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Abstract

Contemporary LiDAR-based 3D object detection meth-
ods mostly focus on single-domain learning or cross-
domain adaptive learning. However, for autonomous driv-
ing systems, optimizing a specific LiDAR-based 3D object
detector for each domain is costly and lacks of scalabil-
ity in real-world deployment. It is desirable to train a uni-
versal LiDAR-based 3D object detector from multiple do-
mains. In this work, we propose the first attempt to explore
multi-domain learning and generalization for LiDAR-based
3D object detection. We show that jointly optimizing a 3D
object detector from multiple domains achieves better gen-
eralization capability compared to the conventional single-
domain learning model. To explore informative knowledge
across domains towards a universal 3D object detector, we
propose a multi-domain knowledge transfer framework with
universal feature transformation. This approach leverages
spatial-wise and channel-wise knowledge across domains
to learn universal feature representations, so it facilitates
to optimize a universal 3D object detector for deployment
at different domains. Extensive experiments on four bench-
mark datasets (Waymo, KITTI, NuScenes and ONCE) show
the superiority of our approach over the state-of-the-art ap-
proaches for multi-domain learning and generalization in
LiDAR-based 3D object detection.

1. Introduction
LiDAR-based 3D object detection aims to localize and

recognize objects of interests from LiDAR point clouds. It
has been used in a wide range of applications, such as au-
tonomous driving and robotics. Although incredible suc-
cess has been achieved in the past few years, most LiDAR-
based 3D object detection methods focus on optimizing a
specific model for a single domain [38, 42, 21, 34, 7, 23,
11], which usually shows poor generalization to other do-
mains. To address this problem, some researchers resort to
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Figure 1. Comparisons of LiDAR-based 3D object detection by
single-domain learning and multi-domain learning. (a) Conven-
tional methods mainly train a specific model for each domain.
(b) We propose to jointly optimize a universal model for all do-
mains. (c) Comparison between oracle models and a joint-training
model. Results are evaluated using CenterPoint [38] with KITTI
metric [2] of APBEV and IoU0.7 of the car category.

cross-domain adaptation [31, 16, 37, 36] to transfer knowl-
edge from a source domain to a target domain, which im-
proves generalization of a target model. However, domain
adaptive 3D object detection methods usually ignore the im-
portance of preserving generalization to the source domain,
resulting in poor performance on the source domain.

For automated driving systems, optimizing a specific
LiDAR-based 3D object detection model for each domain
(e.g., locations, LiDAR sensors, etc.) is costly and lacks
of scalability for real-world deployment. More importantly,
optimizing each domain independently cannot make full use
of knowledge of each domain to facilitate learning a uni-
versal detector. We summarize some domain gap infor-
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Dataset Location Night/rain LiDAR beam Points per scene Car average size (L,W,H) VFOV
Waymo USA Yes 64-beam 160k (4.80, 2.11, 1.79) [-17.6◦, 2.4◦]
KITTI Germany No 64-beam 118k (3.89, 1.62, 1.53) [-23.6◦, 3.2◦]

NuScenes USA/Singapore Yes 32-beam 25k (4.64, 1.96, 1.73) [-30.0◦, 10.0◦]
ONCE China Yes 40-beam 70k (4.36, 1.81, 1.56) [-25.0◦, 15.0◦]

Table 1. Domain gap information of four autonomous driving datasets, namely Waymo [24], KITTI [2], NuScenes [1] and ONCE [17]. We
resolve domain gaps by transferring knowledge across multiple domains to learn universal feature representations in a universal detector.

mation of four widely used autonomous driving datasets
(Waymo [24], KITTI [2], NuScenes [1] and ONCE [17])
in Table 1 and show the performance of each oracle model
(single-domain learning) on all domains in Fig. 1(c). Due to
the significant domain gaps (e.g., LiDAR beams, locations,
weather, object sizes, etc.), these single-domain learning
models usually perform poorly on other domains. Thus, for
real-world application, it is desirable to optimize a universal
model with good generalization on all domains. However,
there is no existing work proposed to address this problem.

