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Abstract

Referring video object segmentation (RVOS) aims at seg-

menting an object in a video following human instruction.

Current state-of-the-art methods fall into an offline pattern,

in which each clip independently interacts with text embed-

ding for cross-modal understanding. They usually present

that the offline pattern is necessary for RVOS, yet model

limited temporal association within each clip. In this work,

we break up the previous offline belief and propose a simple

yet effective online model using explicit query propagation,

named OnlineRefer. Specifically, our approach leverages

target cues that gather semantic information and position

prior to improve the accuracy and ease of referring pre-

dictions for the current frame. Furthermore, we generalize

our online model into a semi-online framework to be com-

patible with video-based backbones. To show the effective-

ness of our method, we evaluate it on four benchmarks, i.e.,

Refer-Youtube-VOS, Refer-DAVIS17, A2D-Sentences, and

JHMDB-Sentences. Without bells and whistles, our On-

lineRefer with a Swin-L backbone achieves 63.5 J&F and

64.8 J&F on Refer-Youtube-VOS and Refer-DAVIS17, out-

performing all other offline methods. Our code is available

at https://github.com/wudongming97/OnlineRefer.

1. Introduction

Given a natural language expression, the purpose of re-

ferring video object segmentation (RVOS) is to segment the

described object in a streaming video. The emerging task

has attracted great attention in the computer vision commu-

nity as it provides potential benefits for many applications,

e.g., video editing and human-computer interaction. Its core

challenge is associating all frames with constructing an ef-

ficient video representation, further promoting cross-modal

understanding of two modalities, i.e., video and language.
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Figure 1: Conceptual comparison on current methods:

(a) the mask-propagation method [12, 28], (b) the offline

method [10, 1, 35], and (c) our query-propagation method.

Pioneer methods [12, 28] integrate mask propagation into

the referring image segmentation in an online manner, as

shown in Fig. 1 (a). However, the complexity and perfor-

mance of their model remain far from satisfactory.

Recently, the state-of-the-art performance on RVOS has

been dominated by offline methods [31, 10, 1, 4, 13, 35, 46].

They typically follow a clip-level paradigm, dividing the en-

tire video into multiple non-overlapped clips and generating

referring object masks for each clip, as illustrated in Fig. 1
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Figure 2: Visualization of query references and corresponding results of (a) query-sharing method and (b) our OnlineRe-

fer. The reference points/boxes are marked red, while the final predictions of mask and box are marked green.

(b). In terms of different inter-frame interaction ways within

an individual clip, existing offline methods [31, 10, 1, 4, 13,

35, 46] can be categorized into two groups: feature asso-

ciation methods and query-sharing methods. The former

feature association methods [31, 10, 13, 33, 46] integrate

multi-frame features into a holistic clip-level visual repre-

sentation, which is further fused with text embedding for

referring prediction. However, their temporal feature mod-

eling is commonly complicated and heavy-weighted.

In contrast to the feature association methods, the query-

sharing methods [1, 35] provide a simplified pipeline as they

build on the query-based Transformer method [2, 47]. They

first construct clip-level cross-modal features and then use

a set of repeated queries to retrieve the same referent object

from different frames. In other words, the cross-frame ob-

ject correspondence relies heavily on sharing input queries.

The interaction between frames is typically limited, hinder-

ing the association potential of the learned queries. Fig. 2

(a) shows a typical example: all video frames share the

same reference points (or queries), which misses the oc-

cluded object. In addition, due to resource limitations, the

referring prediction has to be performed separately on each

clip, which lacks inter-clip association.

In this paper, we propose a new and insightful online

referring video object segmentation framework, OnlineRe-

fer. It goes beyond the intuition of the online model not

working well in RVOS. Its core idea is to take advantage of

the query-based set prediction in Deformable DETR [47]

and link all video frames via continuous query propaga-

tion. Specifically, we first provide a powerful query-based

referring segmentation pipeline, which outputs the embed-

ding representations of the referent object, further generat-

ing mask, box, and category. As these outputs gather rich

target information, we propose a cross-frame query propa-

gation module to transform them as new query inputs of the

next frame. The propagation process has three significant

advantages. First, the referring target is automatically as-

sociated with its precursors on all previous frames. Second,

the box information of the last frame provides a very good

spatial regional prior, benefiting the model for accurately

inferring the same object in the current frame (see an exam-

ple in Fig. 2 (b)). Third, our architecture avoids compli-

cated temporal modeling or limited cross-frame association

so that the overall training and inference progress is smooth

and effective. Thanks to the remarkable performance, we

expect to contribute the elegant and effective online model

as a new baseline to the community.

