rigid transformations to ground truth (GT) labels to gen-
erate search areas in unlabeled data (Sec. 3.4).

3.2. SOTMixup

Inspired by the great success of mixup [31], we develop
SOTMixup to supply diverse training samples and deal with
the point cloud diversity problem, providing a solution for
the mixup application in binary classification in SOT task.
With two image samples (IA, IB), mixup can be simply de-
scribe as creating an image

ImA = λIA + (1− λ)IB , (3)

ymA = λyA + (1− λ)yB , (4)

where λ ∈ [0, 1] is the mixing rate, and (yA, yB) are the im-
age labels. Typically, λ follows a Beta distribution β(η, η).
A muti-class loss is then calculated as

Lmuti cal = λ · C(ỹ, yA) + (1− λ) · C(ỹ, yB) , (5)

where ỹ is the predicted label, and C is the criterion (usu-
ally being the cross-entropy loss). Vanilla mixup applies
linear interpolation in aligned pixel space. However, this
operation is not suitable to unordered point clouds. Fur-
thermore, one of the key challenges for the SOT task is
to determine whether the proposal is positive or negative.
Muti-class label interpolation approach in mixup cannot be
directly applied. Specifically, given the search area PC PA

and a random PC PB sampled in the training set, we em-
ploy mixup to generate a frontground and background label
pair (λ · yA, (1−λ) · yB). In practice, this label pair should
be set to (yA, 0), as the points in PB mismatch the template
and should be considered as background.

We therefore develop a point cloud mixup strategy for
SOT based on the number of points, called SOTMixup. As
shown in Fig. 4, SOTMixup generates new samples and
minimizes the gap between the generated samples and the
real sample distribution. Specifically, SOTMixup mixes a
point cloud randomly sampled from the training set and the
search area point cloud by sampling points using a mix-
ing rate, without changing the total number of points in the
search area. First, given point cloud pair (PA, PB), corre-
sponding binary classification labels (yA, yB), and a mixing
rate λ, we separate the backgrounds and object points in PA

and PB and obtain (P b
A, P

o
A, P

b
B , P

o
B), where P o

A ∈ RNo
A×3

and P o
B ∈ RNo

B×3. Second, we generate P̂ o
A and P̂ o

B by
randomly sampling λ×No

A and (1− λ)×No
A points from

P o
A and P o

B , respectively. We then perform SOTMixup as

Pm
A = P b

A + P̂ o
A + P̂ o

B , (6)

where ‘+’ represents the concatenation operation.
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Object
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Background
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n
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o
n

Mixed Search Area
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Sampling

Figure 4. SOTMixup. First, the search area point cloud (PC) and
a point cloud randomly sampled from the labeled training set are
segmented into foreground and background, respectively. Second,
a mixing rate λ is applied to sample two object PCs. Finally, we
concatenate the sampled object PCs and search area background
to generate the mixed search area.

Usually, we consider the distance between the predicted
object center and the ground truth to be positive if it is less
than 0.3 meters, and negative if it is greater than 0.6 meters.
The binary cross entropy loss for regression and foreground
classification in SOTMixup can be written as

Lprop mix = −(λ·yA·log(spi )+(1−yA)·log(1−spi )) , (7)

Lcla mix = −(λ·yA ·log(bpj )+(1−yA)·log(1−bpj )) , (8)

where Lprop mix and Lcla mix are the proposal confidence
loss and foreground-background classification loss, respec-
tively. spi is the confidence score of proposal i, and bpj is the
predicted foreground probability of point j in search area
P s. We replace losses Lprop and Lcla with Lprop mix =
λ ·Lprop and Lcla mix = λ ·Lcla. SOTMixup applies a loss
weight λ to the positive proposals and foreground points,
but does not change the loss weight of the negative propos-
als and background points. We reduce the loss penalty on
the positive sample prediction scores to lessen the influence
on the appearance matching ability of the tracker. We leave
the loss weight unchanged for the negative samples. Be-
cause we intend the trackers to predict the motion offset of
the object even if the object point cloud in the search area
has dramatically changed.