In this work, we propose multi-domain learning and gen-
eralization for learning a universal LiDAR-based 3D ob-
ject detector. First, we construct a joint-training baseline
model using data from multiple domains. We validate the
advantage of learning a variety of point clouds from dif-
ferent domains and show the superior performance of the
joint-training model over the conventional single-domain
learning model (see Fig. 1(c)). Then, to further explore in-
formative knowledge across domains, we propose a multi-
domain knowledge transfer (MDKT) framework with uni-
versal feature transformation for LiDAR-based 3D object
detection. An overview of the proposed approach is de-
picted in Fig. 2. Specifically, we aim to learn universal
feature representations in a universal detector by transfer-
ring informative knowledge across multiple domains. To
this end, we employ multiple specific detectors trained on
each domain and transfer knowledge from these specific de-
tectors to a universal detector so that the universal detector
can aggregate informative spatial-wise knowledge across
domains. Meanwhile, to aggregate informative channel-
wise knowledge across domains, we modulate channel in-
formation of feature representations in the universal detec-
tor. Together with spatial-wise and channel-wise knowl-
edge transfer across domains, the universal feature transfor-
mation module facilitates to optimize a universal detector.
Besides, we observe that learning to normalize intermediate
BEV (Bird’s Eye View) features can also facilitate model
optimization when training data are from multiple domains.
To some extent, this strategy is compatible with our MDKT
approach by removing some noises in statistics across mul-
tiple domains. In summary, our contributions are:

• We propose multi-domain learning and generalization
for LiDAR-based 3D object detection. To the best of
our knowledge, this is the first work exploring multi-
domain data for optimizing a universal LiDAR-based

3D object detector.
• We propose a multi-domain knowledge transfer frame-

work with universal feature transformation for LiDAR-
based 3D object detection. Our approach learns uni-
versal feature representations for LiDAR-based 3D ob-
ject detection by aggregating informative spatial-wise
and channel-wise knowledge across domains.

• We provide thorough experimental analyses on four
autonomous driving benchmark datasets and demon-
strate the superiority of our approach over the state-of-
the-art approaches for multi-domain learning and gen-
eralization in LiDAR-based 3D object detection.

2. Related Work
LiDAR-Based 3D Object Detection. There have been
many promising LiDAR-based 3D object detection methods
[38, 42, 22, 35, 36] proposed in recent years. Conventional
methods [38, 34, 23, 7, 11] mostly follow a single-domain
learning paradigm to optimize a 3D object detector for each
specific domain. Although Li et al. [11] use the term ‘uni-
versal’ to describe their 3D detector, their method still fol-
lows single-domain learning not universal to different do-
mains. These single-domain learning methods usually show
poor generalization to other domains. To resolve this prob-
lem, some researchers resort to domain adaptive 3D object
detection by pre-training a detector on a labeled source do-
main and adapting the detector to an unlabeled target do-
main [36, 16, 31, 30]. Although these adaptation methods
have shown good performance on a target domain compared
with the source-only methods, they are elaborately designed
for adaptation to the target domain so cannot guarantee the
performance on the source domain. Recently, Lehner et
al. [8] introduce single-domain generalization for 3D object
detection and propose an adversarial augmentation method
to deform objects by vector fields in point clouds. Different
from these methods, in this work, we propose to optimize
a universal LiDAR-based 3D object detector using train-
ing data from multiple domains. We present multi-domain
knowledge transfer with universal feature transformation.
Multi-Domain Learning and Generalization. Optimiz-
ing a model using training data from multiple domains is a
popular research field in computer vision. In multi-domain
generalization [41, 9, 32, 40], there are different ways to
improve the model generalization capability, e.g., mix style
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Figure 2. An overview of the proposed multi-domain knowledge transfer approach for LiDAR-based 3D object detection.

normalization [41], pseudo novel data synthesis [40], fea-
ture augmentation [9], etc. These methods mainly focus on
image classification, while our work aims to learn a univer-
sal LiDAR-based 3D object detector. On the other hand,
some attempts [18, 19, 10] have been proposed to optimize
a universal model for multiple training domains. Rebuffi et
al. [18, 19] propose series and parallel residual adapters to
optimize a model from multiple domains for image classi-
fication, while Li et al. [10] align features from multiple
pre-trained models to a single model with centered kernel
alignment and adapt the model to a target task with a lin-
ear transformation layer for few-shot classification. Our
work differs from [18, 19, 10] in that we explore informative
spatial-wise and channel-wise knowledge across domains to
learn universal feature representations in a universal 3D ob-
ject detector, instead of learning domain-specific adapters
or aligning image-level features for few-shot classification.

