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Abstract
Diffusion probabilistic models have achieved remark-

able success in text guided image generation. However,
generating 3D shapes is still challenging due to the lack
of sufficient data containing 3D models along with their de-
scriptions. Moreover, text based descriptions of 3D shapes
are inherently ambiguous and lack details. In this paper,
we propose a sketch and text guided probabilistic diffusion
model for colored point cloud generation that conditions
the denoising process jointly with a hand drawn sketch of
the object and its textual description. We incrementally dif-
fuse the point coordinates and color values in a joint dif-
fusion process to reach a Gaussian distribution. Colored
point cloud generation thus amounts to learning the reverse
diffusion process, conditioned by the sketch and text, to it-
eratively recover the desired shape and color. Specifically,
to learn effective sketch-text embedding, our model adap-
tively aggregates the joint embedding of text prompt and the
sketch based on a capsule attention network. Our model
uses staged diffusion to generate the shape and then as-
sign colors to different parts conditioned on the appear-
ance prompt while preserving precise shapes from the first
stage. This gives our model the flexibility to extend to multi-
ple tasks, such as appearance re-editing and part segmenta-
tion. Experimental results demonstrate that our model out-
performs recent state-of-the-art in point cloud generation.

1. Introduction
Denoising Diffusion Probabilistic Models (DDPM) [19,

45] can generate novel images and videos, from their text
descriptions. Recent diffusion models [38, 33, 39, 42] con-
tain billions of parameters and are trained on millions of
text-image [13] pairs sourced from the Internet, including
existing datasets like MS-COCO [25]. The availability of
such large corpora of text-image pair datasets is, arguably,
the major driving force behind the success of research in im-
age and video generation. However, such datasets of text-
shape pairs are almost nonexistent causing a major bottle-
neck for advancing research in this direction.

3D shape generation has a wide range of applications in-
cluding data augmentation, virtual/augmented reality [12],
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Figure 1. Illustration of sketch and text guided 3D point cloud
generation. The text and sketch complement each other.
manufacturing, and reverse engineering. Pioneering works
in diffusion based 3D shape generation include Luo et
al. [26] and Point Voxel Diffusion (PVD) [66]. Luo et
al. [26] extend the DDPMs to 3D shape generation condi-
tioned on shape latent that follows a prior distribution pa-
rameterized via normalized flows [9]. Their probabilistic
generative model treats points as particles that, under heat,
are diffused to a noise distribution. It then exploits the re-
verse diffusion process to learn the point distribution to be
able to generate plausible point clouds. PVD [66] com-
bines the denoising diffusion model with the point-voxel
3D shape representation. It performs the denoising steps
by optimizing a variational lower bound to the conditional
likelihood function to produce 3D shapes or multiple 3D
completions [14] from a partial observation.

The problem of text guided 3D model or point cloud gen-
eration is slightly different from that of images in the sense
that there is a higher emphasis, at least implicitly, on geome-
try rather than appearance which puts yet another constraint
on the training datasets. Current methods [26, 66] have
mostly used the ShapeNet [3] dataset for text-shape learning
combined with the ModelNet [55] datasets for 3D represen-
tation learning and validation. However, these datasets are
relatively small and lack detailed textual descriptions. To
work around the data paucity, CLIP-forge [42] extends the
CLIP model [37] for 3D shape generation by aligning 3D
shapes with text in the latent space. Although these text
guided methods maintain diversity in the generated shapes,
their common limitation is that the generated shapes are of-
ten not the desired ones, which is understandable given the
shape ambiguity in the text.

In this paper, to reduce the shape ambiguity, we pro-
pose a sketch and text guided probabilistic diffusion (STPD)
model for colored point cloud generation that conditions the
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denoising process with sketch inputs, in addition to textual
descriptions. Sketches can be hand drawn and give much
more geometric details compared to text. We argue that,
combined with text, sketches are a viable option for condi-
tioning the denoising of 3D shapes given their direct rele-
vance to the problem at hand and their history of success-
ful use for 3D object reconstruction [65]. However, cross-
modality inputs (sketch and text) [11] always suffer from
large cross-modality discrepancies and intra-modality vari-
ations bringing in additional challenges of cross-modality
fusion [28] and data sparsity. Especially, sketches are inher-
ently sparse with only a very small proportion of informa-
tive pixels, and contain much less information than natural
images.

The proposed STPD model can produce the geometry
and appearance simultaneously and unambiguously from a
sketch-text input, combining ease of access and complete-
ness of description. It takes the sketch as the main shape de-
scription and shape information present in the text to com-
plement the sketch input. Hence, shape information is ex-
tracted from the sketch as well as the text when there is
shape information in the text. Appearance is extracted from
the text input to give color to the generated point clouds as
shown in Fig. 1. To summarize, our contributions are:

1. We propose a staged probabilistic diffusion model for
better control over the geometry and appearance to
generate colored point clouds. Our model conditions
the denoising process jointly with sketch and text in-
puts to generate 3D shapes. It can also be used for
part-segmentation and appearance re-editing.

2. We propose an attention capsule based feature extrac-
tion module for encoding sketches, which are inher-
ently sparse. Our method robustly gives more attention
to the entities of the useful pixels and ignores the large
number of meaningless capsules corresponding to the
blank pixels in the sketch.

3. We present a sketch-text fusion network that efficiently
abstracts the shape and color information from both
sketch and language descriptions to guide the reverse
3D shape diffusion process.