To summarize, our main contributions are three-fold:

• We are the first to challenge the widespread belief that

only offline models can deal well with RVOS and make

online RVOS great again.

• We propose a simple yet solid online baseline based

on query propagation. The explicit association across

video frames facilities temporal target matching and

improves referring prediction accuracy.

• Our method is evaluated on four benchmarks: Refer-

Youtube-VOS, Refer-DAVIS17, A2D-Sentences, and

JHMDB-Sentences, outperforming all previous offline

methods and achieving state-of-the-art performance.

2. Related Work

2.1. Referring Video Object Segmentation

Referring video object segmentation is to localize a text-

referred object using a mask. Earlier works [12, 28] used

the spatial-temporal memory mechanism [25], which stored

the mask of the previous frames to promote referring image

segmentation [44, 42, 17]. Currently, however, most exist-

ing methods [31, 30, 41, 10, 4, 13, 46, 33, 40, 3, 29, 39] con-

centrated on designing offline frameworks, i.e., clip-in and

clip-out. For example, Hui et al. [10] proposed a two-stream

network, one branch being a temporal encoder to recognize

the object motion and another branch being a spatial en-

coder to generate accurate referring segmentation. Wu et

al. [33] additionally considered an object-level branch with

salient object regions to enhance the foreground and back-

ground discriminability. These methods inevitably need a

complicated spatial-temporal modeling module, which is

not trivial. Several parallel works [1, 35] employed sim-

ple query-based Transformer models, which share the same
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Figure 3: Overall architecture of our OnlineRefer. It consists of two main components: query-based referring segmentation

and cross-frame query propagation. The query-based referring segmentation (§ 3.1) employs a set of queries to predict the

referring object. The outputs contain rich target-aware information, so the cross-frame query propagation (§ 3.2) transforms

them into a new query of the next frame. By repeating the two parts, we complete the RVOS task online frame-by-frame.

OnlineRefer can also be generalized into a semi-online baseline using a clip-by-clip manner (§ 3.3).

query set across different frames. Precisely, MTTR [1] fol-

lowed an instance-level segmentation pipeline to predict se-

quences of all instances and select the sequence that best fits

the referent object. ReferFormer [35] transformed the input

expression as the decoder queries for directly attending to

the most relevant regions in the video frames.

Although our approach employs the basic query-based

prediction architecture, there are two key differences. First,

our model is entirely online and has an inherent advantage

in handling long or ongoing videos, while offline meth-

ods fail due to the limitation of computation sources. Sec-

ond, the target information of previous frames is explicitly

and effectively used to strengthen cross-frame tracking and

frame-wise referring segmentation, achieving better results.

2.2. Query­based Online Models

Employing query to associate cross-frame objects has

been recently explored in several online models, such as

TrackFormer [23], MOTR [45], IDOL [36], and InsPro [7].

They show the effectiveness and potential of query-based

object association. However, they are different from our

OnlineRefer from two perspectives. On the one hand, On-

lineRefer does not need to detect multiple objects due to

the guidance of language expression. TrackFormer [23] and

MOTR [45, 34, 32] adopted an extra query subset to detect

new-born objects. They require additional heuristic rules

to combine two types of queries i.e., track query and de-

tect query. IDOL [36] designed a re-identification module

as post-processing to link instances between frames. In-

sPro [7] kept the fixed query number and employed empty

query to detect the new-born objects. These query propaga-

tion methods are also evaluated in § 4.5, while our method

performs better. On the other hand, IDOL [36] and In-

sPro [7] designed additional training strategies with con-

trast learning to avoid identification switches or suppress

duplicates. In contrast, our framework minimizes the gap

between training and inference of long videos because it

avoids the heuristic rules during the training stage.