3.3. Cycle Tracking

Self Tracking Cycle. In contrast with existing 2D cycle
trackers [23, 24, 36, 29], which only consider forward-
backward cycle consistency, we propose to create the self
tracking cycle. The motivation is to leverage virtually infi-
nite supervision information contained in the initial frame
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itself. To this end, we first randomly sample a search area
point cloud P s

r and object 3D BBox Br from the labeled
training set. SOTMixup is then applied to generate the
mixed point cloud

Pm
0 = SOTMixup(P s

0 , B0, P
s
r , Br, λ) , (9)

where λ ∈ [0, 1] is the mixing rate. Inspired by SC3D [6],
we apply a random rigid transformation T to {Pm

0 , B0} and
generate pseudo labels

(Pmt
0 , Bt

0) = T (Pm
0 , B0, α) , (10)

where Pmt
0 is the search area PC generated by applying

SOTMixup and a rigid transformation on P s
0 and α =

(∆x,∆y,∆z,∆θ) is a transformation parameter with a
coordinate offset (∆x,∆y,∆z) and a rotation degree ∆θ
around the up-axis. This creates a self tracking cycle

(P̃ ot
0 , B̃t

0) = F(Pmt
0 , P o

0 ) , (11)

where B̃t
0 is the predicted result on Pmt

0 and P o
0 is the ob-

ject template PC cropped from P s
0 . We then calculate the

self consistency loss Lself between B̃t
0 and Bt

0. Lself has
the same setting with L of Eq. (2) while corresponding loss
with Lcal mix and Lprop mix.

In the self tracking cycle, the loss weight can be auto-
matically quantified by the mixing rate in SOTMixup. This
provides the tracker with simple training samples to make
it converge faster in the early stage of training with a high
mixing rate, and also allows us to improve the tracker’s ro-
bustness to point cloud variations using a low mixing rate.
Forward-Backward Tracking Cycle. In addition to self
tracking cycles, we also use forward-backward consistency.
Hence, we forward track the object in the given search area
sequence Ps, which can be written as

(P̃ o
1 , B̃1) = F(P s

1 , P
o
0 ) , (12)

(P̃ o
2 , B̃2) = F(P s

2 , P̃
o
1 ) , (13)

where {P̃ o
1 , P̃

o
2 } and {B̃1, B̃0} are the predicted forward

tracking object point clouds and 3D BBoxes of P s
1 and P s

2 ,
respectively. Following this strategy lets us further predict
{P̃ o

3 , . . . , P̃
o
n} and {B̃3, . . . , B̃n} in {P s

3 , . . . , P
s
n}.

Then, we reverse the tracking sequence and perform
backward tracking while applying random rigid transforma-
tions. This can be expressed as

(P̃ o′
1 , B̃′

1) = F(T (P s
1 , B̃1, α), P̃

o′
2 ) , (14)

(P̃ o′
0 , B̃′

0) = F(T (P s
0 , B0, α), P̃

o′
1 ) , (15)

where {P̃ o′
0 , P̃ o′

1 , P̃ o′
2 } and {B̃′

1, B̃
′
0} are the predicted

backward tracking object point clouds and 3D BBoxes.

We then measure the consistency losses Lcon1 and
Lcon0 between B̃′

1 and B̃1, as well as between B̃′
0 and

B0. Similarly, we can measure the consistency losses
{Lcon2, . . . ,Lcon(n−1)}. Lcon has the same setting with
L of Eq. (2).

The forward-backward tracking cycle provides real and
diverse motion consistency, leading trackers to learn the ob-
ject’s motion distribution between two neighboring frames.
Furthermore, the tracker’s robustness is increased by train-
ing with a disturbed template generated by the template up-
date strategy (Sec. 3.4).

3.4. Implementation Details

Training & Testing. We train MixCycle using the SGD op-
timizer with a batch size of 48 and an initial learning rate of
0.01 with a decay rate of 5e − 5 at each epoch. All experi-
ments are conducted using NVIDIA RTX-3090 GPUs. We
set n = 2 and only measure the self and forward-backward
cycle consistency losses Lself and Lcon0 for P s

0 due to the
GPU memory limit. At test time, we track the object frame
by frame in a point cloud sequence with labels in the first
frame. For both training and testing, our default setting for
the template update strategy is to merge the target in the first
frame with the predicted previous result.

