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Abstract

Most nighttime semantic segmentation studies are based
on domain adaptation approaches and image input. How-
ever, limited by the low dynamic range of conventional cam-
eras, images fail to capture structural details and boundary
information in low-light conditions. Event cameras, as a
new form of vision sensors, are complementary to conven-
tional cameras with their high dynamic range. To this end,
we propose a novel unsupervised Cross-Modality Domain
Adaptation (CMDA) framework to leverage multi-modality
(Images and Events) information for nighttime semantic seg-
mentation, with only labels on daytime images. In CMDA, we
design the Image Motion-Extractor to extract motion infor-
mation and the Image Content-Extractor to extract content
information from images, in order to bridge the gap between
different modalities (Images ⇌ Events) and domains (Day
⇌ Night). Besides, we introduce the first image-event night-
time semantic segmentation dataset. Extensive experiments
on both the public image dataset and the proposed image-
event dataset demonstrate the effectiveness of our proposed
approach. We open-source our code, models, and dataset at
https://github.com/XiaRho/CMDA.

1. Introduction
Semantic segmentation is a crucial aspect of computer

vision, which is essential for many applications, such as au-
tonomous driving [20, 28], robotics [4, 19, 21], and surveil-
lance [18]. While semantic segmentation of daytime scenes
has made significant progress [5, 29, 36, 41], challenges
remain unsolved for nighttime scenes due to the much-
degraded image quality at night, as well as the lack of high-
quality annotations. Most existing works [11, 33, 34, 37] em-
ployed unsupervised domain adaptation (UDA) for nighttime
semantic segmentation to solve the label scarcity problem,
which leverage labeled daytime images (Source Domain)
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Figure 1. Images captured at different moments in the same lo-
cation show that the low dynamic range of frame-based cameras
leads to reduced color contrast and detailed edges of objects at
night. To overcome this challenge, we introduce event cameras
that have a high dynamic range and are capable of capturing more
nighttime details. In comparison to the semantic segmentation re-
sults obtained from daytime images [36], nighttime images result
in misclassification cases [14]. However, our proposed CMDA
improves this by introducing event modality for the first time.

and unlabeled nighttime images (Target Domain). However,
the low dynamic range of conventional frame-based cameras
results in poor image quality at night compared to daytime
images, i.e., the decrease in color contrast and details results
in a reduction of clarity in nighttime images. This impedes
the effective discrimination of object boundaries. Thus, the
performance of methods solely relying on nighttime images
as input is limited.

To address the limitations of frame-based cameras, we
propose to employ event cameras for nighttime semantic
segmentation. Event cameras output the spatio-temporal
coordinates of pixels whose luminosity changes exceeding
a certain threshold value [9, 17]. Their unique operating
principle offers a higher dynamic range (140 dB vs. 60 dB)
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over frame-based cameras [10], which enhances contrast in
low-light scenarios, facilitating more precise segmentation of
objects. On the other hand, events are asynchronous and spa-
tially sparse, lacking a comprehensive representation of the
scene. Hence methods based solely on events are typically
inferior to image-based approaches [31, 32]. To this end,
we propose the first image-event cross-modality framework,
Cross-Modality Domain Adaptation (CMDA), to leverage
both image and event modalities for nighttime semantic seg-
mentation in an unsupervised manner. As shown in Figure 1,
compared to conventional image-based UDA approaches,
our framework achieves substantially improved nighttime
semantic segmentation performance with the combination
of event modality.

In the proposed CMDA, the key challenges lie in estab-
lishing the connection between image and event modalities,
as well as minimizing the domain shifts between the repre-
sentations of daytime and nighttime images. Specifically:

Challenge 1: Images ⇌ Events. The absence of event
modality in the source domain hinders the fusion of im-
ages and events. An intuitive idea is to transfer the daytime
images into events. However, event cameras record the
movement of the scene w.r.t. the camera, which cannot be
determined with a single image. Thus, we propose the Im-
age Motion-Extractor to extract motion information from
adjacent images and bridge the gap between image and event
modalities.