Domain Generalized Object Detection. There have been
some domain generalized 2D object detection methods [12,
29, 39] proposed in recent years. Lin et al. [12] use a
domain-invariant network with representation reconstruc-
tion to learn disentangled representations, while Wang et
al. [29] present a domain attention adapter bank for image-
based generalized 2D object detection. Different from
these works, we present a multi-domain knowledge trans-
fer framework to deal with point clouds from multiple do-
mains for learning a universal 3D detector, instead of using
representation reconstruction or an adapter bank for image-
based 2D object detection. Besides, a concurrent work [28]
presents camera-based single-DG for multi-view 3D object
detection, while our work focuses on LiDAR-based 3D ob-
ject detection with point clouds from multiple domains.

3. Methodology
Problem Statement. In this work, we focus on optimizing
a universal model with training data from multiple domains

for LiDAR-based 3D object detection. Suppose we have ac-
cess to training point clouds data from n domains/datasets
{Xi, Yi}ni=1, where Xi and Yi are the set of training point
clouds and ground truth labels (category labels and 3D
bounding box labels) of the ith domain, respectively. We
aim to exploit all these training data for optimizing a 3D
object detector capable of extracting universal feature rep-
resentations of point clouds from different domains. This
3D object detector should generalize well to all seen train-
ing domains in the multi-domain learning setting and to any
unseen new domain in the multi-domain generalization set-
ting. In this work, we employ CenterPoint [38], a state-of-
the-art 3D object detector, as the backbone due to its ef-
ficiency and outstanding performance, but our approach is
generic and can be applied with other backbones.

3.1. Approach Overview

The framework of the proposed multi-domain knowl-
edge transfer approach is depicted in Fig. 2. In our ap-
proach, there is a universal 3D object detector (consists of
a feature extractor, a detection head and a universal feature
transformation module) and n frozen specific 3D object de-
tectors. Here, a feature extractor is usually composed of a
3D backbone to extract point clouds features and a 2D back-
bone to extract BEV features. The n frozen detectors are
pre-trained on each specific domain using the conventional
classification loss Lcls (e.g., a focal loss [13]) and regres-
sion loss Lreg (e.g., L1 regression loss [38]). With training
data from multiple domains, we use a universal feature ex-
tractor to extract feature representations fo and employ the
frozen specific feature extractors to extract specific feature
representations f̃i. Then, we use a universal feature trans-
formation module to transfer knowledge across domains
and employ a universal knowledge transfer loss Lukt and
a mask consistency loss Lmc to facilitate the optimization
of the universal 3D object detector. Together with Lcls and
Lreg , the training objective for optimizing the universal 3D
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object detector is formulated as:

L = Lcls + α1Lreg + α2Lukt + α3Lmc, (1)

where αi is a weighting coefficient to balance losses.
In inference, the frozen specific models and the adapta-

tion head are removed, so the universal detector is used to
directly predict the categories and the 3D bounding boxes of
objects of interests in point clouds from different domains.

3.2. Multi-Domain Knowledge Transfer

A Joint-Training Baseline Model. There is no existing
work exploring multi-domain learning and generalization
for LiDAR-based 3D object detection, so first we construct
a baseline model and show the superiority of multi-domain
learning over single-domain learning. As summarized in
Table 1, different LiDAR point clouds datasets recorded
with different LiDAR sensors contain different inherent
characteristics, e.g., ranges of point clouds, coordinate in-
formation, etc. Therefore, to construct a joint-training base-
line model, it is required to align these inherent character-
istics into a uniform range for multi-domain learning and
generalization. To this end, we select one domain as the
base and align inherent characteristics of other datasets to
the base domain. In this work, we consider Waymo [24] is
a relatively complete dataset, so we align inherent charac-
teristics of all domains to Waymo, including the same range
of point cloud, LiDAR coordinate system and voxel size.
With this uniform range of input point clouds, we can ran-
domly sample training data from different domains in each
mini-batch and train a joint-training baseline model.

Interestingly, as shown in Fig. 1(c), this joint-training
model outperforms most oracle models on each specific do-
main and achieves significantly better performance on aver-
age. This can be attributed to the collaboration of multiple
domains which increases the diversity of training data for
model optimization. This also shows the benefit of optimiz-
ing a LiDAR-based 3D object detector from multiple do-
mains for deployment compared to single-domain learning.

Universal Feature Transformation. Although the vanilla
joint-training model shows promising performance, it learns
multi-domain knowledge only by assembling data across
domains. This may be suboptimal for learning a universal
LiDAR-based 3D object detector, because it fails to modu-
late specific knowledge contained in each domain and does
not explore richer knowledge to facilitate model optimiza-
tion. To resolve this problem, we propose to transfer in-
formative spatial-wise and channel-wise knowledge across
domains so as to learn universal feature representations for
LiDAR-based 3D object detection.