Extensive experiments on the ShapeNet dataset [3] and
comparison to existing diffusion probabilistic model based
generation as well as some classical shape reconstruction
methods show that our model achieves state-of-the-art per-
formance for colored point cloud generation. We also show
the representation learning ability of our model by conduct-
ing 3D object classification experiments on the ModelNet40
[55] dataset and the application of our model to part seg-
mentation on the ShapeNet-Parts dataset [3].

2. Related Work
We first survey diffusion models for generating images.

Next, we discuss 3D shape reconstruction methods fol-

lowed by classical 3D shape generation methods. Finally,
we discuss diffusion models for 3D shape generation.

2.1. Text-based 2D Image Generation
Generative Adversarial Network (GAN): Early meth-
ods for text based image generation were based on GANs.
Xu et al. [59] used attention mechanism for fine-grained
text to image generation. TediGAN [56] uses GAN inver-
sion based on the pretrained StyleGAN [1] for text to image
generation. Zhang et al.[63][64] used multiple GAN archi-
tectures that stacked generators and discriminators to pro-
gressively generate multi-scale images. GANs are known
to be difficult to train and have recently been surpassed by
diffusion models [8].
Probabilistic Diffusion Models: Sohl-Dickstein et al. [45]
proposed diffusion probabilistic models that are both
tractable and flexible. Inspired by non-equilibrium ther-
modynamics, the diffusion process uses Markov chain [6]
to convert a simple Gaussian distribution to a target data
distribution. Keeping the steps of the chain small enough,
each step can be analytically evaluated [16], and hence, the
full chain can also be evaluated. At each step of the for-
ward pass, a small perturbation is added to the data until it
reaches the Gaussian distribution. Since the perturbation at
each step is small, a model can be learned to estimate and
remove the perturbation. It was not until 2020 that Ho et
al. [19] showed the real power of diffusion models with high
quality image generation by training on a weighted varia-
tional bound and denoising score matching with Langevin
dynamics. Dhariwal and Nichol [8] showed the superiority
of diffusion models over GANs. However, directly optimiz-
ing in pixel space comes with a high computational cost. To
reduce the computational requirements, [39] performs dif-
fusion in the latent feature representation space. Large mod-
els such as Imagen [41] and DALL-E2 [38], which uses the
CLIP model [37], can generate diverse photo-realistic im-
ages. The success of diffusion models is largely attributed
to fundamental research as well as the availability of huge
datasets in the image domain.

2.2. 3D Reconstruction from Images
Reconstructing 3D shapes from images has been studied for
decades. Single-view reconstruction techniques are pop-
ular, however, recovering 3D shapes from a single image
is an ill-posed problem, as it requires a strong prior shape
knowledge. Fan et al. [10] proposed to directly regress point
clouds from a single image. Wang et al. [51] deformed
the ellipsoid mesh to form the 3D shape to learn the shape
prior. Sketch2Mesh [17] employed the silhouettes matching
match between a given single sketch and the learned model
to refine the 3D shape. TMNet [32] uses triangular meshes
and images to supervise the reconstruction of 3D shapes.

Multiview images contain more geometric information
useful for 3D reconstruction. Pix2Vox++ [58] fuse the mul-
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tiple coarse 3D volumes, which are generated from each in-
dividual view, to form the well-refined 3D shapes. Wang et
al. [49] include transformers to recover 3D information
from multiviews. Reconstruction based methods usually
demand exact image-to-shape match and strong prior shape
knowledge, whereas generative methods offer a balance be-
tween diversity and alignment with user specifications.

2.3. Sketch, Text and 3D Shape Generation
Sketch to 3D Shape: Sketches have been used as a sparse
representation of natural images and 3D shapes. Sketches
are quite illustrative, despite their abstract nature and sim-
plicity. Sketch based 3D generation [31] can be coarsely
categorized into evocative [50] and constructive [29] meth-
ods, which depend on retrieval from model collections or
free-form modeling. Deep models learn the pattern of the
sketch for 3D model generation. For example, Zhang et
al. [65] proposed a view-aware technique to gain priors
from existing 3D models using a single freehand sketch.
DeepSketchHair [44] proposed a learning based system for
intuitive 3D hairstyling from 2D sketches. These methods
have less dependence on a shape prior to the generation
phase, but the tremendous requirement of shape-related data
during training for pattern learning.
Text to 3D Shape: Text to shape generation is a rela-
tively new direction. Examples include Text2shape [4] and
CLIP-Forge [42]. Text2shape [4] generates colored 3D
shapes using joint embedding of text and 3D shapes. CLIP-
Forge [42] generates 3D shapes from the pre-trained text-to-
image CLIP [37], addressing the lack of text-to-shape priors
data. Although previous studies have considered sketch and
text as flexible methods for 3D shape generation, they only
refine the model in an implicit pattern that takes the shape
priors library into optimization while ignoring the intrinsic
information mining at the sketch and text level.