Input & Data Augmentation. Our MixCycle takes three
frames f , f + 1 and f + 2 as input. For the initial frame f ,
we transform the BBox and point clouds to the object coor-
dinate system. For the other frames in the tracking cycle, we
transform the BBox and point clouds to the predicted object
coordinate system in the last frame. We assume that the mo-
tion of the objects across neighboring frames is not signifi-
cant. We apply random rigid transformations to BBoxes in
labeled frames and use them to crop out search areas in the
neighboring frames. Only the area within 2 meters around
the reference object BBox is considered as input (search
area) since we are only interested in the area where the tar-
get is expected to appear. The random rigid transformation
parameter α is set to (0.3, 0.3, 0.0, 5.0◦), and the β distri-
bution parameter is set to η = 0.5.

Loss Function. The loss function of MixCycle is defined as
LMixCycle = γ1Lself + γ2Lcon0 containing self tracking
cycle losses and forward-backward tracking cycle losses.
Each of our cycle losses is set according to the original
loss setting of the tracker to which we apply MixCycle.
Additionally, the corresponding losses are replaced with
Lprop mix and Lcla mix. We empirically set γ1 = 1.0 and
γ2 = 2.0, as we expect the tracker to focus more on learning
the motion distribution of the object.
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Table 1. Overall performance comparison between our MixCycle and the fully-supervised methods on the KITTI (left) and NuScenes
(right) datasets, where the percentage of labels used for training is shown under the dataset names. Improvements based on the same
tracker are shown in green. Bold and underline denote the best and the second-best performance, respectively.

Dataset KITTI NuScenes

Sampling Rate 1% 5% 10% 0.1% 0.5% 1%

Su
cc

es
s

P2B [16] 6.1 25.5 34.3 15.2 23.0 24.3
MLVSNet [25] 25.0 35.5 36.6 21.5 29.9 34.0

BAT [34] 10.1 21.6 34.9 17.5 26.4 30.6
Ours(P2B) 20.3 14.2↑ 36.7 11.2↑ 43.8 9.5↑ 23.2 7.9↑ 34.3 11.3↑ 34.3 10.0↑

Ours(MLVSNet) 32.4 7.4↑ 38.8 3.3↑ 42.6 6↑ 31.4 9.9↑ 34.5 4.7↑ 41.9 7.9↑
Ours(BAT) 19.7 9.6↑ 42.2 20.6↑ 46.2 11.3↑ 24.4 6.9↑ 32.8 6.4↑ 34.4 3.8↑

Pr
ec

is
io

n

P2B [16] 5.0 39.5 52.7 13.0 21.2 22.6
MLVSNet [25] 36.3 53.2 54.7 19.5 30.4 35.3

BAT [34] 12.3 35.3 52.7 15.2 25.7 30.6
Ours(P2B) 33.4 28.4↑ 55.3 15.8↑ 64.2 11.5↑ 21.9 8.9↑ 34.2 13↑ 34.0 11.4↑

Ours(MLVSNet) 49.2 12.9↑ 56.6 3.4↑ 61.4 6.7↑ 31.1 11.6↑ 35.2 4.8↑ 43.6 8.3↑
Ours(BAT) 27.0 14.7↑ 62.3 27.0↑ 67.8 15.1↑ 22.7 7.5↑ 31.9 6.2↑ 34.1 3.5↑

Table 2. Comparison of MixCycle against fully-supervised methods on each category. We train the models with 1%/0.1% sampling rate
on KITTI/NuScenes. Improvements and decreases based on the same tracker are shown in green and red, respectively.

Dataset KITTI(1%) Nuscenes(0.1%)

Category Car Pedestrian Van Cyclist Mean Car Truck Trailer Bus Mean
Frame Number 6424 6088 1248 308 14068 64159 13587 3352 2953 84051

Su
cc

es
s

P2B [16] 8.1 3.6 8.1 5.6 6.1 15.8 13.1 12.8 16.1 15.2
MLVSNet [25] 35.3 15.2 22.9 12.8 25.0 21.0 25.2 22.5 13.5 21.5

BAT [34] 16.7 3.8 7.2 6.8 10.1 17.5 17.8 20.4 14.4 17.5
Ours(P2B) 20.6 12.5↑ 22.8 19.2↑ 8.0 0.1↓ 16.6 11.0↑ 20.3 14.2↑ 23.0 7.2↑ 25.2 12.1↑ 22.4 9.6↑ 17.7 1.5↑ 23.2 7.9↑