Specifically, to learn informative spatial-wise knowledge
across domains, inspired by few-shot classification from
multiple domains [10], we pre-train n specific detectors for

each specific domain and freeze them to extract specific fea-
ture representations. Since each specific detector is only
trained with data from a specific domain, they have encoded
informative knowledge within each domain. We therefore
use the specific features as informative knowledge to guide
the optimization of the universal features in the universal
detector. Instead of directly aligning specific and universal
features, first we generate a mask M of foregrounds and
perform Hadamard product (⊙) between fo and M to high-
light objects of interests. Here, a heatmap obtained from the
detection head is applied with a sigmoid function to gener-
ateM . Alternatively, when no mask is generated, M can be
an identity function which includes more regions in fo for
knowledge transfer. Next, with fo⊙M , we employ an adap-
tation head (consists of convolutional layers) to transform
the extracted feature map into n transformed feature maps
f̃oi. Meanwhile, for each specific detector, object masks are
also generated and applied to get f̃i. We then compute Lukt

to transfer knowledge from the specific detectors to the uni-
versal detector as:

Lukt =

n∑
i=1

∥∥∥ϕ(f̃oi)− ϕ(f̃i)
∥∥∥2 , (2)

where ϕ(·) performs L2 normalization of features. When
we use heatmaps to generate masks, a mask consistency loss
Lmc can be computed to constrain masks generated from
the universal detector and the specific detectors, as:

Lmc =

n∑
i=1

(
Mgt ∥ho − hi∥2

sum(Mgt)
), (3)

where hi are heatmaps obtained from detection heads, Mgt

is a ground truth foreground mask (targets assigned as [38]),
sum(Mgt) means the sum of the number of foregrounds.

Although spatial-wise knowledge aggregation transfers
spatial information across domains for learning universal
features, it does not modulate channel information which
also encodes useful knowledge across domains to improve
generalization. Therefore, to learn informative channel-
wise knowledge across domains, in the universal model, we
aggregate channel information of fo to generate a channel
modulated feature map f co as:

f co = fo ⊙ σ(F(ψ(fo))), (4)

where ψ(·) is global pooling, F is a channel-wise adaptive
transformation module, and σ(·) is a sigmoid function. And
we replace fo with f co to compute f co⊙M . Then, f co⊙M
is used as the input to the adaptation head to generate f̃oi
for computing Lukt in Eq. (2). Together with spatial-wise
and channel-wise knowledge transfer, our MDKT approach
learns universal feature representations in a universal 3D
object detector for deployment in different domains.
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Figure 3. Statistics (concatenation of mean and variance) of BEV
maps across domains obtained in the baseline (visualized by t-
SNE [27]) and comparison between oracles and the baseline with
learning to normalization (see § 4 for details of experiments).

Learning to Normalize BEV Features. In addition to
spatial-wise and channel-wise knowledge transfer across
domains, we observe that learning to normalize interme-
diate BEV features also benefits model optimization when
training data are from multiple domains. And to some ex-
tent, this strategy is compatible with our MDKT approach.

Specifically, in traditional LiDAR-based 3D object de-
tection, BatchNorm [6] is used in the 2D backbone to com-
pute mean and variance of samples in a mini-batch to reg-
ularize model optimization. However, when training data
are from multiple domains, each mini-batch usually con-
tains samples from different domains, which may affect the
regularization process. As shown in Fig. 3(a), statistics of
BEV maps (i.e., the input to the 2D backbone) obtained in
the baseline are clearly separated across domains. This in-
dicates that there are some gaps in statistics of intermedi-
ate BEV features across domains. Thus, more advanced
normalization techniques [41, 20, 32] may be used to deal
with this problem. In this work, we replace BatchNorm with
SwitchNorm [15] in the 2D backbone so as to learn to nor-
malize (Learn2Norm) intermediate BEV features across do-
mains. Technically, SwitchNorm computes mean and vari-
ance of intermediate features in three-levels, i.e., instance-
wise, layer-wise and batch-wise, and employs weights to
combine these statistics before applying affine parameters.
The combination of multiple statistics helps to regularize
model optimization. We refer readers to [15] for more de-
tails of SwitchNorm.