2.4. Diffusion Models for 3D Shape Generation
Recent methods [26, 66, 62, 33] generate 3D shapes with

denoising diffusion probabilistic models. DPM [26] in-
troduced the flow-based model for point cloud embedding
that conditions the diffusion model on geometry representa-
tion. PVD [66] trains a diffusion model on the point-voxel
representation for 3D shapes. It performs the variational
lower bound optimizing on unconditional shape generation
and conditioned shape completion to produce complete 3D
shapes. These methods show great promise in extending
the diffusion theory to 3D shape generation and achiev-
ing good performance. However, their generations are rel-
atively uncontrolled and lack certainty for our generation
problem which needs to follow alignment with user instruc-
tions more closely. LION [62] proposed a text-based 3D
generation model by combining the CLIP-forge to align the
text-to-3D embedding. DreamFusion [33] is a generative
method for text based 3D rendering, which replaces CLIP

with a loss derived from the distillation of 2D diffusion
models. Point-E [30] starts from a language prompt to gen-
erate the single view image with fine-tuned GLIDE model
and then uses the generated image for image-to-shape dif-
fusion. Nonetheless, these text-based 3D diffusion models
rely on feature pre-alignment from text to image and usu-
ally fail when there are huge domain gaps. Our method fo-
cuses on information mining for 3D diffusion by exploring
the 3D structure from sketch and text to facilitate efficient
controlled generation of high quality 3D shapes.

3. Proposed Approach
Given a sketch S and text description T of an object, the

goal is to generate its 3D geometry and appearance. To
achieve this, the proposed STPD model consists of three
modules: sparse feature extraction network for sketch em-
bedding (Section 3.1), sketch-text feature fusion (Section
3.2), and staged diffusion for shape and color generation
(Section 3.3). Figure 2 shows an overview of our model.

3.1. Sparse Feature Extraction of a Sketch
Feature extraction from a sketch faces three major chal-

lenges. Firstly, sketches are sparse and consist of very few
informative pixels. Secondly, visual models are generally
trained on large amounts of natural images and their atten-
tion mechanisms exploit the information in dense pixels to
focus on the more relevant parts. This becomes challeng-
ing when the image (i.e. sketch) contains copious amounts
of futile background pixels and the training dataset is also
small. Finally, the relationship between different object
parts is ambiguous due to self-occlusions in a single sketch.
Below, as shown in Fig. 3, we present our capsule net-
work using dynamic routing [40] with attention to effec-
tively learning the sparse features from a sketch image.
Primary Capsule Layer: Our sketch extraction starts from
a pixel-wise CNN embedding SN,Dinput,W,H = f cnn(S),
where N is the core number of caps, D is the dimension
of each caps, and W,H are the width, height of the sketch.
Based on these embeddings, we perform a 1×1Conv of fil-
ter size D to share an affine transformation on each capsule
channel and then turn it to a primary capsule ui,0

N,D,w,h

ui,0
(N,D,w,h) = Conv(S(N,D,w,h)). (1)

Here, i denotes the index of capsules in the current layer,
w, h is the size of current caps layers and Conv is a simple
network comprising a 1× 1 convolution layer with stride 1,
followed by batch normalization, ReLU, and max pooling.
Dynamic Routing with Attention: Dynamic routing is ap-
plied to strengthen the structural relationship inference be-
tween different sketch parts. This facilitates robust feature
learning from sketches while keeping the network depth in
control and the number of parameters low. We add an at-
tention module to force the capsules to focus on the useful
sketch parts and ignore the background. Each sj can be
acquired by the sum of previous layer capsules,
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Figure 2. Overview of STPD framework. The sketch feature is first extracted with two level attention modules for sparse embedding and
then flows with multi-head attention fusion to text. With the embedded features, we proposed a staged denoising probabilistic diffusion
model for both the geometry and appearance of 3D shapes.

Figure 3. Proposed sketch feature extractor. Pixel-wise attention
and instance-wise attention are implemented by a CNN and atten-
tion routing, respectively. The two level attentions are designed to
extract the sparse information from hand drawn sketches.

sj(N,D,w,h) =
∑

i=1,2,...

cijw,ha
ij
(N,D,1,1)u

i,j−1
(N,D,w,h), (2)

where cij are the dynamic routing parameters computed by
softmax layers and aij is the attention weight obtained by
1 × 1 Conv on lower level primary capsules and hence as-
sociated with each instance of the original sketch.

Similar to the l times dynamic routing, the capsules are
squashed [40], to cluster the informative parts, and then re-
shaped to a one dimension vector S(1,Df ) (where Df =

N × D) from the last sj . This S forms the sketch embed-
ding used to condition the reverse diffusion process.

3.2. Sketch-Text Feature Fusion Embedding
We encode the input language expression as a sequence

of textual embeddings with BERT [7]. Applying a linear
projection to the BERT embedding, we get embedding T of
the same dimension as the sketch embedding S. Both em-
beddings are fused with two multi-head attention modules
to guide the reverse diffusion process.

The attention-ed embedding is formulated as a set of cas-
caded multi-attention modules. The first attention takes the
sketch feature S as query to extract the relevant intermedi-
ate semantic information I from the text embedding. The

second attention performs text-guided self-attention for the
sketch feature to produce the conditional embedding that
contains geometry/color information based on I . Architec-
tures for geometry and color diffusion are the same but have
different parameters. The first multi-head attention (MH At-
tention 1 in Fig. 2) is defined as:

I(1,Df ) = Atten1(Q1 = S,K1 = V1 = T ), (3)

where Q1,K1, V1 are the Query, Key, Value and I is an in-
termediate attention-ed feature passed to the second multi-
head attention module (MH Attention 2) defined as:

Cp(1,Df ) = Atten2(Q2 = K2 = I + S, V2 = S), (4)

where Q2,K2, V2 are the Query, Key, Value and p = g
for geometric diffusion and p = a for appearance diffusion.
Specifically, we take the sum of intermediate features I with
the sketch feature S as the input of the query and key in the
second multi-head attention. Then, the text prompt is intro-
duced as the vector input to support the appearance denois-
ing using the color information from the attention module.
Note that, Cg and Ca are from the same cascaded atten-
tions but focus on different descriptions (geometry or ap-
pearance) in each diffusion process. Appearance condition
also requires information from sketch (shape) because dif-
ferent object parts can have different colors.