3. Methodology

Given an input video and a natural language expression,

our method aims to output binary masks of the referred ob-

ject in a streaming way. The overall architecture of On-

lineRefer is illustrated in Fig. 3. It comprises two essential

parts: query-based referring segmentation and cross-frame

query propagation. The query-based referring segmentation

in § 3.1 is an advanced referring segmentation pipeline con-

ditioned on the query set. The cross-frame query propaga-

tion in § 3.2 is to generate the input query set of the current

frame by updating the outputs from the last frame. In addi-

tion, for training and inference on video-based backbones,

OnlineRefer is extended into a semi-online pattern, which

propagates the query across video clips in § 3.3.

3.1. Query­based Referring Sementation

Similar to ReferFormer [35], our query-based referring

segmentation mainly follows the Deformable DETR detec-

tor [47], and we make several modifications on it for refer-

ring object prediction. It accepts a video frame, a language
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expression, and a set of learnable queries as input. Its out-

puts are the target box, mask, category, and a set of output

embeddings corresponding to the expression.

In specific, given the tth frame It ∈ R
3×H×W and its

corresponding expression S, we separately utilize visual

and linguistic backbone to extract their features. The two

features are mapped into the same dimension and fed into

an encoder to perform cross-modal fusion using a cross-

attention module before encoder layers. The generated

cross-modal features contain critical target awareness, rep-

resented by Mt. In the decoder, we define two types of

queries: content query qc
t ∈ R

Nt×d and position query

(i.e., position embedding) q
p
t ∈ R

Nt×d, where Nt is the

number of queries. Here, the content query follows the

common usage of DETR [2], while the position query is

transformed into base values of output boxes, denoted as

bbaset ∈ R
Nt×4, which decreases prediction difficulty and

benefits model convergence. After that, the decoder trans-

forms the queries and cross-modal features into output em-

bedding Et∈R
Nt×d (see Fig. 4 for more details).

On top of the output embedding, a 3-layer feed-forward

network (FFN) is used to predict box offset b
offset
t ∈R

N×4,

which add on the base box coordinate to formulate the final

box predictions, i.e., bt = bbaset + b
offset
t . Another 3-layer

FFN generates class probabilities ct ∈ R
Nt×c, where c is

the category number. For per-frame mask generation, we

first employ a cross-modal FPN [35] to perform multi-scale

interactions between linguistic features and visual feature

maps. A new FFN then encodes the output embedding into

parameters of the mask head, which performs three-layer

1×1 convolution on the generated FPN feature map, pro-

ducing mask mt∈R
Nt×

H

4
×

W

4 .

Since there is only one referent object in the video, we

can find the best prediction as positive sample by minimiz-

ing the matching cost between predictions and ground truth:

Lmatch = λclsLcls + λboxLbox + λmaskLmask, (1)

where Lcls is the class-related loss using the focal loss [16].

Lbox represents the box-related loss that combines L1 loss

and GIoU loss [27]. Lmask is the mask-related loss that

sums up DICE loss [24] and binary mask focal loss. λcls,

λbox and λbox are the corresponding loss coefficients. After

completing the matching, we optimize the network using

the loss function Lmatch for positive samples while letting

negative samples predict the ∅ class.

3.2. Cross­frame Query Propagation

As described above, the decoder of query-based refer-

ring segmentation progressively refines the base coordinates

from the position query into the final prediction along de-

coder layers. Inspired by this, we additionally consider the

refinement domain in temporal axis, because the target box

predicted from the last frame can be a better reference coor-
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Figure 4: Illustration of cross-frame query propagation.

The propagated representations consist of three cues: the

output boxes, output embeddings, and position embeddings.

dinate. Therefore, we propose the cross-frame query prop-

agation, whose pipeline is illustrated in Fig. 4.

Given the outputs of the last frame, we first filter out in-

formative representations that contain rich target awareness.