It is worth noting that SwitchNorm is not a generic
technique to improve a 3D object detector. As shown in
Fig. 3(b), oracle models with and without Learn2Norm
achieve similar results. In this work, we observe that
SwitchNorm can be applied on the 2D backbone to nor-
malize BEV features across domains, not on the whole
model or for single-domain learning. As shown in Fig. 3(b),
when training data are from multiple domains, joint-
training models with Learn2Norm outperforms those with-
out Learn2Norm. See § 4 for more experimental analyses.

4. Experiments

Datasets. We conduct extensive experiments on four au-
tonomous driving datasets, namely KITTI [2], Waymo [24],
NuScenes [1] and ONCE [17]. KITTI [2] is an autonomous
driving dataset with 3712 training point clouds samples
and 3769 validation point clouds samples. Waymo [24] is
a large-scale autonomous driving datasets consists of 798
training segments of 158081 point clouds frames and 202
validation segments of 39987 point clouds frames. We set
the sample interval to 20 for training point clouds sam-
ples. NuScenes [1] is another large-scale autonomous driv-
ing datasets containing 700 training sequences of 28130
point clouds frames and 150 validation sequences of 6019
point clouds frames. Similar to Waymo, we set a uniform
sampling interval to 5 for training point clouds samples.
ONCE [17] is a recently introduced autonomous driving
datasets containing 4961 training point clouds samples and
3321 validation point clouds samples. These four datasets
contain significant domain gaps as summarized in Table 1,
so we use them to evaluate multi-domain learning and gen-
eralization for LiDAR-based 3D object detection. Besides,
we set some inherent characteristics of different datasets
into a uniform range, including the same range of point
cloud of [−75.2m,−75.2m,−2m, 75.2m, 75.2m, 4m], the
same LiDAR coordinate system (offset of z-axis is 1.8m
and rotation is π

2 for NuScenes, and offset of z-axis is 1.75m
and rotation is π

2 for ONCE, offset of z-axis is 1.6m for
KITTI), and the same voxel size of [0.1, 0.1, 0.15]. These
are done when loading data from multiple domains.

Evaluation Metrics. To comprehensively compare perfor-
mance of different approaches across four domains, we use
the KITTI evaluation metric. We mainly report results of the
average precision (AP) over 40 recall positions of the com-
monly used car category (the vehicle category on Waymo)
for both BEV IoUs and 3D IoUs with IoU thresholds of 0.7.
On KITTI, results of the moderate mode are reported, while
on other datasets, overall performance are reported. Metrics
are computed in the aligned Waymo coordinates because
training and testing coordinates need to be consistent.

Implementation Details. We implement our approach with
Python and PyTorch using OpenPCDet [25]. We employ
CenterPoint [38] as the backbone because of its superior
performance. Data augmentation includes random world
flipping, random world rotation, random world scaling, and
GT sampling [34]. We set the batch size to 8, training
epochs to 40 and a fixed random seed to 2022. We report
the model performance of the last epoch for comparisons
in all experiments. We use Adam as the optimizer with an
initial learning rate of 3e-3, weight decay of 0.01, and set
a one cycle learning rate scheduler. In channel-wise trans-
formation, F consists of two 1×1 convolutional layers to
modulate channel dimension and a ReLU function between

8673



Method ONCE KITTI Waymo NuScenes Avg
APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D

Oracle-ONCE 89.16 78.40 72.63 52.03 44.18 20.67 31.77 10.69 59.44 40.45
Oracle-KITTI 45.45 25.44 86.07 76.09 17.25 3.88 14.36 4.76 40.78 27.54
Oracle-Waymo 72.95 45.95 50.52 14.31 69.07 53.97 32.60 14.35 56.29 32.15

Oracle-NuScenes 74.62 35.88 57.62 23.02 51.10 25.20 53.17 32.81 59.13 29.23
MixStyle [41] 76.71 48.10 67.68 37.92 49.57 25.09 33.15 14.84 56.78 31.49
FeatAug [9] 75.13 36.04 72.41 43.56 46.17 20.05 34.47 14.11 57.05 28.44
URL [10] 76.90 48.45 69.94 38.89 50.28 25.32 34.50 14.96 57.83 31.91

AdvAlign [3, 26] 75.58 45.35 66.96 35.16 52.38 26.27 34.37 15.15 57.32 30.48
USE [29] 81.05 51.03 77.53 53.59 53.20 28.10 35.20 14.58 61.75 36.83

Baseline (Joint-training) 77.04 47.73 69.79 36.63 50.18 25.82 34.25 14.89 57.82 31.27
MDKT (ours) 81.40 53.16 80.28 58.63 56.09 32.75 35.02 14.49 63.20 39.76