3.3. Staged Colored Point Cloud Generation
Markov’s chain: Given a sample x0 ∼ q(x0), noise is
systematically added to x0 in the forward process [19] step-
by-step following the Markov’s chain assumption until the
Gaussian distribution is reached:

q (x0:T ) = q (x0)

T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) = N
(√

1− βtxt−1, βtI
)
,

(5)
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where N
(
µ, σ2

)
denotes a Gaussian distribution. Here,

x0 can represent either coordinates or colors from 3D
shapes. We train geometry and appearance diffusion sep-
arately to generate colored point clouds. The reverse pro-
cess, pθ (xt | xt+1), starts from a standard Gaussian prior
and ends with the desired x0:

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) = N
(
µθ (xt, t) , σ

2
t I
)
.

(6)

This cross-entropy minimization is designed such that it
forces the reverse process to follow the pattern of noise ad-
dition of the forward process, and eventually, recover x0

from the standard Gaussian noise distribution. Hence, the
loss function can be derived as:

Lt = Ex0,ϵ[C ∥µ̃t(xt,x0)− µt(xt, t)∥2], (7)
where C is a constant.
Geometry Diffusion: Denoting the colored point cloud as
x0 ∈ RN×6 = {g0 ∈ RN×3,a0 ∈ RN×3}, consist-
ing N points with geometry g0 and appearance a0 coor-
dinates. We first perform geometry diffusion to generate
the 3D shape. STPD is trained by minimizing the cross-
entropy loss between two diffusion chains with respect to
the geometric conditional feature Cg , and learning of model
parameters θ:

min
θ

Eg0∼q(g0),g1:T∼q(g1:T )[

T∑
t=1

log pθ(gt−1|gt, Cg)], (8)

where Cg is derived from sketch-text embedding when the
text also contains shape description, or only from sketch
when there is no text. We add a switch to adjust the
feature map selection for different scenarios. The joint
posterior q(g1:T ) can be factorized by the assumption of
Markov’s chain

∏T
t=1 q(gt−1|gt,g0), where each is analyt-

ically tractable by a re-parameterized Gaussian distribution:

µ̃t =

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0, (9)

q (gt−1 | gt,g0) = N
(
gt−1; µ̃t, β̃tI

)
, (10)

where β̃t is the known variance defined in the forward pro-
cess, αt = 1 − βt, and α̃ =

∏t
s=1 αs. From Eq. 7

and this property, our diffusion model learns to match each
q (gt−1 | gt,g0) and pθ (gt−1 | gt) by estimating the out-
put noise ϵθ(gt, Cg, t) to match noise ϵ:

∥ϵ− ϵθ(gt, Cg, t)∥2 , ϵ ∼ N (0, I), (11)

The noise prediction network ϵθ progressively generates
the 3D shape using the reverse chain

gt−1 =
1

√
αt

(
gt −

1− αt√
1− ᾱt

ϵθ(gt, Cg, t)

)
+
√
βtϵ.

Appearance Diffusion: Appearance diffusion is performed
while freezing the geometry parameters. The optimization

function, in this case, can be simply modified from Eq. 8 to
learn a conditional generative model for appearance:

min
θ

Ea0∼q(a0),a1:T∼q(a1:T )[

T∑
t=1

log pθ(at−1|at, pθ(g0), Ca)]

The training loss for appearance diffusion is minimized and
conditioned on appearance features Ca and pθ(g0):

∥ϵ− ϵθ(at, pθ(g0), Ca, t)∥2 , ϵ ∼ N (0, I). (12)

Colored Point Cloud Generation: We can now formally
define our joint generative model for colored point cloud
generation as

pθ2,θ1,ϕ(a0,g0, Cg, Ca) = pθ2(a0|g0, Ca)pθ1(g0|Cg)pϕ(Cg, Ca),

where {a0,g0} denote the colored point cloud x0.
pϕ(Cg, Ca) refers to the sketch and textual embedding, and
pθ2(a0), pϕ(g0) are the appearance and geometry denoising
processes respectively. Note that the appearance diffusion is
conditioned on the geometry diffusion as well. We also tried
extended diffusion to denoise from a 6D Gaussian rather
than treating the shape and appearance separately. However,
integrating the unrelated features causes undesirable inter-
ference in the diffusion process and consequently, STPD
does not learn to produce point clouds with fine details.

