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Abstract

Synthesizing realistic videos according to a given speech
is still an open challenge. Previous works have been
plagued by issues such as inaccurate lip shape generation
and poor image quality. The key reason is that only motions
and appearances on limited facial areas (e.g., lip area) are
mainly driven by the input speech. Therefore, directly learn-
ing a mapping function from speech to the entire head image
is prone to ambiguity, particularly when using a short video
for training. We thus propose a decomposition-synthesis-
composition framework named Speech to Lip (Speech2Lip)
that disentangles speech-sensitive and speech-insensitive
motion/appearance to facilitate effective learning from lim-
ited training data, resulting in the generation of natural-
looking videos. First, given a fixed head pose (i.e., canoni-
cal space), we present a speech-driven implicit model for lip
image generation which concentrates on learning speech-
sensitive motion and appearance. Next, to model the major
speech-insensitive motion (i.e., head movement), we intro-
duce a geometry-aware mutual explicit mapping (GAMEM)
module that establishes geometric mappings between dif-
ferent head poses. This allows us to paste generated lip
images at the canonical space onto head images with arbi-
trary poses and synthesize talking videos with natural head
movements. In addition, a Blend-Net and a contrastive
sync loss are introduced to enhance the overall synthesis
performance. Quantitative and qualitative results on three
benchmarks demonstrate that our model can be trained by
a video of just a few minutes in length and achieve state-
of-the-art performance in both visual quality and speech-
visual synchronization. Code: https://github.com/CVMI-
Lab/Speech2Lip.
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Figure 1. Given a speech as input, our model generates high-
quality talking-head videos and supports pose-controllable synthe-
sis. The decomposition and synthesis modules make learning from
a short video more effective and the composition module enables
us to synthesize high-fidelity videos.

1. Introduction

Learning from a short video to generate personalized
audio-synchronized talking videos driven by a speech is
of great importance to various applications, for instance,
digital human animation, video dubbing, and UGC video
creation. However, synthesizing high-fidelity videos from
speech for a desired speaker remains a challenging task.

The first challenge arises from complicated motion pat-
terns. Although speech majorly influences lip areas (i.e.,
speech-sensitive areas), lip movements are often accom-
panied by other motions, such as global head movements,
which greatly impact lip shapes and appearances. Thus, di-
rectly synthesizing a whole image from speech often leads
to inaccurate lip synthesis. Second, existing methods still
struggle to satisfy appearance fidelity requirements, which
include both identity preservation (speaker-specific) and
high-quality detail generation, such as clear details of teeth,
tongue, and eye-blinking [9, 42, 26, 44, 7]. Third, it’s dif-
ficult to acquire videos longer than 10 hours for a speaker
which is yet required by conventional methods [17, 31].
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To tackle the aforementioned challenges , existing at-
tempts can be coarsely categorized into two lines of re-
search: speaker-independent and speaker-specific meth-
ods. The first line often exploits GANs [15] that need to
be trained on large-scale multi-person datasets. However,
GAN-based models [4, 7, 9, 26, 33, 38, 42, 43] usually syn-
thesize low-resolution images and unnatural motions (i.e.,
background movements). They thus hardly meet the ap-
pearance fidelity requirement in terms of sharpness and fine
appearance details. Moreover, preserving the identity of the
speaker remains a challenging task [7, 43].

For the consideration of high-fidelity and identity preser-
vation, another strategy focuses on learning from a spe-
cific speaker. Although attaining high-fidelity results, early
works [17, 31] often require several hours of video footage
from a speaker for training, hindering their practical appli-
cability. Recently, NeRF [20] has emerged as a promis-
ing approach for generating high-fidelity videos, which suc-
ceeds in learning from a short video of just a few min-
utes and having the potential to generate high-fidelity re-
sults [16, 18, 28]. Nevertheless, the models still struggle
with appearance and motion ambiguity issues because they
model speech-sensitive motions/appearances together with
other facial areas less correlated to the given speech. This
issue becomes more severe when training data is limited
since no extra information can be exploited to avoid inter-
ference from signals that are not correlated with the speech.
As a result, they tend to generate lip sequences that do not
synchronize well with the speech and produce blurry im-
ages (see Figure 5 and Table 1). Therefore, reducing the
complexity of modeling motions is critical to enable ef-
fective learning from a short video and synthesizing high-
quality videos for a specific speaker.