Ours(MLVSNet) 43.8 8.5↑ 20.7 5.5↑ 28.2 5.3↑ 43.7 31.0↑ 32.4 7.4↑ 29.7 8.7↑ 42.4 17.3↑ 31.3 8.9↑ 19.2 5.7↑ 31.4 9.9↑
Ours(BAT) 32.6 15.9↑ 6.1 2.3↑ 16.3 9.2↑ 34.1 27.4↑ 19.7 9.6↑ 24.3 6.9↑ 26.9 9.1↑ 23.7 3.2↑ 16.9 2.5↑ 24.4 6.9↑

Pr
ec

is
io

n

P2B [16] 7.4 2.2 6.1 4.4 5.0 14.5 8.2 6.8 8.4 13.0
MLVSNet [25] 46.5 28.8 25.4 16.6 36.3 20.5 20.0 11.3 6.4 19.5

BAT [34] 22.7 2.9 5.9 9.5 12.3 16.3 12.2 9.2 12.2 15.2
Ours(P2B) 30.0 22.6↑ 43.7 41.5↑ 6.1 0.0 11.1 6.7↑ 33.4 28.4↑ 23.5 9.0↑ 18.9 10.7↑ 11.2 4.4↑ 14.0 5.6↑ 21.9 8.9↑

Ours(MLVSNet) 59.2 12.7↑ 40.7 11.9↑ 31.1 5.7↑ 79.0 62.4↑ 49.2 12.8↑ 31.1 10.6↑ 38.6 18.6↑ 19.5 8.1↑ 11.5 5.2↑ 31.1 11.6↑
Ours(BAT) 43.9 21.2↑ 9.3 6.4↑ 19.2 13.2↑ 57.3 47.8↑ 27.0 14.7↑ 24.1 7.8↑ 21.1 8.9↑ 13.8 4.6↑ 9.7 2.6↓ 22.7 7.5↑

4. Experiments

4.1. Datasets

We evaluate our MixCycle on the challenging 3D vi-
sual tracking benchmarks of KITTI [5], NuScenes [1] and
Waymo [20] for semi-supervised 3D single object tracking.
Semi-supervision labels are generated by applying random
sampling to the training set.

The KITTI tracking dataset contains 21 training se-
quences and 29 test sequences with 8 types of objects.
Following previous works [6, 16, 34, 25], we split the
training set into training/validation/testing: Sequences 0-
16 are used for training, 17-18 for validation, and 19-20
for testing. The NuScenes dataset contains 1000 scenes
and annotations for 23 object classes with accurate 3D
BBoxes. NuScenes is officially divided into 700/150/150
scenes for training/validation/testing. Following the set-
ting in [34], we train our MixCycle on the subset “train-
ing track” of the training set, and test it on the validation
set. Waymo includes 1150 scenes, 798/202/150 scenes
for training/validation/testing. Following the setting in [35],
we test trackers in the validation set. Compared to KITTI,
NuScenes, and Waymo include larger data volumes and

more complex scenarios.
Evaluation Metrics. In this paper, we use One Pass Eval-
uation (OPE) [27] to evaluate the Success (Succ.) and Pre-
cision (Prec.) of different methods. Success is calculated
as the overlap (Intersection Over Union, IoU) between the
proposal BBox and the ground truth (GT) BBox. Precision
represents the AUC of distance error between the centers of
two BBoxes from 0 to 2 meters.

4.2. Comparison with Fully-supervised Methods

To the best of our knowledge, no other 3D single object
trackers work in a semi-supervision fashion. Therefore, we
choose P2B [16], the multi-level voting Siamese network
(MLVSNet) [25] and the box-aware tracker (BAT) [34] to
validate our method by sharing the same network backbone.
Note that BAT is the state-of-the-art (SOTA) method in ap-
pearance matching-based trackers, and we regard it as our
upper bound. The fully-supervised methods will be trained
with labeled data, as their original approaches. We train
MixCycle in a semi-supervised way, which uses both la-
beled and unlabeled data. We do not evaluate the motion-
based tracker [35] since it requires 2 consecutive labeled
point clouds for training and is not suitable for our training
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Table 3. Overall performance comparison on KITTI/NuScenes be-
tween our MixCycle with 10%/1% sampling rates and the fully-
supervised methods with 100% sampling rate.