MDKT (w/ Learn2Norm, ours) 81.18 53.32 80.65 61.77 56.77 33.10 34.81 14.55 63.35 40.69
OT* [30] 76.91 51.17 67.42 31.46 53.85 29.93 31.38 10.95 57.39 30.88
SN* [30] 77.83 52.24 78.60 62.51 54.39 36.68 34.90 17.30 61.43 42.18

MDKT (w/ Learn2Norm, ours) + SN* 81.12 56.79 83.68 70.71 56.24 34.88 35.95 16.86 64.25 44.81
Table 2. Comparison with the state-of-the-art methods in multi-domain generalization to unseen new domains on ONCE, KITTI, Waymo
and NuScenes. The leave-one-domain-out protocol is adopted. Models trained on seen domains are directly tested on an unseen testing
domain without fine-tuning (Oracle is trained on one domain and tested on all domains). ‘Avg’ is the average performance of APBEV/AP3D

across all domains. *OT/SN is weakly supervised because object size statistics from the unseen domain are used for adjusting/fine-tuning.

them, inspired by [4]. In spatial-wise transformation, the
adaptation head consists of n parallel convolutional layers
with kernel size 1×1. When using Learn2Norm, both the
universal detector and the specific detectors are trained with
SwitchNorm. Besides, our approach also supports imple-
mentation with MindSpore [5], a new deep learning com-
puting framework, in which more comprehensive analyses
are left for future work.

4.1. Multi-Domain Generalization Evaluation

To evaluate the generalization capability of a 3D object
detector to any unseen new domain, we adopt the leave-one-
domain-out protocol [41, 9, 32] by selecting one dataset
as an unseen new testing domain and using the remaining
datasets as seen training domains and repeating this process
for all datasets. In inference, a model trained on seen do-
mains are directly tested on an unseen testing domain with-
out using data from the unseen domain for fine-tuning. In
addition to the joint-training baseline, we re-implement sev-
eral state-of-the-art methods based on the baseline, includ-
ing: MixStyle [41] which applies feature statistic mixing to
the BEV map of the baseline; FeatAug [9] which applies
random noises to the BEV map of the baseline; URL [10]
which co-aligns feature representations from multiple pre-
trained models to a single model with centered kernel align-
ment based on the baseline; AdvAlign [3, 26] which uses ad-
versarial learning of features to perform global and center-
aware alignments across domains in the baseline; USE [29]
which inserts residual domain attention adapters after ev-
ery block in the 2D backbone of the baseline; OT [30] and
SN [30] which employ object size statistics of unseen test-
ing domains as prior information for adjusting/fine-tuning.

As shown in Table 2, our MDKT and MDKT w/
Learn2Norm significantly improve the joint-training base-

line by a large margin (more than 5% APBEV and 8% AP3D

on average). This can be attributed to the multi-domain
knowledge transfer framework with universal feature trans-
formation and the learning to normalization strategy, which
explores informative knowledge across domains to improve
model generalization capability. Moreover, compared with
the state-of-the-arts, our approach still achieves superior
performance on average. Although OT [30] and SN [30]
use statistic information of the unseen testing domain as
prior knowledge, our MDKT and MDKT w/ Learn2Norm
still perform better than OT and are on par with SN. When
combined with SN, our approach w/ SN achieves the best
results of 64.25% APBEV and 44.81% AP3D. This indicates
that our approach has encoded knowledge to recognize ob-
jects in BEV on unseen new domains, while SN can further
improve our approach for 3D box size estimation.

4.2. Multi-Domain Learning Evaluation

In multi-domain learning for LiDAR-based 3D object
detection, we optimize a model with training data from mul-
tiple domains and evaluate the model on all these domains.
In this experiment, MixStyle [41], FeatAug [9], URL [10],
AdvAlign [3, 26] and USE [29] are still compared, but
SN [30] and OT [30] are not compared because object size
statistics of all testing domains have been trained. Besides,
we also compare with SRA [18] and PRA [19] which insert
series and parallel residual adapters in the 2D backbone of
the baseline, respectively.