We thus design a preliminary experiment to identify
that motion and appearance of lip areas have a strong
correlation with speech, while head motion and other fa-
cial areas are less related to speech (Figure ??). Moti-
vated by the observation, we propose decomposing speech-
insensitive motion/appearance from speech-sensitive one,
and synthesizing them separately before composing them
into a new talking video that aligns with the given speech
(Figure 1). Toward this goal, we present a decomposition-
synthesis-composition framework named Speech to Lip
(Speech2Lip). In the decomposition stage, we intro-
duce a speech-driven implicit model that generates high-
fidelity synced lip sequences in a fixed view (i.e., canonical
view). To model 3D head motion effectively, we design
a Geometry-Aware Mutual Explicit Mapping (GAMEM)
module that estimates explicit geometric mappings be-
tween an arbitrary observed view and the canonical view.
GAMEM also includes a jointly optimized canonical-view
full-head depth map, which enables the model to be 3D-
aware and supports controllable synthesis driven by new

head poses. In the composition stage, GAMEM allows us
to flexibly paste the synthesized canonical-view lips onto
an arbitrary observed view to obtain natural synchronized
talking videos. To improve the synthesis and synchroniza-
tion qualities after composition, we incorporate a blending
network (i.e., Blend-Net) to refine the results and a con-
trastive sync loss to facilitate learning from a short video
for generating synchronized talking videos.

Our major contributions are summarized as follows:

1) We introduce a novel framework that disentan-
gles speech-sensitive and speech-insensitive mo-
tion/appearance in high-fidelity video synthesis. By
separating these components, the framework can ef-
fectively learn from limited training data.

2) The proposed speech-driven implicit model synthe-
sizes speech-sensitive contents and the GAMEM flex-
ibly combines them with given speech-insensitive ar-
eas to generate synchronized talking heads with natu-
ral movements and support pose-controllable synthe-
sis.

3) Both qualitative and quantitative experimental results
demonstrate the superiority of our method over the
state-of-the-art speaker-specific methods.

2. Related Work

Speech-Driven Talking Face Synthesis. Video synthesis
from speech is a long-standing problem. Recent works
can be generally divided into two categories: speaker-
specific [17, 31, 19, 16, 39, 18, 28] and speaker-independent
[9, 42, 26, 44, 7, 5, 41, 35, 36]. In the first track, ear-
lier works have succeeded in obtaining realistic visual re-
sults for a target person [17, 31] but required hours of
video belonging to one specific speaker. Therefore, many
efforts [19, 16, 39, 18, 28] have been made to train the
model with a shorter talking video (3-5 minutes). However,
they utilize speech to forecast overall motions including
speech-insensitive ones, failing to learn accurate lip shapes
and appearances. The other line (i.e., speaker-independent
method) aims to build a universal model for all identities
[9, 42, 26, 44, 7]. The end-to-end pipeline [9, 42] is usually
developed on GAN [15]. To boost performance, Richard
et al. [27] only synthesize the mesh of limited facial areas,
Prajwal et al. [26] present an extra lip-sync discriminator,
Zhou et al. [43] provide additional head poses as inputs,
and some other models [7, 14, 44, 32, 30] leverage the inter-
mediate representation (e.g., 2D facial landmarks [7, 14, 44]
or expression parameters [32, 30]). Nevertheless, they often
suffer from low video quality, difficult identity preservation,
and abnormal head motion generation.

Implicit Representation based Talking Head Methods.
Recently, implicit representations have shown high model-
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ing capabilities in multiple tasks [25, 20, 24, 34]. Among
them, NeRF [20] obtains extraordinary performance in
novel view synthesis by training on only hundreds of im-
ages. Guo et al. [16] first apply it in the speaker-specific
talking head synthesis task to enable learning from a short
video. However, they utilize two NeRFs to model the
head and torso, resulting in the head-torso separation phe-
nomenon. Liu et al. [18] solve it by leveraging one unified
NeRF with two semantic-aware modules. Shen et al. [28]
incorporate 2D image features as additional inputs to further
reduce training data requirements (i.e., videos with only 10-
15 seconds). Regardless, these methods only ensure visual
quality, and simply use speech to drive all the complex mo-
tions, leading to the out-of-sync problem.