In specific, we choose the query with the highest class score,

and its index is denoted as n̂:

n̂ = argmax
n∈Nt

(cn). (2)

Here, as the first frame follows the original setting [47]

and uses N1 = 5 learned queries, we can determine one

query from multiple ones. This also leads to the subsequent

frames containing only Nt = 1 query (i.e., t > 1), which is

retained across the entire video.

Once the index is obtained, we propagate three kinds of

corresponding target cues from tth frame to (t+1)
th

frame,

including the prediction box, output embedding, and posi-

tion embedding. The box and position embedding represent

the explicit position information, which can be transformed

as the base coordinate and position query of (t+1)
th

frame,

which is seamlessly inserted query-based referring segmen-

tation. The output embedding gathers the semantic informa-

tion of the target, which is transformed as the content query

of (t+1)
th

frame. Formally, the propagation process is:

b
base
t+1 = bt,n̂ ∈ R

1×4
,

q
p
t+1 = q

p

t,n̂ ∈ R
1×d

,

q
c
t+1 = F

FFN (Et,n̂) ∈ R
1×d

,

(3)

where FFFN refers to one 3-layer FFN. Using the query

propagation in multiple training frames, the matching cost

is independently computed from each frame and the final

loss is averaged by the frame number.

Discussion. In a streaming video, it is common for the ref-

erent object to enter our view in the middle frames. In other
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Method Backbone Online/Offline
Refer-Youtube-VOS Refer-DAVIS17

J&F J F J&F J F

CMSA [42] ResNet-50 online 34.9 33.3 36.5 34.7 32.1 37.2

CMSA + RNN [42] ResNet-50 online 36.4 34.7 38.0 40.2 36.9 43.4

URVOS [28] ResNet-50 online 47.2 45.2 49.1 51.6 47.2 55.9

MLSA [33] ResNet-50 offline 49.7 48.4 50.9 57.9 53.8 62.0

ReferFormer [35] ResNet-50 offline 55.6 54.8 56.5 58.5 55.8 61.3

OnlineRefer ResNet-50 online 57.3 55.6 58.9 59.3 55.7 62.9

PMINet + CFBI [5] Ensemble offline 54.2 53.0 55.5 - - -

CITD [15] Ensemble offline 61.4 60.0 62.7 - - -

ReferFormer [35] Swin-L offline 62.4 60.8 64.0 60.5 57.6 63.4

OnlineRefer Swin-L online 63.5 61.6 65.5 64.8 61.6 67.7

MTTR (ω=12) [1] Video-Swin-T offline 55.3 54.0 56.6 - - -

ReferFormer (ω=5) [35] Video-Swin-T offline 59.4 58.0 60.9 - - -

ReferFormer (ω=5) [35] Video-Swin-B offline 62.9 61.3 64.6 61.1 58.1 64.1

OnlineRefer (ω=2) Video-Swin-B semi-online 62.9 61.0 64.7 62.4 59.1 65.6

Table 1: The quantitative evaluation on Refer-Youtube-VOS and Refer-DAVIS17, with region similarity J , boundary

accuracy F , and average of J&F . The best results are in bold and the second ones are underlined.

words, if an object is invisible in the first frame, our model

will generate an empty query that contains no object for

propagation. Despite this, OnlineRefer still handles well

the entrance objects, as shown in the qualitative results of

Fig. 6. This indicates that our cross-frame query propaga-

tion aims to provide a good prior while the cross-modal un-

derstanding in the query-based referring segmentation still

plays an important role in referring prediction.

3.3. Extension to Semi­Online Model

In addition to the frame-by-frame pattern, we extend On-

lineRefer into a more generalized framework that follows a

clip-by-clip paradigm. Its primary motivation is to be capa-

ble of large video-based backbones. Different from the ex-

isting offline methods that independently process each clip,

our approach provides query propagation between clips to

achieve cross-clip object association. In this work, we de-

fine the new framework as semi-online method.