Dataset Method Success Precision

KITTI
P2B(100%) [16] vs Ours(10%) 42.4 vs 43.8 1.4↑ 60.0 vs 64.2 4.2↑

MLVSNet(100%) [25] vs Ours(10%) 45.7 vs 42.6 3.1↓ 66.6 vs 61.4 5.2↓
BAT(100%) [34] vs Ours(10%) 51.2 vs 46.2 5.0↓ 72.8 vs 67.8 5.0↓

NuScenes
P2B(100%) [16] vs Ours(1%) 39.7 vs 34.3 5.4↓ 42.2 vs 34.0 8.2↓

MLVSNet(100%) [25] vs Ours(1%) 45.7 vs 41.9 3.8↓ 47.9 vs 43.6 4.3↓
BAT(100%) [34] vs Ours(1%) 41.8 vs 34.4 7.4↓ 42.7 vs 34.1 8.6↓

Table 4. Comparison of MixCycle against BAT on Car in KITTI
for different sampling rates. ‘Improv.’ denotes Improvement.

Sampling Rate 1% 5% 10% 30% 50% 70% 100%

Su
cc

. BAT [34] 16.7 24.3 44.0 48.0 48.7 55.5 60.5
Ours(BAT) 32.6 49.2 55.2 56.2 56.6 60.9 64.7

Improv. 15.9↑ 24.9↑ 11.2↑ 8.2↑ 7.9↑ 5.4↑ 4.2↑

Pr
ec

. BAT [34] 22.7 34.8 57.3 63.1 65.3 69.5 77.7
Ours(BAT) 43.9 62.1 70.0 70.5 70.3 75.7 77.9

Improv. 21.2↑ 27.3↑ 12.7↑ 7.4↑ 5.0↑ 6.2↑ 0.2↑

set generation strategy. We employ different sampling rates
for the two datasets. The first reason is that we account for
the different scales of the dataset. The second season is that
the case of very limited labels is more practical in real ap-
plications, and we attempt to set the sampling rate as low as
possible within the trainable range.
Results on KITTI. 1) We evaluate our MixCycle in 4 cat-
egories (Car, Pedestrian, Van and Cyclist) and compare it
using 3 sampling rates: 1%, 5% and 10%. As shown in
Tab. 1, our method outperforms the fully-supervised ap-
proaches under all sampling rates by a large margin. This
confirms the high label efficiency of our proposed semi-
supervised framework.

The performance gap between our MixCycle and the
fully-supervised P2B becomes larger as the proportion
of labeled samples decreases. In particular, in the ex-
treme case of 1% labels usage, we achieve 14.2% and
28.4% improvement in success and precision, respectively,
demonstrating the impact of our approach on the base-
line method. Interestingly, our MixCycle based on the
SOTA fully-supervised method BAT achieves the best re-
sults ((42.2%,46.2%)/(62.3%,67.8%) in succ./prec.) with
5% and 10% sampling rates, but the MLVSNet based Mix-
Cycle takes the first place (32.4%/49.2% in succ./prec.)
with 1% sampling rate. We believe this is because the multi-
scale approach in MLVSNet effectively enhances the ro-
bustness of its feature representation. The BoxCloud pro-
posed by BAT further strengthens the reliance on labels,
leading to a degradation of BAT and MixCycle performance
at 1% sampling rate. 2) We further present the test results on
each category with 1% sampling rate in Tab. 2. We achieve
better performance in all categories, except Van on P2B.
We assume this to be caused by the less labeled, huge, and
moving fast feature of Van, which leads the tracker hard

Table 5. Comparison of MixCycle against BAT on Waymo. Mix-
Cycle(BAT) is trained only on KITTI with a 10% sampling rate;
BAT* represents BAT trained on Waymo using all the labels.

Category Vehicle Pedestrian Mean
Frame Number 1057651 510533 1568184

Metrics Succ. Prec. Succ. Prec. Succ. Prec.