3. Empirical Study and Motivations
Our approach is motivated by the observation that only

limited facial areas are highly correlated to speech. To ver-
ify this, we conduct a preliminary experiment to determine
which areas are most speech-sensitive. Specifically, we ap-
ply warping to all captured images with varying head poses
(refer to observed views) using the 3D Morphable Model
(3DMM) [2] and bring them to a fixed head pose (known as
the canonical view). We then compute a motion heatmap in
the canonical view to determine the areas most responsive
to speech. As depicted in Figure 2, the elimination of head
motion results in most of the motions around the lip regions
displaying high sensitivity to the input speech. Additional
examples can be found in the supplementary file. For more
details on the warping process, please refer to Sec. 4.3.

Motion HeatmapCanonical ViewObserved View

Warp Compute

Figure 2. Speech-sensitive Motion Heatmap.

4. Method
4.1. Overview

Figure 3 provides an overview of our model. We de-
fine each frame captured in the observed view with its
own head motion as the “observed space”. To disentangle
speech-sensitive and speech-insensitive motions (i.e., head
motions), we randomly select one observed space to serve
as the “canonical space”. By doing so, we are able to align
all observed spaces with the canonical space, thereby elimi-
nating the effects of head motions. Note that once selected,
the canonical space is fixed during training and inference.
To model speech-sensitive motions, we propose a speech-
driven implicit model to generate lip images in the canoni-
cal space without head motion effect (Sec. 4.2). Thus, the
generated lip image is canonical-view. A Geometry-Aware

Mutual Explicit Mapping (GAMEM) module is further pro-
posed to model the speech-insensitive head motions without
speech effect. Next, we project the lip images in canonical
space generated by the above implicit model to the observed
space based on GAMEM so that the synthesized lip image
can be aligned and composed with any arbitrary observed
frame, giving the model the flexibility for diversified com-
position (Sec. 4.3). Finally, a blending network (i.e., Blend-
Net) and a contrastive sync loss are presented to improve the
quality of final synthetic images Îo (Sec. 4.4).

4.2. Disentangled and Synced Implicit Modeling

The central part of Speech2Lip is the disentangled
and synced speech-driven implicit generator (Figure 3(a)),
which focuses on generating 2D lip appearances that are
synchronized with cross-modal speech. By employing mo-
tion and appearance disentanglement, the generator only
retains speech-sensitive motions and appearances. A lip-
syncing contrastive loss is utilized (Figure 3(c)) so that
it can generate synced high-fidelity mouth appearance by
learning from very short video data. All these together make
the implicit modeling disentangled and synced.

Speech-driven Implicit Model To achieve high-fidelity
canonical lip image generation, we utilize a speech-driven
implicit model. An implicit model is defined as a func-
tion that maps the coordinate signal to another signal [29],
e.g., color. The input coordinates of the implicit model
are defined in a continuous space (i.e., the real field) so
that it helps exploit the inherent relationship between spa-
tially adjacent locations. Also, it can be further mapped
into the frequency domain and benefit the learning of high-
frequency information [20]. Besides, by learning a dedi-
cated model for a specific scenario, implicit models also
gain a strong ability to generate high-quality desired out-
puts. In our model, color information ĉc,n = (r, g, b) is
regarded as our output signal (appearance color), and the
canonical implicit function fθ can be defined as

ĉc,n = fθ(xc,n,a, ts), (1)

where xc,n is the continuous 2D pixel coordinate vector
(u,v) in the canonical space. a ∈ R64 is the feature vector of
the input speech at the concerned moment and ts represents
the timestamp information, which is utilized to enhance the
temporal consistency between adjacent frames.