Formally, given the ith video clip Vi ∈ R
I×3×H×W ,

where I represents the clip length, we feed it into the query-

based referring segmentation. Our semi-online model first

extracts multi-frame visual features using a video-based

backbone, i.e., Video Swin Transformer [21], and perform

cross-modal interaction between visual and linguistic em-

bedding in the encoder. As the input query of the semi-

online model is the same as our online model in the de-

coder, we then repeat the input query by I times to adapt to

the multi-frame referring prediction. Thus, the semi-online

model outputs multi-frame boxes bi ∈ R
I×Ni×4, masks

mi∈R
I×Ni×H×W , and classes ci∈R

I×Ni×c. The outputs

can be regarded as Ni trajectory predictions on I frames.

Finally, we find the positive sequence from Ni predictions

by calculating the matching cost Eq. 1 and optimize the net-

work. During the query propagation, we only transfer the

high-score query of the last frame into the next clip.

4. Experiment

4.1. Dataset and Metric

Dataset. We evaluate our approach on four popular bench-

marks: Refer-Youtube-VOS [28], Refer-DAVIS17 [12],

A2D-Sentences [6], and JHMDB-Sentences [6]. Refer-

Youtube-VOS expands the large-scale video object segmen-

tation benchmark Youtube-VOS [38] using texutal descip-

tions. It consists of 3,975 videos and 27,899 expressions.

Refer-DAVIS17 extends another video object segmentation

benchmark DAVIS17 [26], which has 90 videos (60 for

training and 30 for testing) and more than 1,500 expres-

sions. A2D-Sentences and JHMDB-Sentences are devel-

oped by adding additional textual descriptions on the origi-

nal action and actor datasets A2D [37] and JHMDB [11].

A2D-Sentences includes 3,782 videos and 6,655 expres-

sions, where each video has 3-5 frames annotated with

pixel-level segmentation mask. JHMDB-Sentences con-

tains 928 videos, each being described by a corresponding

expression (a total of 928 sentences).

Evaluation Metric. On Refer-Youtube-VOS and Refer-

DAVIS17, we employ region similarity J , contour accu-

racy F , and their average value J&F as our metrics. Since

ground-truth annotations of Refer-Youtube-VOS validation

are currently inaccessible, our predictions are uploaded to

the official server for evaluation. On A2D-Sentences and

JHMDB-Sentences, we adopt Overall IoU, Mean IoU, and

precision@K to evaluate our method. Overall IoU is the

ratio between the total intersection and the total union area

over all the test samples. Mean IoU computes the averaged

IoU over all the test samples. Precision@K measures the

percentage of test samples whose IoU scores are higher than
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Method Backbone Online/Offline P0.5 P0.6 P0.7 P0.8 P0.9 Overall IoU Mean IoU

Hu et al. [9] VGG-16 offline 34.8 23.6 13.3 3.3 0.1 47.4 35.0

Gavrilyuk et al. [6] I3D offline 47.5 34.7 21.1 8.0 0.2 53.6 42.1

CMSA + CFSA [43] ResNet-101 offline 48.7 43.1 35.8 23.1 5.2 61.8 43.2

ACAN [31] I3D offline 55.7 45.9 31.9 16.0 2.0 60.1 49.0

CMPC-V [18] I3D offline 65.5 59.2 50.6 34.2 9.8 65.3 57.3

ClawCraneNet [14] ResNet-50/101 offline 70.4 67.7 61.7 48.9 17.1 63.1 59.9

MTTR (ω=10) [1] Video-Swin-T offline 75.4 71.2 63.8 48.5 16.9 72.0 64.0

ReferFormer (ω=5) [35] Video-Swin-T offline 82.8 79.2 72.3 55.3 19.3 77.6 69.6

ReferFormer (ω=5) [35] Video-Swin-B offline 83.1 80.4 74.1 57.9 21.2 78.6 70.3

OnlineRefer (ω=5) Video-Swin-B semi-online 83.1 80.2 73.4 56.8 21.7 79.6 70.5

Table 2: The quantitative evaluation on A2D-Sentences, with Precision@K, overall IoU and Mean IoU.