Challenge 2: Day ⇌ Night. Images can typically be
separated into content and style information [16]. Previ-
ous image-based UDA approaches employed a style transfer
network [44] to transform daytime images so they look like
nighttime [11, 37]. However, the transferred images are often
unrealistic and unreliable, due to the significant and heteroge-
neous noise at night [40]. In contrast, we eliminate daytime
and nighttime style information and preserve only content
information based on the proposed Image Content-Extractor,
which transfers both daytime and nighttime images to a com-
mon content domain.

Then, we construct our network based on the image-based
UDA method DAFormer [14]. Instead of taking only im-
ages as input, we combine events with images to perform
improved nighttime semantic segmentation, with domain
adaptation from labeled daytime images. In addition, as
there are no existing benchmark datasets in the community
for nighttime image-event semantic segmentation evaluation,
we follow the image-based Dark Zurich dataset [25] and
manually annotate 150 image-event with fine, pixel-level
labels from DSEC dataset [13].

In summary, our contributions are as follows:

• 1) To the best of our knowledge, we introduce the first
method to utilize event modality in nighttime semantic
segmentation.

• 2) We propose a novel CMDA framework by fusing
image and event modalities in an unsupervised manner
with only labeled images from the source domain.

• 3) We propose the Image Motion-Extractor and Image
Content-Extractor to bridge the gaps between modali-
ties (Images ⇌ Events) and domains (Day ⇌ Night).

• 4) To fill in the missing evaluation criteria for nighttime
image-event semantic segmentation, we align images
and event modalities in the DSEC dataset [13] and
manually annotate 150 image-event with fine, pixel-
level labels.

• 5) We show the effectiveness of our CMDA framework,
which achieves SOTA results on both the existing night-
time images benchmark dataset [25] and our proposed
image-event dataset.

2. Related Work
2.1. Event-based Semantic Segmentation

The problem of event-based semantic segmentation is
under-explored, compared to image-based semantic segmen-
tation due to the absence of high-quality datasets. Consid-
ering the paired image-event data in the DDD17 dataset [2],
Alonso et al. [1] utilize a pretrained image-based network
to generate pseudo labels for corresponding events. Then,
labeled events data are employed to train an event-based
network in a supervised manner.

Considering the supervision on intermediate features,
Wang et al. [32] utilize a pretrained image-based teacher
network for cross-modality knowledge distillation. Addi-
tionally, the training of the event-based network is aided by
source data from another dataset [6]. Furthermore, Wang
et al. [31] incorporate the cross-task knowledge transfer
through an image reconstruction network to transfer the
feature-level and prediction-level information. Unlike pre-
vious studies, Sun et al. [30] employ a pretrained recurrent
network, originally designed for image reconstruction [23],
to encode events and generate semantic segmentation results.
However, the recurrent network requires a large number of
events during both training and testing.

Datasets. Most of the existing event-based seman-
tic segmentation datasets are synthetic datasets, e.g.,
EventScape [12], DELIVER [38], and DADA-seg [39].
They are generated using simulators [8] or pretrained net-
works [42], resulting in large domain shifts compared with
real-world events.

Other datasets like DDD17 [2] and DSEC [13] record
real-world events, but their semantic labels are generated by
pretrained image-based networks [1, 30] and only contain
daytime scenes. Conversely for the first time, labels in night-
time scenes in our proposed DSEC Night-Semantic dataset
are annotated manually.

21573



Content Info.

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅

𝑰𝑰

𝑬𝑬𝑴𝑴𝑬𝑬

Motion Info.