Continuous Sampling The next question that arises is how
to obtain the corresponding supervision signal to train the
implicit model, which poses a challenge as the coordinates
of the pixels are always integers, while we define the coor-
dinates in a continuous space for more expressive features.
To overcome this challenge, we adopt the approach devel-
oped in [8], which enables us to sample and generate corre-
sponding supervisions in the continuous coordinate space.
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Figure 3. The overall framework of Speech2Lip. Our framework decomposes speech-sensitive and speech-insensitive motions/appearances
first, models them individually (the major part of (a)), and composes the ultimate output image (b). Besides, the synchronization perfor-
mance enhancement module and the GAMEM are illustrated in (c) and (d), respectively. The inputs include continuous pixel coordinates,
speech audio signals, and timestamps. The speech-driven implicit model will generate speech-sensitive canonical-view lip images, which
will be further transformed into observed space to composite the eventual output image. A full-head depth map is learned along with the
training process, supporting pose-controllable synthesis.

Particularly, for each pixel xc, a rectangle with an arbi-
trary shape is randomly sampled, the four corner points (i.e.,
xc,n, n ∈ {00, 01, 10, 11}) of which are regarded as our in-
puts. A weighted averaged value ĉc is then calculated as

ĉc =
∑

n∈{00,01,10,11}

Sn

S
· ĉc,n, (2)

where ĉc,n are the output appearance values of the sam-
pled points. As illustrated in Figure 4, the blue-dashed-
line rectangle represents the area S, which is divided into
four sub-rectangles by gray lines, each with an area Sn.
By leveraging this strategy, we can generate supervision for
points with continuous positions, which enables us to fully
exploit the advantages of the implicit model and achieve
high-fidelity visual results.

4.3. Geometry-Aware Mutual Explicit Mapping

Once we have obtained the speech-sensitive lip se-
quences in the canonical view, we can construct the
eventually synthesized image Îo by assigning the synthe-
sized pixels to a location in the observed space. How-
ever, since the assigning process is speech-insensitive and
only relies on the geometry information, we introduce
the GAMEM module, illustrated in Figure 3, to explicitly
model it. The GAMEM module comprises Canonical-to-
Observed (C2O), Observed-to-Canonical (O2C) Mapping,
and a learnable full-head depth map, which supports various
applications, including pose-controllable image synthesis.

C2O/O2C Mapping These mappings represent how the
images transform between two spaces (i.e., canonical space

𝒙𝒄,𝟎𝟏(#𝒄𝒄,𝟎𝟏)

𝒙𝒄,𝟏𝟏(#𝒄𝒄,𝟏𝟏)𝒙𝒄,𝟏𝟎(#𝒄𝒄,𝟏𝟎)

𝒙𝒄,𝟎𝟎(#𝒄𝒄,𝟎𝟎)

Pixel Point

Sampled Point

𝒙𝒄(#𝒄𝒄)

Figure 4. Continuous Sampling strategy. This strategy can gener-
ate supervision signals for sampled positions at different resolu-
tions in the training time.

and observed space). As depicted in Figure 3, O2C Map-
ping aims at creating supervisions Imo→c for training the
lip generator model fθ and C2O Mapping is utilized to
warp the generated lip image into the observed view to pro-
duce Îmc→o for further composition. As they follow sim-
ilar principles, we take the O2C Mapping as an exam-
ple to illustrate the process. The input of O2C Mapping
contains Io and Ic, and the output are pixel correspon-
dences that map pixel coordinates in observed space to the
canonical space. To achieve it, we use the 3D Morphable
Model (3DMM) [2] to calculate the overall camera intrin-
sic matrix K and rough face geometry G. The head poses
To ∈ R4×4 and Tc ∈ R4×4, which include a rotation matrix
and a translation vector, are also estimated. And the rela-
tive head pose Tc→o ∈ R4×4 between two spaces can be
computed as

Tc→o = To × T−1
c . (3)

Furthermore, face depth maps Do and Dc for Io and Ic
obtained from 3DMM can be further interpolated based on
G, and the corresponding head poses. Noticing that 3DMM
can only be aware of the face area instead of the head area,
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but the information about the rest part of the head (e.g., fore-
head, ears, eyes, mouth) is lacking. Hence we optimize the
Dc along with our model to complete the missing depth re-
gion. If po and pc are the corresponding 2D homogeneous
pixel grid coordinates on Io and Ic, the geometric relation-
ships can be explicitly formulated as

Dopo = KTc→oDcK
−1pc, (4)

so the position mapping from canonical space to observed
space can be easily obtained as

Fc→o(Tc→o, Dc, pc) = po. (5)

Then, we can warp the observed ground-truth lip images
Imo into the canonical space by backward warping, denoted
by Imo→c, to guide the learning of the lip generation model.
The C2O Mapping can be similarly defined by To→c and
Do. With it, we can warp the generated canonical lip image
Îmc into the observed space by backward warping, denoted
by Îmc→o, to compose with the given observed image Io for
synthesizing a talking face.