Method Backbone Online/Offline P0.5 P0.6 P0.7 P0.8 P0.9 Overall IoU Mean IoU

Hu et al. [9] VGG-16 offline 63.3 35.0 8.5 0.2 0.0 54.6 52.8

Gavrilyuk et al. [6] I3D offline 69.9 46.0 17.3 1.4 0.0 54.1 54.2

CMSA + CFSA [43] ResNet-101 offline 76.4 62.5 38.9 9.0 0.1 62.8 58.1

ACAN [31] I3D offline 75.6 56.4 28.7 3.4 0.0 57.6 58.4

CMPC-V [18] I3D offline 81.3 65.7 37.1 7.0 0.0 61.6 61.7

ClawCraneNet [14] ResNet-50/101 offline 88.0 79.6 56.6 14.7 0.2 64.4 65.6

MTTR (ω=10) [1] Video-Swin-T offline 93.9 85.2 61.6 16.6 0.1 70.1 69.8

ReferFormer (ω=5) [35] Video-Swin-T offline 95.8 89.3 66.8 18.9 0.2 71.9 71.0

ReferFormer (ω=5) [35] Video-Swin-B offline 96.2 90.2 70.2 21.0 0.3 73.0 71.8

OnlineRefer (ω=5) Video-Swin-B semi-online 96.1 90.4 71.0 21.9 0.2 73.5 71.9

Table 3: The quantitative evaluation on JHMDB-Sentences, with Precision@K, overall IoU and Mean IoU.

a threshold K, where K∈[0.5, 0.6, 0.7, 0.8, 0.9].

4.2. Experiment Details

Model. We implement different visual backbones for fea-

ture extraction, such as ResNet [8], Swin Transformer [20],

Video Swin Transformer [21]. RoBERTa [19] is adopted

as the text encoder, while its parameters are frozen during

the entire training stage. The feature maps of the last three

stages are used in the encoder and FPN. We utilize 4 en-

coder layers and 4 decoder layers with dimension d=256.

The query number of the first frame is set to N1 = 5. The

coefficients for losses are λcls = 2, λbox = 5, λmask = 2.

Training. AdamW optimizer [22] is used to optimize our

model with an initial learning rate of 1e−5, except for the

visual backbone with a learning rate of 5e−6. The training

procedure runs for 6 epochs with the learning rate decays

divided by 10 at the 3th and 5th epoch. The data augmenta-

tion techniques include random horizontal flip, random re-

size, random crop, and photometric distortion. Each frame

is resized such that the shorter side at least has a size of 320

and the longer side at most has a size of 576.

For Refer-Youtube-VOS, we randomly sample 3 frames

during training online models. The inputs of semi-online

models are 3 clips, each one containing a window size of 2

(denoted as ω=2). In order to improve training stability, we

feed 2 frames/clips into the online/semi-online model be-

fore the 4th epoch. For Refer-DAVIS17, we directly report

the results using the model trained on Refer-Youtube-VOS
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Figure 5: Frame-wise J&F score on Refer-Youtube-VOS.

OnlineRefer has similar J&F accuracy with ReferFormer at

the first frame but obtains better performance in subsequent

frames benefiting from a good prior.

without fine-tuning. For A2D-Sentences, we use 2 train-

ing clips and increase into 3 clips at the 4th epoch, where

each clip has 5 frames (i.e., ω = 5) with the annotated tar-

get frame in the middle. For JHMDB-Sentences, the model

trained on A2D-Sentences is directly employed for evalua-

tion without fine-tuning. For a fair comparison, our model

is pre-trained on Ref-COCO [44].

Inference. Since there is no gap between training and in-

ference in our method, we directly output the predicted seg-

mentation masks using the well-trained model without post-

process. In the semi-online paradigm, the frame numbers

of each clip remain the same with the training setup. We

test inference speed on one Tesla V100 GPU over Refer-

Youtube-VOS val set with an input size of 640×320. More

experiment details are included in supplementary materials.
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A person skateboarding A skateboard being used by a boy

A kangaroo on the field A person walking behind a kangaroo

A gray sedan parked in front of a building by the road

A giraffe is being feed by a hand A hand is feeding food to a giraffe An item being administered to a camel

A white goose carried by a lady wearing a black shirt A lady carrying a white goose

Figure 6: Qualitative results from Refer-Youtube-VOS. OnlineRefer accurately segments the referent object under various

challenging scenes, e.g., object occlusion or exit, appearance and size variation, and visually-similar objects.