BAT [34] 26.5 28.2 16.5 31.1 23.2 29.1
Ours(BAT) 31.1 33.5 25.5 46.4 29.3 37.7

BAT* [34] 35.6 44.2 22.1 36.8 31.2 41.8

to predict a precise motion. The improvements on Cyclist
(31.0%/62.4% and 27.4%/47.8% in succ./prec. for P2B
and BAT, respectively) and Pedestrian (19.2%/41.5% in
succ./prec. on P2B) reveal the robustness of MixCycle to
point cloud variations. As pedestrians and cyclists are usu-
ally considered to have the largest point cloud variations
due to their small object sizes and the diversity of body
motion. 3) In Tab. 3, we compare the performance be-
tween fully-supervised methods trained with 100% labels
and MixCycle trained with 10% labels. Although our per-
formance decreases slightly on MLVSNet and BAT, MixCy-
cle still shows a remarkable result (43.8/64.2 in succ./prec.)
on P2B. With only 10% of the labels, MixCycle based on
P2B outperforms the fully-supervised method (1.4%/4.2%
improvement in succ./prec.) using 100% of the labels. This
confirms the strong ability of our approach to leverage data
information and highlights its promise for future develop-
ments. 4) We provide the comparison of MixCycle against
BAT on Car from KITTI with more sampling rates in Tab. 4.
Our Mixcycle not only achieves great improvements in low
sampling rates, but also boosts the tracker’s performance in
the fully-supervised training (4.2/0.2 in succ./prec.). 5) In
Fig. 5, we compare MixCycle with BAT trained with 10%
labels. MixCycle achieves a better performance in both ex-
tremely sparse and complex point clouds.
Results on NuScenes. Following the setting in BAT [34],
we test our MixCycle in 4 categories (Car, Truck, Trailer
and Bus). The results of P2B [16], MLVSNet [25] and
BAT [34] on NuScenes are provided by M2-Track [35] and
BAT [34]. 1) We use the published codes of the competitors
to obtain results for each sampling rate. We compare them
on 3 sampling rates: 0.1%, 0.5% and 1%, as NuScenes
is larger than KITTI. As shown in Tab. 1, MixCycle still
outperforms the fully-supervised approaches under all sam-
pling rates. 2) Observing the individual categories in Tab. 2
evidences that MixCycle yields a remarkable improvement
on Truck (17.3%/18.6% and 12.1%/10.7% in succ./prec.
on MLVSNet and P2B, respectively) and Car (8.7%/10.6%
in succ./prec. on MLVSNet). However, MixCycle drops by
2.6% in precision on Bus, which has fewer labels, a greater
size, and high velocity. 3) Moreover, in Tab. 3, we compare
the performance of MixCycle trained with 1% labels and
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Figure 5. Visualization. Car&Van: Extremely sparse cases. Pedestrian: Medium density cases. Cyclist: complex environment cases.

fully-supervised methods trained with 100% labels. Our
MixCycle based on MLVSNet surpasses the SOTA method
BAT despite using significantly fewer labels. On such a
challenging dataset with pervasive distractors and drastic
appearance changes, our method exhibits even more com-
petitive performance when using few labels.
Result on Waymo. Following the setting in [35], we test
MixCycle in Vehicle and Pedestrian. We use the BAT back-
bone, and MixCycle(BAT) is only trained on KITTI with a
10% sampling rate. As shown in Tab. 5, MixCycle(BAT)
outperforms BAT by 6.1% and 8.6% in terms of mean
‘succ.’ and ‘prec.’ values, respectively. More impressively,
our performance is close to the fully supervised BAT trained
on Waymo (31.2%/41.75% in succ./prec. reported in [34]).
To summarize, our MixCycle still delivers excellent results
on large-scale datasets.

4.3. Analysis Experiments

In this section, we extensively analyze MixCycle with
a series of experiments. First, we study the effectiveness
of each component in MixCycle. Second, we further an-
alyze the influence of forward-backward cycle step sizes.
Finally, we compare the various application ways of SOT-
Mixup. All the experiments are conducted on KITTI with
10% sampling rate and with BAT as the backbone network,
unless otherwise stated.
Ablation Study. We conduct experiments to analyze the ef-
fectiveness of different modules in MixCycle. First, we ver-