Pose Controllable Synthesis Thanks to the simultaneously
learned complete depth map Dc, pose-controllable full-
head image synthesis according to users’ requirements is
also supported in our model. Specifically, we employ Dc

to determine location correspondences based on Eq. 3 and
Eq. 5 by altering To. There is a slight difference in this sit-
uation, which is to use the forward warping strategy as the
ground-truth depths at new given poses are missing, which
will produce black holes. To mitigate this issue, we pro-
pose a data augmentation method in training by randomly
adding black holes with a ratio of 50% to the image to let
the Blend-Net learn to fill these areas.

4.4. Overall Refinement

Image Blending With Îmc→o, we can integrate it by directly
pasting it to the original observed frame based on 2D lip
landmarks [3]. However, the paste operation often results
in mismatching artifacts in the boundary area, and the im-
age artifacts after data augmentation should also be modi-
fied. Therefore, we propose a Blend-Net for blending. The
Blend-Net takes the pasted image after the paste operation
as input to synthesize harmonized final output Îo. Since the
target is fusion and amending instead of generation, we pre-
dict the pixel residual, which is further added back to the
input image to composite the final output image. Detailed
network structure is illustrated in the supplementary file.

Synchronization Enhancement. To further improve the
synchronization performance, we introduce a pre-trained
sync expert network to boost the model’s performance in
synchronization inspiring by [26]. The sync expert network
consists of two pre-trained encoders, which extract features

of image and speech audio within a sliding window, denoted
by i and a respectively. Different from [26], we only have
a short video for training. Therefore, the unsynced speech-
image pairs are also exploited to construct the contrastive
loss which helps avoid falling into a trivial solution. Its ef-
fectiveness is also verified in our experiments. The distance
of synced speech-image pairs is desired to be closer while
that of the unsynced speech-image pairs should be farther.
Thus, we define a contrastive sync loss Ls based on the met-
ric which is widely used in contrastive learning:

Ls = y · (1− cos(i,a))+ (1− y) ·max(0, cos(i,a)), (6)

where cos is the cosine similarity metric. y = 1 and y = 0
represent positive and negative speech-image pairs, respec-
tively. For the input speech, the positive images are the
matched images at the same timestamp while the negative
images are randomly chosen at some timestamps else.

4.5. Training Objectives

Our whole pipeline is trained in a self-supervised man-
ner using the observed frames to provide the supervisory
signals. The overall loss includes a canonical mouth image
reconstruction loss Lm, a depth loss Ld, a sync loss Ls, and
a whole observed image reconstruction loss Lw.

Lm measures the reconstruction error between the pre-
dicted lip image Îmc and ground-truth lip image Imo→c as

Lm = Lp(Î
m
c , Imo→c) + ∥Îmc − Imo→c∥2, (7)

where Imo→c is the warped ground truth lip image using O2C
space mapping (see the supplementary file for more details)
and the widely-used perceptual loss Lp is defined in [40].
Similarly, overall reconstruction loss Lw is computed as

Lw = Lp(Îo, Io) + ∥Îo − Io∥2. (8)

The canonical head depth map is initialized by the in-
complete depth map computed by 3DMM and is trained
with the help of the photometric loss as

Ld = ∥Îo→c − Ic∥2, (9)

where Îo→c is the warped predicted image. With the con-
trastive sync loss (Sec. 4.4), the overall loss function is

L = ωm · Lm + ωw · Lw + ωd · Ld + ωs · Ls. (10)

Implementation details are shown in the supplementary file.