4.3. Comparison to State­of­the­art

Refer-Youtube-VOS & Refer-DAVIS17. We compare

our method with existing approaches on Refer-Youtube-

VOS and Refer-DAVIS17, as shown in Table 1. Note that

PMINet [5] and CITD [15] are top-2 solutions in 2021

Refer-Youtube-VOS Challenge. We can see that the earlier

works [42, 28] usually employ an online manner, while the

offline methods currently become mainstream due to better

performance, such as MLSA [33], MTTR [1], and Refer-

Former [35]. Surprisingly, our online model outperforms all

offline methods on two datasets under all metrics. In spe-

cific, on Refer-Youtube-VOS, OnlineRefer with backbone

ResNet-50 and Swin-L achieves J&F of 57.3 and 63.5.

They are the highest accuracy among the models using the

same backbone. Notably, our online model performance

using Swin-L (J&F : 63.5) is higher than ReferFormer

using Video Swin-B backbone (J&F : 62.4). When the

model is directly evaluated on Refer-DAVIS17, it achieves

the best scores (J&F : 64.8), which surpasses ReferFormer

by a large margin. Overall, these impressive results sigifi-

ciantly demonstrate the effectiveness of the complete-online

pipeline in referring video object segmentation.

Furthermore, attaching OnlineRefer on top of a Video

Swin-B backbone formulates a semi-online model. The re-

sults are displayed in the last row of Table 1, which show

that the new semi-online model leads to promising perfor-

mance on two datasets, especially for the contour accu-

racy F . This phenomenon also happens on other online

Query Update Position Update J&F J F

× × 49.8 49.5 50.1

✓ × 57.3 55.8 58.8

✓ ✓ 32.1 29.7 34.6

Table 4: The update strategy of query and position on

Refer-Youtube-VOS, in terms of J , F .

models, which means that the regional prior of propagated

boxes benefits producing high-quality segmentation masks.

In addition, OnlineRefer with ResNet50 achieves 15.2 FPS,

while SemiOnlineRefer with Video-Swin-B has 17.2 FPS.

In addition, we show the frame-wise J&F score curve

on Refer-Youtube-VOS using ResNet-50 and Swin-L in

Fig. 5. Both OnlineRefer and ReferFormer achieve similar

accuracy in the first frame. But in subsequent frames, our

OnlineRefer has a performance gain of around 1∼ 2 point.

This clearly approves that the employment of explicit refer-

ences can improve the referring segmentation performance.

A2D-Sentences & JHMDB-Sentences. We further present

comparisons on the A2D-Sentences benchmark in Table 2.

As the dataset is only annotated keyframes, existing meth-

ods generally follow an offline paradigm, which process

clip-wise referring prediction without any cross-clip asso-

ciation. In contrast, our OnlineRefer is able to link all video

clips by query propagation, i.e., the semi-online framework.

With the backbone Video Swin-B and window size of ω=5,

our semi-online model obviously exceeds all offline meth-

ods over IoU metrics and keeps enough competitiveness
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Propagation Method J&F J F

w/o Propagation 49.3 47.4 51.2

Concatenation 55.2 53.8 56.7

Fixed 55.0 53.6 56.5

Ours 57.3 55.8 58.8

(a) Comparison on propagation method.

Propagation Number J&F J F

Top-4 55.2 53.7 56.7

Top-3 55.9 54.4 57.4

Top-2 56.3 54.9 57.7

Top-1 57.3 55.8 58.8

(b) Comparison on propagation number.

Initial Queries J&F J F

1 54.1 52.6 55.6

3 55.5 54.0 56.9

5 57.3 55.8 58.8

8 56.9 55.2 58.5

(c) Comparison on sampler frames.

Table 5: Ablation studies of different propagation designs on Refer-Youtube-VOS, in terms of region similarity J , bound-

ary accuracy F , and average of J&F . The best results are in bold.

over precision metrics as well.