4. Experiments
4.1. Experimental Setup
Datasets: We use the chair, table, aeroplane, car cat-
egories of ShapeNet dataset [3], randomly split it into
training-test sets at 80-20% ratio and render a single-image
from each 3D object. We apply Canny edge detection [24]
on the rendered ShapeNet images to acquire their single-
channel edge images. We manually remove the background
so that they resemble clean hand drawn sketches. For col-
ored point clouds, we use the chair, table categories as
only they have text descriptions [4]. To generate ground-
truth point clouds, each 3D shape is randomly sampled at
2048 points and then translated to zero mean and normal-
ized in the range [−1, 1]3 so that the Gaussian distribution
assumption is satisfied during the forward pass.
Evaluation Metrics: Previous works [26] used Chamfer
Distance (CD) and Earth Mover’s Distance (EMD) to eval-
uate the reconstruction quality of point clouds. Based on
these, existing works report Coverage (COV) and Minimum
matching distance (MMD). Although these metrics have
their limitations, they still serve as a good reference to mea-
sure and compare the performance of generative methods.
Specifically, COV evaluates the certainty of conditioned
generation whereas MMD calculates the average distance of
the point clouds in the reference set and their closest neigh-
bors in the generated set. Another metric used in numerous
works to evaluate the generation quality and diversity is 1-
nearest neighbor accuracy (1-NNA) which directly quanti-
fies distribution similarity between two sets. However, since
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Figure 4. Visual comparison of the generated objects. 1) Inputs include text and free-hand sketch. 2) Shape methods with no color. 3)
Colored shape generation methods. 4) Our method generates both geometry and appearance using sketch and text. The appearance can be
re-edited by changing the language prompt while preserving geometry.

Categories Input Methods MMD (↓) COV (%, ↑)
CD EMD CD EMD

Reconstruction
Shape (N×3)

Sketch

PSGN [10] 8.174 7.253 64.13 69.76
Pix2Mesh [51] 9.771 7.347 65.61 67.86
TMNet [32] 9.18 8.11 63.55 65.24
Sketch2Mesh [17] 3.018 2.786 80.24 78.23

Sketches Pix2Vox++ [57] 5.976 5.760 71.29 69.55
EvolT [49] 5.718 5.307 73.09 74.84

Generative
Shape (N×3)

Text Text2Shape [5] 9.873 6.348 33.76 31.28
CLIP-forge [43] 4.367 3.818 35.26 33.17

Sketch
MixNF [34] 7.689 6.224 69.89 67.24
DPF-Net [22] 7.531 6.176 72.34 67.68
Sketch2Model [65] 3.176 2.967 78.69 77.82

× DPM [26] 3.764 1.986 46.87 44.59

Sketch,text STPD (ours) 1.635 1.043 93.53 91.37

Generative
Shape&Color

(N×6)

Text Text2Shape 10.34 7.476 34.59 33.26
Point-E (text) [30] 2.523 2.265 51.96 49.23

× DPM-extended 4.765 3.256 45.76 39.68

sketch Point-E (sketch) 3.092 3.117 61.12 62.09

Sketch,text STPD (ours) 1.346 1.017 95.53 94.97
Table 1. Comparison of 3D shape generation for the chair, table
categories of ShapeNet [3]. CD is multiplied by 103 and EMD by
101. Our method generates the best shape, with or without color.

our aim is to generate 3D shapes faithful to the provided
sketch, we stick to the first four metrics. Where other meth-
ods do not provide color, we compare shapes only.
Baselines: We compare with classical as well as diffusion
based methods. In the former category, we select the ma-
jor sketch [65], image [34] [22], and text [43] [5] based 3D
object generation methods. We also compare to reconstruc-
tion based methods including single-view [10, 51, 32, 17]
and multiviews [58, 49]. In the latter category, we select 3D
diffusion (DPM) [26], Point-E [30], and Point Voxel Diffu-
sion (PVD) [66]. Point-E (sketch) results are obtained after
fine-tuning the Point-E image-to-shape diffusion model on
our sketch-shape data for a fair comparison. We take ten
generations for all methods and use the average error from
ground truth for evaluation.

4.2. Comparisons with State-of-the-art Methods
Table 1 compares the point cloud generation quality of

our method with existing state-of-the-art. For a fair compar-
ison, we re-train all methods with our sketch-shape data of

the chair, table categories, or their text descriptions when
the method takes text only as input. Multiview methods
are given sketches from 3 viewpoints. Only our method
performs (single view) sketch and text guided 3D object
generation. Since DPM [26] is unconditional, we gener-
ate many shapes and pick the best matches. For shape only
(upper half of Table 1), the proposed STPD outperforms
all methods, achieving 45.8% lower CD-MMD error from
the nearest reconstruction method Sketch2Mesh [17] and
48.5% lower CD-MMD error from the nearest generative
method Sketch2Model [65]. The multiview methods do not
perform well since they are unable to establish correspon-
dences between the sketches. Text guided generative meth-
ods have more diversity but struggle with alignment to user
specifications given the inherent shape ambiguity in the text.
Sketch guided methods perform better in general.

Table 1 also compares colored point cloud (shape and
color) generation. For this, we extend DPM to a 6D Gaus-
sian and also compare with Text2Shape [4] and Point-E
[30]. The proposed STPD again outperforms all meth-
ods, achieving 46.7% CD-MMD error from the nearest
competitor Point-E [30]. In Fig. 4, we compare our re-
sults visually to the existing methods using hand-drawn
sketches from SketchX [23]. Our method also offers to re-
edit the color (appearance) once the geometry is finalized
(last column). Table 2 reports comparative results on the
chair, table, aeroplane, car categories of ShapeNet. We
choose these categories because PVD [66] provides com-
parisons on the chair, aeroplane, car categories and the
table category is used in our previous experiment. From Ta-
ble 2, we can see that STPD achieves the best performance
on both evaluation metrics on all four object categories.
SoftFlow [21], PointFlow [60], DPF-Net [22], DPM [26],
Point-E [30], PVD [66] achieve an average Chamfer Dis-
tance of 2.464, 2.429, 2.168, 2.509, 2.182, 2.539 and an
average EMD of 3.105, 3.191, 2.851, 2.553, 2.490, 2.661
respectively. Our STPD achieves 1.172, 1.261 average CD,
EMD errors which are 46.3%, 49.3% lower than the nearest
competitor Point-E [30].