5. Experiments
5.1. Datasets and metrics

Datasets. We evaluate our algorithm and other methods
on three datasets belonging to three specific speakers (Test-
set I, Testset II and Testset III) as recent speaker-specific
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Method
Trained with Testset I Testset II Testset III

large extra data PSNR↑ SSIM↑ CPBD↑ LMD↓ Sync↑ PSNR↑ SSIM↑ CPBD↑ LMD↓ Sync↑ Sync↑

Ground Truth N/A N/A 1.000 0.186 0.000 9.102 N/A 1.000 0.121 0.000 8.688 4.877

ATVG [7] Yes 28.452 0.818 0.019 5.423 5.813 28.051 0.668 0.003 4.203 6.224 3.571
MakeitTalk [44] Yes 29.692 0.906 0.050 4.215 4.115 28.996 0.813 0.061 4.463 5.559 2.320
Wav2Lip [26] Yes 31.557 0.980 0.115 3.053 10.031 31.793 0.956 0.065 3.415 9.936 5.809
PC-AVS [43] Yes 29.072 0.880 0.040 4.595 9.258 28.359 0.734 0.046 4.305 8.586 5.206
LSP [19] No 29.515 0.900 0.098 3.174 5.377 28.895 0.776 0.117 4.972 6.811 3.046
AD-NeRF [16] No 32.223 0.954 0.051 2.989 6.042 30.885 0.909 0.055 3.210 5.910 3.285
DFRF [28] No 33.292 0.974 0.094 3.079 5.252 31.419 0.944 0.124 3.139 5.552 2.879
Speech2Lip No 34.815 0.987 0.224 2.976 7.771 33.197 0.962 0.125 3.082 7.370 4.379

Table 1. Quantitative results compared with the SOTA methods. Image quality assessment metrics (i.e., PSNR, SSIM, and CPBD) are
computed within mouth region. Algorithms are categorized into two classes based on the training datasets for a fair comparison. The first
ones are trained in large public datasets while the other ones are trained using only 3-5min videos. The best results of each class are in
bold and overall best results are with underlines.

methods [16, 19] usually do. Training videos are collected
from [19] as they are publicly available. All video se-
quences are resampled to 25 FPS and split into training part
and test part with a ratio of 90%/10%. The training splits
of Testset I (500× 500) and Testset II (624× 624) are em-
ployed to train the models and then same-identity evalua-
tions are conducted on the test splits. Testset III is utilized
for cross-identity, -gender, and -language tests. We present
more evaluation results in the supplementary file.

Evaluation Metrics. Since both face generation and lip
generation models are contained in our quantitative evalua-
tions, we conduct the image quality assessment just around
the mouth region for a fair comparison. To evaluate the
appearance quality, we first utilize image quality metrics
Peak Signal-to-Noise Ratio (PSNR) and SSIM [37]. A no-
reference objective image sharpness metric based on Cu-
mulative Probability of Blur Detection (CPBD) [23, 21, 22]
is further utilized to measure the overall perceptual image
quality. For synchronization evaluation, Landmarks Dis-
tance (LMD) around the mouth region is exploited to com-
pute the accuracy of lip shape following [6]. The con-
fidence score of lip synchronization computed by a pre-
trained SyncNet [12] is also applied to measure the syn-
chronization performance, labeled by Sync.

5.2. Comparisons with State of the Arts

Same-identity Evaluation. For speaker-independent mod-
els, we conduct experiments using their officially-released
pre-trained models. Since AD-NeRF [16] and DFRF [28]
are speaker-specific models, we retrain them using our
training data for a fair comparison. DFRF aims at few-shot
learning but its lip synchronization performance witnesses
a significant drop when the number of training images de-
creases from 5000 to 15. Hence, we still train DFRF on
thousands of images. Also, we directly use LSP’s [19] pre-
trained models on Testset I and Testset II to conduct experi-

ments (subject May for Testset I and Testset III, and subject
Obama2 for Testset II). We cannot provide a quantitative
comparison with SSP-NeRF [18] here, as neither codes nor
pre-trained weights are available. Thus, for comparison, we
extract the speech from their released demo and then present
qualitative comparisons in the supplementary file.