From Table 3, we can see that: (1) The joint-training
baseline model consistently outperforms the oracle mod-
els. This shows the effectiveness of learning from mul-
tiple domains for LiDAR-based 3D object detection. (2)
Our proposed approach significantly improves the perfor-
mance of the baseline in both APBEV and AP3D. Also,
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Method ONCE KITTI Waymo NuScenes Avg
APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D APBEV AP3D

Reference oracle (Single best) 89.16 78.40 86.07 76.09 69.07 53.97 53.17 32.81 74.37 60.32
MixStyle [41] 91.14 78.73 87.30 79.12 68.83 53.97 54.68 34.96 75.49 61.70
FeatAug [9] 91.09 78.19 86.59 78.16 68.80 51.93 53.69 33.11 75.04 60.35
URL [10] 91.68 79.25 88.61 79.34 69.15 54.18 55.96 35.60 76.35 62.09
SRA [18] 91.91 80.95 86.59 78.30 69.23 54.24 56.26 36.32 76.00 62.45
PRA [19] 91.86 80.83 88.43 78.52 69.29 54.37 56.09 36.31 76.42 62.51

AdvAlign [3, 26] 91.62 79.13 86.92 79.37 69.21 54.36 55.79 35.17 75.89 62.01
USE [29] 91.81 81.27 88.57 79.03 69.25 54.38 56.03 36.40 76.42 62.77

Baseline (Joint-training) 91.46 78.97 86.74 79.11 69.11 54.28 55.57 35.51 75.72 61.97
MDKT (ours) 92.02 81.48 88.64 79.45 70.67 54.71 57.16 37.31 77.12 63.24

MDKT (w/ Learn2Norm, ours) 92.26 82.07 88.87 79.07 70.96 54.56 57.09 37.54 77.30 63.31
Table 3. Comparison with the state-of-the-art methods in multi-domain learning on ONCE, KITTI, Waymo and NuScenes. ‘Reference
oracle’ is trained and tested on each specific domain (reported best results), while other methods are trained and tested on all domains.

Method MDL MDG
APBEV AP3D APBEV AP3D

Base 75.72 61.97 57.82 31.27
Base + UFT (MDKT) 77.12 63.24 63.20 39.76
Base + Learn2Norm 76.72 62.42 62.64 39.16
Base + UFT + Learn2Norm 77.30 63.31 63.35 40.69

Table 4. Component effectiveness analysis (average performance)
in multi-domain learning (MDL) and generalization (MDG).

our approach consistently surpasses the oracle models on
all datasets. These can be attributed to the collaboration of
multiple domains, universal feature transformation as well
as learning to normalization, which results in a universal
3D object detector. (3) Compared with the state-of-the-art
methods, our approach still achieves better performance.

4.3. Further Analysis and Discussion

Component Effectiveness Analysis. In Table 4, we evalu-
ate the effectiveness of main components of our approach. It
can be seen that multi-domain knowledge transfer with uni-
versal feature transformation improves the baseline by ap-
proximately 1.4% APBEV and 1.3% AP3D on multi-domain
learning and by around 5.4% APBEV and 8.5% AP3D on
multi-domain generalization. Besides, learning to normal-
ize BEV features can also improve the baseline. Further-
more, MDKT w/ Learn2Norm achieves the best perfor-
mance of 77.30% APBEV and 63.31% AP3D on MDL and
63.35% APBEV and 40.69% AP3D on MDG.
Universal Feature Transformation Analysis. In Fig. 4(a),
we evaluate variants of universal feature transformation
in MDKT. It can be observed that only learning channel-
wise information (i.e., UFT w/o {spatial}) or only learning
spatial-wise information (i.e., UFT w/o {channel}) leads to
model performance degradation. Besides, in spatial-wise
information learning, without using the object mask and its
consistency (i.e., UFT w/o {channel, mask}) reduces model
performance while further removing the adaptation head
from the model (UFT w/o {channel, mask, head}) results
in the worst performance.

(a) UFT analysis. (b) Learn2Norm analysis.
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Figure 4. Evaluation of (a) universal feature transformation vari-
ants and (b) learning to normalize BEV features variants in multi-
domain learning. The average performance is reported.

Learning to Normalize BEV Features Analysis. In
Fig. 4(b), we further evaluate Learn2Norm applied to the
whole backbone model. We can observe that applying
Learn2Norm to the whole model results in performance
degradation compared with only applying Learn2Norm to
the 2D backbone. From Fig. 3(b) and Fig. 4(b), we know
that Learn2Norm with SwitchNorm is not a generic strat-
egy to improve 3D object detectors in single-domain learn-
ing, but it can be applied to normalize the intermediate BEV
features across domains to facilitate model learning. Note
that, Learn2Norm with SwitchNorm does not always bring
improvement to MDKT (e.g., as shown in Table 3), so there
may be more suitable normalization strategies to use, which
we leave for future work.