Human Evaluations: We also conducted human evalua-
tions on 100 objects generated by our method and other
methods. Table 3 shows the results where 30 people rate
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Methods chair table aeroplane car

CD EMD CD EMD CD EMD CD EMD

SoftFlow [21] 2.786 3.295 4.815 5.139 0.404 1.198 1.850 2.789
PointFlow [60] 2.707 3.649 4.804 5.082 0.403 1.180 1.803 2.851
DPF-Net [22] 2.763 3.320 3.986 4.661 0.528 1.105 1.396 2.318
DPM [26] 3.201 2.718 4.601 4.298 0.432 1.027 1.804 2.167
Point-E [30] 2.901 2.667 3.809 4.290 0.412 1.005 1.609 1.997
PVD [66] 3.211 2.939 4.731 4.527 0.442 1.030 1.774 2.146
STPD (ours) 1.209 1.117 2.117 1.897 0.311 0.897 1.049 1.136

Table 2. Comparison with baselines on 4 categories of the
ShapeNet dataset [3]. CD is multiplied by 103 and EMD by 101.

Human rate (↑) SoftFlow PointFlow DPF-Net DPM Point-E PVD STPD

chair 1.8 1.7 1.9 2.1 3.9 3.5 4.8
table 2.1 1.9 3.5 3.0 3.4 2.5 4.6
aeroplane 3.4 3.3 2.2 3.1 3.7 3.0 4.0
car 2.5 2.4 3.4 3.5 3.2 2.9 4.3
Table 3. Human evaluations: 100 generated objects rated on a
scale of 1 to 5 by 30 people.

Input Modality/Model for Conditioning CD EMD
Sketch Text (×103) (×101)

× BERT 28.325 20.457
C1×1 × 10.965 8.658
C1×1 BERT 9.651 8.459
ResNet50 BERT 6.409 5.480
ResNet50 + Atten.Routing BERT 1.935 1.587
C1×1 + Atten.Routing × 1.689 1.348
C1×1 + Atten.Routing (concatenate) BERT 3.748 4.127
C1×1 + Atten.Routing (our fusion) BERT 1.390 1.101

Table 4. Ablation study on visual & textual modules. C1×1 is a
simple visual encoder comprising 1× 1 convolution followed by
batch normalization and ReLU.

the generations on a scale of 1 to 5 (higher is better). STPD
outperforms the baseline methods on all individual object
categories and achieves an average rating of 4.4, compared
to average rating of 3.3 by the nearest competitor Point-E.

4.3. Ablation Study
We perform ablation study on the sketch and text mod-

ules to verify their contributions. Table 4 shows our re-
sults using CD and EMD metrics. Text conditioning, us-
ing BERT embeddings, alone achieves the worst perfor-
mance. C1×1 is a simple visual encoder comprising 1 × 1
convolution followed by batch normalization and ReLU.
Sketch conditioning, using simple C1×1 embeddings, re-
duces the errors significantly since a sketch can describe
shaping much better than text. Using sketch and text condi-
tioning with C1×1 with BERT embeddings, the errors do not
reduce much. However, when a more sophisticated sketch
encoding is performed with ResNet50 [18] and combined
with BERT, the CD and EMD reduce notably. To account
for the sparsity of sketches, when we add capsule network
with attention routing on top of ResNet50, we see a dra-
matic improvement in both metrics. Our simple visual en-
coder C1×1 with attention routing further improves the per-
formance even without using text conditioning. As seen in

Model ModelNet10 ModelNet40 ScanObjectNN

PointFlow [60] 93.7 86.8 78.2
PDGN [20] 94.2 87.3 78.1
3D-GAN [54] 91.0 83.3 76.7
AtlasNet [15] 91.9 86.6 76.9
ShapeGF [2] 90.2 84.6 75.8
DPM [26] 94.2 87.6 79.7

STPD 94.8 88.1 84.3
Table 5. Object classification accuracy (%).

Figure 5. Visualization of attention score maps for a sketch
with respect to capsules. The 8× 16 size denotes 8 capsules
of 16-dimension each. Capsule attention maps are learned from
attention-routing. Dark parts denote high attention.

the last row of the table, the best performance is achieved
when we use sketch conditioning with C1×1 + attention
routing embeddings combined with text embeddings from
BERT [7] using the proposed fusion method. The second
last row of the table shows that a simple concatenation of
the two embeddings does not work as well as our proposed
fusion mechanism.