Quantitative results are shown in Table 1. We divide all
the models into two types based on the scale of the training
dataset. The upper four algorithms (speaker-independent
models) are trained using public video datasets with
large amounts of identities and speech-image pairs (e.g.,
LRS2 [1, 11, 13] and VoxCeleb2 [10]) while the lat-
ter four methods (speaker-specific models) only use 5-
minute videos of a specific identity for training. Speaker-
independent models tend to perform well in synchroniza-
tion because they can learn lip motions well from various
speech-visual pairs in training time. However, the cost is
sacrificing the visual quality. The metrics of image qual-
ity (e.g., PSNR, SSIM, and CPBD) are much lower than that
of specific models. Wav2lip [26] is an exception because
it only generates lip images, but the details still can not
be produced well (Figure 5). In contrast, speaker-specific
models usually have much better image qualities, which is
favorable in practice. Our model outperforms all the SOTA
algorithms in image quality and achieves the best synchro-
nization performance among all the speaker-specific mod-
els, and the Sync score is also competitive when com-
pared to those speaker-independent models. It is also worth
mentioning that the Sync scores of Wav2lip [26] and PC-
AVS [43] are higher than that of the ground truth. The rea-
son might be that the Sync score is sensitive to synchroniza-
tion quality only when synchronization quality is within a
range and a higher score above a threshold may not neces-
sarily imply a higher synchronization quality. We design a
toy experiment to verify it in the supplementary file and our
user study can also demonstrate it.

Cross-identity Evaluation. Our model also has the abil-
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Figure 5. Qualitative results compared with SOTA methods. The Lip area is cropped based on the detected 2D landmarks for a clear
comparison. Speaker-independent and speaker-specific models are remarked by different colors.

ity to generate cross-identity, -gender, and -language re-
sults. Since there is no ground truth image, we provide the
sync performance comparison on generating a video for the
model trained on Testset I (female, British) using another
speaker’s speech (male, French). This setting is defined as
Testset III, and results are shown in the last column of Ta-
ble 1. Our model still has significant superiority and outper-
forms other speaker-specific models by a large margin. We
also test the effect of unsynced speech-image pairs used in
Eq. 6 on Testset III. Without negative pairs, the Sync score
decreases from 4.379 to 3.830, showing the effectiveness of
our contrastive sync loss.

Qualitative Results. Qualitative comparisons of differ-
ent algorithms are presented in Figure 5. We can see
that speaker-independent methods all suffer from low im-
age quality. Besides, ATVG and MakeitTalk have unnat-
ural speech-insensitive movements (e.g., head motion and
background motion) and PC-AVS has an extra issue of
struggling with identity preservation. Speaker-specific ap-
proaches have much better visual quality but most of them
can hardly estimate precise lip details when there exist con-
siderable significant lip motions. And fine details like teeth
and tongue are not well modeled either. Besides, AD-NeRF
sometimes causes head-torso separation due to the adoption
of two separate NeRFs. In contrast, our method Speech2Lip
performs well in all these situations, as the generated shapes
are more accurate and the synthetic images are more clear
and realistic, especially the lip area. More results can be
found in the supplementary videos.

Complexity Comparisons. To further demonstrate the su-
periority of our model, complexity and computational cost
comparisons with speaker-specific models are conducted on
Testset I. In Table 2, our model gains the best results with
much less complexity and lower computational cost.

Methods LSP AD-NeRF DFRF Ours
Model size (MB) ↓ 500 30 20 30
Train time (hour) ↓ 38.5 80 60 30
Test speed (FPS) ↑ 35 0.06 0.04 18
PSNR (dB) ↑ 29.52 32.22 33.29 34.82
Sync ↑ 5.38 6.04 5.25 7.77

Table 2. Speaker-specific model comparisons. The best results are
in bold and the second best results are with underlines.

User Study. To verify the perceptual quality, user studies
are conducted on 16 generated video clips covering both
Testset I and Testset II. Videos are generated by our pro-
posed Speech2Lip and other SOTA algorithms, with algo-
rithm names hidden and video order randomized. 17 par-
ticipants independently evaluated all the videos. For each
video, each participant gave a Mean Opinion Score (MOS)
from 1-5 for each of three aspects: qualities of speech-
visual synchronization, image fidelity, and image realness.
Higher scores represent better quality. The overall results
are shown in Table 3. Speech2Lip not only achieves the
highest MOS in image quality measurement (e.g., 4.618
and 4.382) but also outperforms all the other algorithms in
lip synchronization (e.g., 4.265), exhibiting Speech2Lip has
the most satisfactory overall video quality.