𝑰𝑰𝒔𝒔

Image Motion-
Extractor

Style Transfer 

�𝑬𝑬𝒔𝒔 𝑬𝑬𝒕𝒕

Bridge

Images          Events

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅

𝑰𝑰𝒌𝒌

𝑰𝑰𝒌𝒌−𝟏𝟏

Image Content-
Extractor

𝑰𝑰𝒙𝒙/𝒚𝒚±𝜸𝜸

𝑰𝑰𝒕𝒕

Image 
Content-
Extractor

𝑰𝑰𝑪𝑪𝑬𝑬_𝒕𝒕

Day          Night

Random Shift

𝑰𝑰𝑪𝑪𝑬𝑬_𝒔𝒔

Pixels

Bridge

Figure 2. Processed by Image Motion-Extractor and Image Content-Extractor, EME and ICE s/t are utilized to bridge the gaps of different
modalities (Images I ⇌ Events E) and domains (Source Daytime s⇌ Target Nighttime t).

2.2. Nighttime Semantic Segmentation

Earlier approaches transfer daytime semantic knowl-
edge to nighttime images via twilight images from dif-
ferent time periods [7] or day-to-night style transfer net-
works [24]. Then, the introduction of the paired day-night
images dataset Dark Zurich [25] propels advancements in
this task. Sakaridis et al. [26] transfer the labeled daytime
dataset to twilight and night, utilizing curriculum learning to
adapt to the unlabeled night domain. Moving away from in-
termediate domains and models, Wu et al. [33, 34] introduce
an image relighting network and apply adversarial training.
Xu et al. [37] combine the inter-domain style adaptation and
intra-domain gradual self-training to achieve smooth seman-
tic knowledge transfer. From the perspective of illumination
and datasets differences, Gao et al. [11] propose a novel
domain adaptation framework via cross-domain correlation
distillation. However, paired day-night images are difficult
to acquire in practical settings. Recently, the emergence of
transformer brings a huge boost to nighttime semantic seg-
mentation, and our approach falls into this category. These
Transformer-based methods [14, 15] employ self-training
and consistency training to achieve superior performance
without the need for paired data, which have achieved SOTA
performance.

However, day-to-night style transfer in Transformer-
based methods leads to negative transfer, which is caused
by the unrealistic and unreliable transferred nighttime im-
ages. Our proposed Image Content-Extractor transfers both
domains to a shared content domain to alleviate the above
issue. Then, we introduce event modality to make up for the
low dynamic range of image modality for the first time.

3. Cross-Modality Domain Adaptation (CMDA)

In CMDA, given labeled images from the source domain
{(Is, Ys)} and unlabeled image-event pairs from the target
domain {(It, Et)}, our objective is to train a network f that
can accurately predict segmentation masks for the image-
event pair input in the target domain, i.e., f : (It, Et) → Yt.
As there are no labels in the target domain, the key problem
is to bridge the gaps between Is and (It, Et). Therefore,
we design the Image Motion-Extractor to extract the motion
information recorded by event cameras from Is. Also, the
Image Content-Extractor is designed to filter the style in-
formation and obtain the content information from both Is
and It. In the following sections, we first introduce the key
components of CMDA, i.e., the Image Motion-Extractor and
Image Content-Extractor, followed by detailed explanations
of CMDA structure as well as the training process.

3.1. Image Motion-Extractor

The absence of event data in the source domain impedes
the network to associate images with events. Considering
that events are represented by the relative motion between
the camera and the scene, directly transferring images to
events is non-trivial due to the lack of motion information
in a single image. To overcome this challenge, we propose
the Image Motion-Extractor to obtain the relative motion
information EME from two temporally adjacent images, as
illustrated at the top of Figure 2.

Considering the event camera that records the logarith-
mic intensity change of pixels [10], we simulate this by
differencing the same pixel of two adjacent images on the
logarithmic domain. Thus, given by two temporally adja-
cent grayscale images Ik−1, Ik ∈ RH×W×1, we compute
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Figure 3. Two regularizations are employed to train the network: the supervised loss Ls in the source domain and the unsupervised domain
adaptation loss Lt in the target domain. All losses are calculated on the student network fS . The teacher network fT is used to generate
pseudo labels for target data and updated with the EMA of fS .