4.4. Representation Learning Evaluation
We evaluate the representation learned by our sketch em-

bedding used to condition the diffusion model. We follow
the work of MVCNN [46], ScanObjectNN [48] and convert
rendered images from different viewpoints of the ModelNet
dataset [55] to sketches and conduct object classification ex-
periments. We train our STPD on the generated sketches
and then take the conditioned embedded features to learn
a linear SVM classifier for classification based on a single
sketch embedding. The essence of the conditional diffusion
model is that the conditioning should guide the diffusion to
retrieve the 3D shape from Gaussian noise. This means that
our conditional network should be able to represent specific
object categories to aid classification. The results in Table 5
demonstrate that our architecture can extract discriminative
features, that are also useful for accurate classification.

4.5. Effectiveness of Capsule Network
Fig. 5 visualizes the generated attention scores from a

typical sketch. More examples are given in the supplemen-
tary material along with quantitative results using Instance
Scores for Sketch (ISS i.e. without attention routing) and
Instance Score on Capsule (ISC i.e. with attention routing)
metrics. ISS is the percentage of useful pixels divided by
the total pixels of the sketch. For ISC, we compute the aver-
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Figure 6. Visualization of part segmentation results for 4 categories of ShapeNet-Parts.

age of the highest attention score for each of the 16 capsule
dimensions (column wise) and convert it to a percentage.

Before the attention capsule, the sketches have ISS of
1.07% on average. After our capsule-attention module,
ISC becomes 58.68% on average for better diffusion. This
demonstrates the effectiveness of the Capsule Attention
Network which attends to sparse data in sketches during dif-
fusion training. Each capsule (1 × 16) denotes a learned
feature, e.g. the table, from a sketch. It can be observed
that given the distribution of the useful pixel in the sketch,
only a few attention score values are dark i.e, attentioned.
Caps number 2 and a few dimensions of Caps number 5 are
given high weight to contribute to the final visual feature,
while the other Caps that represent the white background of
the sketch are ignored. The attention-based capsule network
enables our method to effectively locate the referred objects
in the sparse sketch input.

5. Extending STPD to Part Segmentation Task
To further show the feature learning ability of our STPD

model, we use it for the task of part segmentation in point
clouds. For this, we use the ShapeNet-Parts [3] dataset, fo-
cusing on the four object categories of Table 2.

The part segmentation task can be extended from our
colored point cloud generation model by assigning differ-
ent colors to each part. We consider only two parts for
the table and three parts for remaining three categories
e.g. for aeroplane, the (body, wing, tail) are assigned
(blue, green, red) colors respectively.

In our STPD , each coordinate is generated by our
sketch-text guided geometric diffusion model. However, in
the part segmentation task, the shape g0 is given as input
to the model. Here, we directly apply the text feature as the
condition Ca of appearance diffusion. For instance, we pro-
vide a generic text sentence “An blue aeroplane with green
wings and red tail” for all aeroplanes.

With the given input geometry and appearance descrip-
tion, we can formally define our joint generative model for
point cloud segmentation as

pθ,ϕ(a0,g0, Ca) = pθ(a0|g0, Ca)pinput(g0)pϕ(Ca), (13)

Model mIoUc mIoUI chair table aeroplane car

PointNet [35] 82.1 83.5 89.6 80.6 83.4 74.9
PointNet++ [36] 83.3 84.6 90.8 82.6 82.4 77.3
DGCNN [52] 83.8 84.9 90.6 82.6 84.0 77.8
Point-BERT [61] 84.7 85.6 91.0 81.5 84.3 79.8
PointMLP [27] 84.6 84.8 90.3 84.3 83.5 80.5
KPConv [47] 85.1 85.9 91.1 83.6 84.6 81.1
P2P [53] 85.0 85.9 91.6 83.7 84.3 80.4

STPD 85.9 86.7 92.4 84.1 85.6 81.3
Table 6. Comparative results of part segmentation on four cate-
gories of ShapeNet-Parts dataset.

where the combination {a0,g0} denotes the desired seg-
mentation of the 3D point cloud. Note that, a0 is generated
as colors which are then used as segmentation labels. We
apply K-means clustering for final refinement of the colors.

Results for 3D Shape Segmentation: Fig. 6 shows some
visualizations of our results and Table 6 compares our
method to some existing baselines. The proposed STPD
achieves the highest mIoU compared to existing methods.

6. Conclusion
We proposed a novel sketch and text guided probabilis-

tic diffusion model for 3D object generation. Our model
takes a hand drawn sketch and text as inputs to condition
the reverse diffusion process. With the strong generative
ability and effective guidance by the sketch-text fused fea-
tures, our model is able to achieve high alignment with user
specifications. Our visual encoder is designed to focus on
the informative sparse parts of sketches. The sketch-text fu-
sion part gathers informative object context from visual and
textual descriptions to improve the shape and appearance
of the generated 3D objects. Experimental results demon-
strate that our model achieves state-of-art performance in
3D object generation and shows promising applications for
3D object classification and part segmentation.
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proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 7

[16] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10696–10706,
June 2022. 2

[17] Benoit Guillard, Edoardo Remelli, Pierre Yvernay, and Pas-
cal Fua. Sketch2mesh: Reconstructing and editing 3d
shapes from sketches. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
13023–13032, October 2021. 2, 6

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1, 2, 4

[20] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. Pro-
gressive point cloud deconvolution generation network. In
European Conference on Computer Vision, pages 397–413.
Springer, 2020. 7

[21] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang,
Joun Yeop Lee, and Nam Soo Kim. Softflow: Probabilis-
tic framework for normalizing flow on manifolds. Advances
in Neural Information Processing Systems, 33:16388–16397,
2020. 6, 7