ify our assumption that appearance matching-based track-
ers can learn the object’s motion distribution. As shown
in Tab. 6, the cycle tracking framework yields better per-
formance when using only forward-backward cycle than
when using only self cycle (3.5%/5.4% improvement in
succ./prec.). Additionally, this supports the intuition that
real and diverse motion information is helpful to appear-
ance trackers. Furthermore, combining them boosts the re-
sults. Note that the random rigid transformation is neces-
sary for self cycle, otherwise the GT BBox will always be
fixed at the origin of the coordinate system. Second, we
evaluate the effectiveness of random rigid transformation
and SOTMixup in the framework. The performance grows
significantly after applying SOTMixup (5.1%/6% improve-
ment in succ./prec.), demonstrating the importance of SOT-
Mixup in semi-supervised tasks. Random rigid transforma-
tion plays a negative role in the cycle tracking framework
but is practical in MixCycle. We conjecture this to be due to
the missing target in the search area caused by random rigid
transformation. This phenomenon may occur when the tar-
get moves rapidly and the model makes wrong predictions.
Applying SOTMixup to the cycle tracking framework can
significantly improve the model’s tracking capabilities and
address this issue.

Flexibility of MixCycle. We further explore the effect of
forward-backward tacking cycle step size. As shown in
Tab. 7, we conduct experiments with 2 and 3 step cycles,
respectively. Compared to the 2 step cycle, 3 step cycle
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Table 6. Results of MixCycle when different modules are ablated.
‘Self’, ‘F.-B. Cycle’ and ‘Trans.’ stand for self cycle, forward-
backward cycle and random rigid transformation in the forward-
backward cycle, respectively.

Self F.-B. Cycle Trans. SOTMixup Success Precision

✓ 34.9 11.3↓ 52.7 15.1↓
✓ 38.4 7.8↓ 58.1 9.7↓

✓ ✓ 39.5 6.7↓ 59.2 8.6↓
✓ ✓ ✓ 38.8 7.4↓ 59.3 8.5↓
✓ ✓ ✓ 44.6 1.6↓ 65.2 2.6↓
✓ ✓ ✓ ✓ 46.2 67.8

Table 7. Analysis of the forward-backward cycle step size.

Success Precision

2 Steps 45.8 66.6
3 Steps 46.2 67.8

Improvement 0.4↑ 1.2↑

Table 8. Results of SOTMixup with different settings. ‘Template’
and ‘Search Area’ indicate we apply SOTMixup with different in-
puts. ‘Self’ indicates we apply SOTMixup in the self cycle. ‘Back-
ward’ means we apply SOTMixup in backward tracking P s

1 to P s
0 .

Self Backward Template Search Area Success Precision

✓ ✓ 44.7 1.5↓ 64.7 3.1↓
✓ ✓ ✓ 45.4 0.8↓ 67.6 0.2↓
✓ ✓ 42.3 3.9↓ 63 4.8↓
✓ ✓ ✓ 44.5 1.7↓ 66.1 1.7↓
✓ ✓ 46.2 67.8

achieves a better performance in both success and preci-
sion. This experiment demonstrates the potential of Mix-
Cycle for further growth in step size. We believe that larger
step sizes can provide a template point cloud disturbed in
long sequence tracking, leading to improved model robust-
ness. Furthermore, according to [24], a larger step size more
effectively penalizes inaccurate localization.

Influence of SOTMixup. In Tab. 8, we compare SOT-
Mixup with different settings. First, we analyze the effect
of applying SOTMixup to different inputs (Template and
Search Area) while only using it in self cycle. The perfor-
mance drops when we apply it to the template and to both
the template and search area. We consider this to be due
to the mismatch with real tracking. As the template is usu-
ally accurate while the search area point cloud varies sig-
nificantly. Note that we share the same λ when taking SOT-
Mixup in both the template and search area, and set λ = 1
in the SOTMixup loss. Second, we explore various ways
of exploiting SOTMixup in MixCycle. SOTMixup leads
to performance degradation when we apply it to backward
tracking. This is caused by the disturbance of the template
point cloud in backward tracking, making the loss weights
misaligned. This further proves that the loss weights pro-
vided by SOTMixup are reliable.

5. Conclusion
In this paper, we have presented the first semi-supervised

framework, MixCycle, for 3D SOT. Its three main compo-
nents, self tracking cycle, forward-backward tracking cy-
cle and SOTMixup, have been proposed to achieve robust-
ness to point cloud variations and percept object’s motion
distribution. Our experiments have demonstrated that Mix-
Cycle yields high label efficiency and outperforming fully-
supervised approaches using scarce labels.

In the future, we plan to develop a more robust tracking
network backbone for MixCycle, and thus further enhance
its 3D SOT performance.
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