EME = FFilter(Ik−1, Ik) with the following:

FFilter(I1, I2) = FNorm(FClipIgn(FLogDiff(I1, I2))), (1)
FLogDiff(I1, I2) = ln (I1 + ϵ)− ln (I2 + ϵ), (2)
FClipIgn(x) = min (|x|, α) · sgn(x) · 1(|x| > β), (3)

FNorm(x) = 2 · x−min(x)

max(x)−min(x)
− 1, (4)

where FLogDiff(I1, I2) represents the difference of I1, I2
in the logarithmic domain, ϵ is a small scalar constant to
prevent taking the logarithm of zero. FClipIgn(x) aims to
clip larger values and ignore smaller values through two
hyper-parameters α and β, 1(·) is the indicator function, and
sgn(·) is the signum function. FNorm(x) is the min-max
normalization, scaling the values from -1 to 1.

However, like frame-based cameras, event cameras are
also suffering from noise at night. To further narrow the gap
between EME and Et, we train a style transfer network [44]
GEME→E in an unsupervised manner to add the style of
Et to EME , resulting in transferred daytime events Ês =
GEME→E(EME). So far, we associate Is with Et with our
proposed Image Motion-Extractor and GEME→E .

3.2. Image Content-Extractor

Previous image-based UDA approaches transferred day-
time images Is to the nighttime style with a style transfer
network [44] to alleviate domain gaps [11, 37]. However,
the real nighttime style is difficult to construct due to the
complex and changing nighttime scenes [40]. Instead, we
propose the Image Content-Extractor to obtain the content
information. By eliminating the daytime and nighttime style,

we transfer both Is and It to the intermediate domain and
discard the nighttime style generating and utilization of style
transfer network.

Given a grayscale image I , we shift it γ pixels to the
left/right and up/down randomly and obtain Ix±γ and Iy±γ .
Then, the intermediate shared content domain ICE is gener-
ated by the following:

ICE =
1

2
· FFilter(I, Ix±γ) +

1

2
· FFilter(I, Iy±γ) (5)

By subtracting the shifted version of the image from itself,
pixels of the same color are erased, leaving only the pixels
at the edges of the scene, i.e., content information.

We process both Is and It to obtain ICE s and ICE t. As
shown in Figure 2, after converting I into ICE , the domain-
specific texture (Style Information) is largely eliminated, and
only the domain-invariant structure (Content Information) is
retained.

3.3. Network Details

The proposed extractors mentioned above enable us to
bridge the gaps between modalities and domains at the input
level. In this section, we elaborate on how to effectively
utilize I , E and ICE within the CMDA framework.

Overview. Our CMDA is based on the image-based self-
training method DAFormer [14]. The framework comprises
a student network fS and a teacher network fT . Given
source and target data as inputs, fS outputs predicted seman-
tic segmentation results P . These results are then computed
with the source ground truth and target pseudo labels to ob-
tain the cross-entropy loss. fT aims to provide pseudo labels
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Algorithm 1 Training of CMDA
Require: Source data {(Is, Ys)}, Target data {(It, Et)}.

1: Obtain EME , ICE s, and ICE t based on Eqn. (1) and
Eqn. (5).

2: Train GEME→E and obtain Ês = GEME→E(EME).
3: Initialize fS and fT with the same pretrained network.
4: for n = 1 to 40k do
5: Compute source loss Ls based on Eqn. (6).
6: Generate pseudo labels Ŷt by randomly choosing E

or ICE to fuse with I .
7: Compute target loss Lt based on Eqn. (6).
8: Loss back-propagation and update fS .
9: Update fT based on the EMA in Eqn. (8).

10: end for

in the target domain and is updated with the exponentially
moving average (EMA) of fS .

Network Architecture. As shown in Figure 3, both fS

and fT consist of two encoders, one cross-modality fusion
module, and one decoder. Given I/E/ICE , the image en-
coder extracts the features from I , while the events encoder
extracts the features from both E and ICE . The fusion
module is utilized to combine features from I and E/ICE .
Finally, the decoder receives both the fused and non-fused
features and generates predicted semantic segmentation out-
puts PI , PE , PICE

, and PI+E /PI+ICE
.