[22] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete
point flow networks for efficient point cloud generation. In
European Conference on Computer Vision, pages 694–710.
Springer, 2020. 6, 7

[23] Yi Li, Timothy M Hospedales, Yi-Zhe Song, and Shaogang
Gong. Fine-grained sketch-based image retrieval by match-
ing deformable part models. 2014. 6

[24] Yibo Li and Bailun Liu. Improved edge detection algorithm
for canny operator. In 2022 IEEE 10th Joint International In-
formation Technology and Artificial Intelligence Conference
(ITAIC), volume 10, pages 1–5. IEEE, 2022. 5

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 1

8937



[26] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 1, 3, 5, 6, 7

[27] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun
Fu. Rethinking network design and local geometry in point
cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123, 2022. 8

[28] Bo Miao, Mohammed Bennamoun, Yongsheng Gao,
and Ajmal Mian. Spectrum-guided multi-granularity
referring video object segmentation. arXiv preprint
arXiv:2307.13537, 2023. 2

[29] Yongwei Miao, Feixia Hu, Xudong Zhang, Jiazhou Chen,
and Renato Pajarola. Symmsketch: Creating symmetric 3d
free-form shapes from 2d sketches. Computational Visual
Media, 1(1):3–16, 2015. 3

[30] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 3, 6, 7

[31] Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and
Joaquim A Jorge. Sketch-based modeling: A survey. Com-
puters & Graphics, 33(1):85–103, 2009. 3

[32] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and
Kui Jia. Deep mesh reconstruction from single rgb images
via topology modification networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9964–9973, 2019. 2, 6

[33] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 1, 3

[34] Janis Postels, Mengya Liu, Riccardo Spezialetti, Luc
Van Gool, and Federico Tombari. Go with the flows: Mix-
tures of normalizing flows for point cloud generation and re-
construction. In 2021 International Conference on 3D Vision
(3DV), pages 1249–1258. IEEE, 2021. 6

[35] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017. 8

[36] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 8

[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1, 2, 3

[38] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8821–8831.
PMLR, 18–24 Jul 2021. 1, 2

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, June 2022. 1, 2

[40] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-
namic routing between capsules. Advances in neural infor-
mation processing systems, 30, 2017. 3, 4

[41] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, Jonathan Ho, David J Fleet, and Mohammad Norouzi.
Photorealistic text-to-image diffusion models with deep lan-
guage understanding. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages
36479–36494. Curran Associates, Inc., 2022. 2

[42] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. Clip-forge: Towards zero-shot text-to-shape genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18603–18613,
2022. 1, 3

[43] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. Clip-forge: Towards zero-shot text-to-shape genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18603–18613,
2022. 6

[44] Yuefan Shen, Changgeng Zhang, Hongbo Fu, Kun Zhou, and
Youyi Zheng. Deepsketchhair: Deep sketch-based 3d hair
modeling. IEEE Transactions on Visualization and Com-
puter Graphics, 27(7):3250–3263, 2021. 3

[45] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
1, 2

[46] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 945–953,
2015. 7

[47] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019. 8

[48] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point
cloud classification: A new benchmark dataset and classifi-
cation model on real-world data. In International Conference
on Computer Vision (ICCV), 2019. 7

[49] Dan Wang, Xinrui Cui, Xun Chen, Zhengxia Zou, Tianyang
Shi, Septimiu Salcudean, Z. Jane Wang, and Rabab Ward.
Multi-view 3d reconstruction with transformers. In Proceed-
ings of the IEEE/CVF International Conference on Com-

8938



puter Vision (ICCV), pages 5722–5731, October 2021. 3,
6

[50] Fang Wang, Le Kang, and Yi Li. Sketch-based 3d shape
retrieval using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1875–1883, 2015. 3

[51] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), September
2018. 2, 6

[52] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 8

[53] Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, and Ji-
wen Lu. P2p: Tuning pre-trained image models for point
cloud analysis with point-to-pixel prompting. arXiv preprint
arXiv:2208.02812, 2022. 8

[54] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in neural information processing systems, 29, 2016.
7

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 1, 2, 7

[56] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.
Tedigan: Text-guided diverse face image generation and ma-
nipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2256–2265, June 2021. 2

[57] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen
Zhou, and Shengping Zhang. Pix2vox: Context-aware 3d
reconstruction from single and multi-view images. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 2690–2698, 2019. 6

[58] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen
Zhou, and Wenxiu Sun. Pix2vox++: Multi-scale context-
aware 3d object reconstruction from single and multi-
ple images. International Journal of Computer Vision,
128(12):2919–2935, 2020. 2, 6

[59] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1316–
1324, 2018. 2

[60] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4541–4550, 2019. 6, 7

[61] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud

transformers with masked point modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19313–19322, 2022. 8

[62] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. arXiv
preprint arXiv:2210.06978, 2022. 3

[63] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 5907–
5915, 2017. 2

[64] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan++: Realistic image synthesis with stacked generative ad-
versarial networks. IEEE transactions on pattern analysis
and machine intelligence, 41(8):1947–1962, 2018. 2

[65] Song-Hai Zhang, Yuan-Chen Guo, and Qing-Wen Gu.
Sketch2model: View-aware 3d modeling from single free-
hand sketches. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6012–
6021, 2021. 2, 3, 6

[66] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5826–5835, 2021. 1, 3, 6, 7

8939