Qualitative Comparison. We present qualitative compar-
ison of oracle, baseline and ours in Fig. 5. In the 1st row,
oracle misses some objects while baseline and ours success-
fully recognize these objects; In the 2nd row, oracle and
baseline generate some false positives while ours is not dis-
turbed by these background noises; In the 3rd row, all ap-
proaches are confused by some distant objects but ours still
predicts more true positives; In the 4th row, oracle and base-
line predict incorrect 3D bounding boxes for some objects
while ours provides more accurate predictions. The supe-
rior performance of our approach can be attributed to the
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Figure 5. Qualitative comparison of oracle (1st column), baseline
(2nd column) and ours (3rd column) in multi-domain learning. Re-
sults on the 1st/2nd/3rd/4th rows are ONCE, KITTI, Waymo and
NuScenes. We mark predictions in green boxes, ground truths in
blue boxes and some noticeable regions in red ellipses. Note that
green and blue boxes are overlapped for true positives.

collaboration of multiple domains for knowledge transfer.

Effect of Training Objective. In Fig. 6(a), we study dif-
ferent training losses for multi-domain knowledge trans-
fer with universal feature transformation. It can be seen
that the baseline (Lcls+Lreg) without Lukt and Lmc yields
the worst performance, while our approach with all losses
(Lcls+Lreg+Lukt+Lmc) performs the best.

Effect of Weighting Coefficients. In Fig. 6(b), we test
MDKT with different values of weighting coefficients (α1,
α2 and α3). It can be seen that large α1 and α2 and small
α1 cause significant model performance degradation, while
the model performance is less sensitive to α3.

Evaluation with Various Backbones. In Table 5, we eval-
uate our approach with various backbones, including Cen-
terPoint [38], PointPillars [7] and PillarNet [22] (w/ center
head [38]). With different backbones, our approach consis-
tently outperforms the baseline, which shows the compati-
bility of our approach with different backbones.

Single-DG vs. Multi-DG. In Table 6, we compare
with some single-DG methods, including 3D-VField[8],
IGL2[33], ChaA[14] and AdvG[33]. Following [8], Point-
Pillars [7] is used as the backbone and single-DG methods
are trained on KITTI and tested on KITTI/Waymo, while

(a) Effect of losses. (b) Effect of weighting coefficients.
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Figure 6. Evaluating (a) training losses and (b) weighting coeffi-
cients in multi-domain learning (average performance).

Method CenterPoint PointPillars PillarNet
APBEV AP3D APBEV AP3D APBEV AP3D

Baseline 75.72 61.97 74.16 59.21 75.69 60.78
Ours 77.30 63.31 75.98 61.35 76.86 62.23

Table 5. Evaluation with various backbones in multi-domain learn-
ing. The average performance is reported.

Datasets IGL2[33] ChaA[14] AdvG[33] 3D-VField[8] Ours
KITTI 76.92 77.05 76.39 77.13 78.11

→Waymo 39.86 40.54 40.55 44.61 56.12
Table 6. Single-DG methods vs. our multi-DG approach from
KITTI (AP of 3DIoU0.7, moderate) to Waymo (AP of 3DIoU0.5).

our approach is trained on KITTI+ONCE+NuScenes and
tested on KITTI/Waymo. Results of single-DG are cited
from [8]. From Table 6, we can observe that on both
seen domain (KITTI) and unseen domain (Waymo), our ap-
proach surpasses single-DG methods, which shows the ad-
vantage of generalizing from multiple domains.
Discussion. Despite the promising results, there are some
limitations in this work. First, following the common
practice [8, 36], we evaluate on the car/vehicle category,
but multi-domain learning and generalization for multiple
classes are also important, which we leave for future work.
Second, we choose Waymo as the base to set the uniform
range since it is a relatively complete dataset, but more de-
signs of the base is worthy of further study. For example, we
also explored using NuScenes or other ranges as the base,
and overall a large range yields better results.

5. Conclusion
In this work, we propose to explore multi-domain learn-

ing and generalization for LiDAR-based 3D object detec-
tion. To learn a universal LiDAR-based 3D object detec-
tor, we present multi-domain knowledge transfer with uni-
versal feature transformation to aggregate spatial-wise and
channel-wise informative knowledge across domains. Ex-
tensive experiments on four autonomous driving datasets
show the superiority of our approach.
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