Fusion Module. Both the image and events encoders in
our framework generate features with four different scales.
To fuse features from the same scale, we individually input
them into the attention block adapted from SegFormer [36]
and average them to obtain the fused features.

Random Choice of E or ICE . To take full advantage
of E as well as ICE modalities, pseudo labels in the target
domain are generated by fusing I with E or ICE randomly,
i.e., Ŷt = fT (It, Et/ICE t).

Training Loss. Given daytime modalities Is, Ês, ICE s,
and nighttime modalities It, Et, ICE t, we train the student
network fS with a combination of several categorical cross-
entropy (CE) losses Ls/t calculated with daytime ground
truth Ys and nighttime pseudo labels Ŷt. For brevity, we
omit the domain term s/t of P and Y in the following:

Ls/t = λILce(PI , Y ) + λELce(PE , Y )

+ λICE
Lce(PICE

, Y )

+ λFusionLce(PI+E , Y ), (6)

Lce(P, Y ) =

H×W∑
j=1

C∑
c=1

Y (j,c) log δ(P (j,c)), (7)

where δ(P ) denoted the softmax output of the predicted
results P , C is the number of semantic classes, λI , λE ,
λICE

, and λFusion are hyper-parameters.

Sequence Training samples Testing samples

Zurich City 09a 508 45
Zurich City 09b 109 9
Zurich City 09c 371 34
Zurich City 09d 478 42
Zurich City 09e 226 20

Total 1,692 150

Table 1. The dataset split of our proposed DSEC Night-Semantic
dataset.

In contrast to fS , which is updated through gradient de-
scent, fT is updated by the exponentially moving average
(EMA) of the weights of fS in each training step following
DAFormer [14]:

fT = σfT + (1− σ)fS , (8)

where σ is a momentum parameter.
We summarize the overall training process of our CMDA

framework in Algorithm 1.

4. Experiments
4.1. Implementation Detail

Our baseline model is adopted from DAFormer [14]
without the loss of Thing-Class Feature Distance. Build-
ing upon this baseline, we incorporate an events encoder
and a cross-modality fusion module into the network struc-
ture. For loss weighting, we use λI = λFusion = 0.5 and
λE = λICE

= 0.25. For EME and ICE , we use α = 0.1,
β = 0.005, and γ = 1 in Eqn. (3) and Eqn. (5). Et are
selected within 50ms before the timestamps of It and pro-
cessed in the voxel grid representation [43]. It takes 40,000
iterations on a batch size of two to train our CMDA. All
experiments are conducted on a Tesla A100 GPU.

4.2. Datasets

DSEC Night-Semantic Dataset. To provide a bench-
mark for nighttime image-event semantic segmentation, we
introduce the first image-event nighttime semantic segmenta-
tion dataset, i.e., DSEC Night-Semantic, based on the DSEC
dataset [13]. In DSEC, images and events are acquired by
two different sensors which makes the two modalities not
completely aligned. To obtain paired image-event data, we
utilize depth data to warp from the image coordinates to the
event coordinates with a resolution of 640×480. Our dataset
consists of 5 nighttime sequences of Zurich City 09a-e, and
includes 1,692 training samples and 150 testing samples.
For each testing sample, we manually annotate them in 18
classes: Road, Sidewalk, Building, Wall, Fence, Pole, Traffic
Light, Traffic Sign, Vegetation, Terrain, Sky, Person, Rider,
Car, Bus, Train, Motorcycle and Bicycle. Detailed dataset
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DAFormer [14]Images Events CMDA (Ours) Ground truthMIC [15]
Figure 4. Qualitative semantic segmentation results generated by image-based SOTA methods MIC [15], DAFormer [14], and our proposed
CMDA in the DSEC Night-Semantic dataset.
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SePiCo† [35] 93.3 58.7 56.8 28.2 4.7 34.1 27.9 55.1 55.7 56.1 76.1 50.5 30.5 75.1 75.5 71.0 22.6 26.6 49.9
Refign† [3] 92.2 56.6 59.2 28.0 7.9 38.4 32.1 60.0 56.9 57.5 79.6 60.3 26.3 72.3 68.7 77.8 39.3 35.7 52.7
MIC [15] 94.0 62.1 54.2 36.3 9.8 37.7 29.2 48.4 62.6 67.2 74.5 53.1 25.5 73.0 79.7 65.7 56.0 37.4 53.7