The semi-online model is directly evaluated on JHMDB-

Sentences without finetuning to demonstrate the general-

ity of our method. In Table 3, OnlineRefer achieves com-

petitive performance compared to all other offline meth-

ods. In specific, OnlineRefer leads to higher IoU scores but

comparable precision scores. Considering the clip gap on

A2D-Sentences and JHMDB-Sentences, the above results

demonstrate the potential of semi-online model.

4.4. Qualitative Results

In Fig. 6, we show several typical referring segmentation

results of OnlineRefer from Refer-Youtube-VOS. The first

video sequence is more challenging because the two refer-

ring objects become occluded and invisible in some frames.

Taking the walking person as an example, it requires our

online model to avoid the predicted empty box in the first

frame causing the target missing in subsequent frames. De-

spite the difficulty, our OnlineRefer successfully segments

out the target with sharp boundaries, showing strong cor-

rectness ability. In other scenes, the referring objects also

face various challenges, such as appearance variation, pose

deformation, and visually-similar objects. Otherwise, our

OnlineRefer performs well in these difficult scenarios.

4.5. Ablation Study

To offer a deep insight into our OnlineRefer, we con-

duct ablation studies to analyze the effectiveness of each

component. If not specialized, we report the online model

performance on Refer-Youtube-VOS using ResNet-50.

Importance of query updating. To investigate the ef-

fect of updating strategy in Eq. 3, we perform experiments

whether updating query and position embedding in Table 4.

From the first row, discarding both query and position up-

dating only achieves 49.8 over J&F . After that, adding the

query update achieves remarkable performance improve-

ment (+6.7 on J&F), and reaches the best score. However,

updating position embedding largely hinders model perfor-

mance (-25.2 on J&F), as shown in the last row of Table 4.

The problem demonstrates that fixed position embedding

plays an important role in cross-frame object association.

Different propagation methods. We then analyze differ-

ent query propagation methods in Table 5a. Removing

propagation (i.e., w/o propagation) leads to a frame-based

referring segmentation pipeline, which results in a large

performance drop (-6.0 on J&F). ‘Concatenation’ repre-

sents concatenating the one propagated query and the initial

query set, like MOTR [45] and TrackFormer [23]. ‘Fixed’

refers to giving up the query selection and keeping the initial

number of queries, like InsPro [7]. Both two have a slight

performance decrease. These results approve the effective-

ness of our simple and heuristic-free query propagation.

Number of propagation query. It is also of interest to ex-

plore the impact of different propagation query numbers.

As shown in Table 5b, we vary the query number from top-

4 to top-1, where top-1 is our setting in OnlineRefer. Note

that propagating top-5 queries equals the ‘fixed’ method in

Table 5a. It is obvious that with the top query number de-

creasing, the performance on J&F is gradually improved.

Overall, applying one query on cross-frame propagation is

enough and significant for the inter-frame association.

Effect of initial queries. OnlineRefer starts with a set of

initial queries in the first frame, which is further propagated

across the entire video. To study its influence, we use a

relatively small number of queries, as shown in Table 5c.

We can see that fewer queries bring fewer proposals, further

leading to lower J&F scores. However, the performance

of more queries becomes flattened after N=5. Empirically,

in this work, we set the initial query number as N=5.

5. Conclusion

In this paper, we proposed a simple, elegant, and strong

baseline for online referring video object segmentation,

named OnlineRefer. It broke up the widely accepted tra-

dition that only offline models can handle well the chal-

lenging referring understanding task. OnlineRefer includes

two crucial parts, query-based referring segmentation, and

query propagation. The query-based referring segmentation

outputs box, mask, and category based on input queries,

while query generation part updates the output set as new

queries. By iteratively using two parts, the objects in all

video frames are automatically associated and predicted.

To be compatible with video-based backbones, we devel-

oped a semi-online model that associates and predicts ref-

erent object clip by clip. The experiments are conducted on

Refer-Youtube-VOS, Refer-DAVIS17, A2D-Sentences and

JHMDB-Sentences and our OnlineRefer shows the state-of-

the-art performance on the four benchmarks.
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