5.3. Ablation Study

Contributions of loss functions. We first conduct an abla-
tion study on loss functions. The evaluation metrics contain
the PSNR around the lip area and the sync score. The PSNR
of the whole image is also retained since practical applica-
tions attach more attention to the overall quality of the talk-
ing portrait scene. Results are shown in Table 4, demon-
strating the loss functions all contribute to the increased per-
formance on both visual quality and synchronization.
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Methods ATVG MakeitTalk Wav2Lip PC-AVS LSP AD-NeRF DFRF Speech2Lip
Lip Synchronization 1.500 1.853 4.191 3.059 3.118 3.088 2.853 4.265
Image Fidelity 1.147 2.794 3.265 2.529 3.882 3.235 3.265 4.618
Image Realness 1.118 2.088 3.765 2.265 3.000 2.324 2.971 4.382

Table 3. Detailed user study results compared with SOTA methods. The best results are in bold.

Methods PSNRlip ↑ PSNRimg ↑ Sync↑
Lw 34.104 36.947 6.313
Lw + Ld 34.429 36.994 6.359
Lw + Ld + Lm 34.694 37.193 7.194
Lw + Ld + Lm + Ls 34.815 37.245 7.771

Table 4. Ablation study results about loss function on Testset I.

Methods PSNRlip ↑ PSNRimg ↑ Sync↑
w/o continuous sampling 34.702 37.214 7.553
w/o implicit model 34.250 37.058 6.790
w/o Blend-Net 33.736 36.881 6.065
w/o time 34.512 37.121 7.146
Speech2Lip 34.815 37.245 7.771

Table 5. Ablation study results about network design on Testset I.

Contributions of individual components. We also explore
the benefits of our key components by removing each com-
ponent to see how the performance changes in Table 5.
“w/o implicit model” represents we employ an explicit lip
generation model instead, and “w/o time” indicates times-
tamp is deleted from inputs. From the results, it can be
concluded that each design plays an important role. Among
them, the Blend-Net significantly improves video quality,
and the design of implicit modeling schema is also critical.

5.4. Controllable Synthesis Results

Thanks to the joint optimization and completion of a full-
head depth map Dc in GAMEM, our model support synthe-
sizing full-head images driven by novel head poses. Specif-
ically, Dc can be projected into any observed view to obtain
Do. Dc and To in Eq. (3) are further replaced by Do and
the new target head pose, respectively. Then, we adopt Eq.
(5) to calculate the correspondence. The correspondence is
further exploited to warp the synthesized image in the ob-
served space into a new target space. It is noted that depth
maps are used for coarse mapping between spaces while
facial expression is more taken charge of by fine-grained
contents from observed views. The pose-controllable novel
view synthesis results are shown in Figure 7. When testing
with moderate pose changes, our model achieves compara-
ble results as AD-NeRF.

We note that existing methods with 3D modeling such
as AD-NeRF also cannot generate good synthesis results if
the evaluated poses deviate too much from the training data.
The reason is that the training data widely used in speaker-
specific models [19, 16, 28, 18] only show the front view

Incomplete Inaccurate

Figure 6. 3D Mesh of AD-NeRF on Testset I.

(a) AD-NeRF

(b) Speech2Lip
Figure 7. Novel view synthesis capability of our model. We rotate
the head region with a random angle.

with limited pose variations, being naturally hard for 3D
modeling. The 3D mesh is incomplete, and the surface is
rough (Figure 6). In addition, the computational costs of
3D methods are extremely high (Table 2).

6. Conclusion

In this paper, we propose a novel decomposition-
synthesis-composition framework called Speech2Lip for
high-fidelity talking head video synthesis, which dis-
entangles speech-sensitive and speech-insensitive mo-
tions/appearances. By presenting a synced speech-driven
implicit model, a GAMEM module, a Blend-Net, and a con-
trastive sync loss, we can achieve satisfactory results with
only a few minutes of training video. Our framework also
supports pose-controllable synthesis. In the future, we plan
to study generating realistic expressions driven by speech
and explore combining our insights with advanced general
image generation methods such as diffusion-based models
for better generalizability. We hope that our work inspires
more future research in this field and encourages the de-
velopment of positive applications. However, we also urge
caution to prevent any potential abuses. More discussions
about limitations are described in the supplementary file.
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