DAFormer [14] 93.9 64.3 53.7 34.9 7.5 40.7 34.1 55.9 61.6 68.7 84.5 57.1 28.8 75.0 68.5 77.8 57.6 42.6 56.0

Baseline(I) 94.2 64.5 44.8 36.3 9.8 39.1 23.8 58.3 56.5 67.3 73.0 59.5 34.4 75.4 87.6 78.8 42.6 45.2 55.1
CMDA(E) 90.8 50.9 59.1 30.5 4.4 26.2 28.1 41.6 53.5 49.6 68.3 33.9 30.2 68.0 65.5 57.3 41.9 28.6 46.0
CMDA(I) 94.6 67.5 55.5 36.2 7.9 39.3 42.2 55.6 60.7 70.2 85.4 50.7 39.3 77.6 84.8 73.9 53.2 45.3 57.8

CMDA(I+E) 94.6 68.3 58.2 37.5 8.8 44.0 45.7 57.7 61.4 70.4 85.1 56.0 45.9 79.2 87.8 73.8 61.6 45.0 60.1

Table 2. Quantitative semantic segmentation results evaluated with MIoU (%) in our proposed DSEC Night-Semantic Dataset. (I/E/I+E)
indicates the input modalities during testing. The best result is highlighted in bold. † denotes the methods utilizing additional coarsely
aligned daytime images in the target domain which are not available in our dataset. We directly test their model trained on Dark Zurich [25].

split is shown in Table 1. Distribution of annotations across
individual classes is provided in the supplemental material.

Dark Zurich Dataset. To thoroughly evaluate the effec-
tiveness of our Image Content-Extractor, we conduct experi-
ments on the image-based Dark Zurich dataset [25]. Since
there is no event modality in this dataset, we exclude E along
with steps 2 and 4 of Algorithm 1 during training.

4.3. Comparison of SOTA Approaches

DSEC Night-Semantic Dataset. First, we compare our
proposed CMDA with previous SOTA image-based unsuper-
vised nighttime semantic segmentation approaches, includ-
ing SePiCo [35], Refign [3], MIC [15], and DAFormer [14].
The results in Table 2 and Figure 4 demonstrate the supe-
rior performance of our proposed CMDA, outperforming
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MGCDA† [26] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet† [33] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
CDAda† [37] 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
DANIA† [34] 90.8 59.7 73.7 39.9 26.3 36.7 33.8 32.4 70.5 32.1 85.1 43.0 42.2 72.8 13.4 0.0 71.6 48.9 23.9 47.2

CCDistill† [11] 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5
LoopDA† [27] 92.1 63.3 80.3 41.1 13.9 40.8 39.7 41.1 71.3 28.4 85.5 50.2 38.5 78.2 58.5 3.0 77.2 26.5 31.0 50.6
DAFormer [14] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.4 89.3 50.5 38.5 53.8
SePiCo† [35] 93.2 68.1 73.7 32.8 16.3 54.6 49.5 48.1 74.2 31.0 86.3 57.9 50.9 82.4 52.2 1.3 83.8 43.9 29.8 54.2

MIC [15] 88.2 60.5 73.5 53.5 23.8 52.3 44.6 43.8 68.6 34.0 58.1 57.8 48.2 78.7 58.0 13.3 91.2 46.1 42.9 54.6

Baseline 94.3 70.0 77.4 40.8 13.8 53.3 28.9 44.7 66.4 34.1 81.4 57.1 42.7 81.3 49.6 5.0 89.4 50.5 35.8 53.5
Base.+MGCDA 93.7 68.7 76.8 40.1 26.1 56.9 49.0 55.3 37.9 30.2 20.8 59.3 49.6 83.9 28.9 4.3 85.0 52.3 34.1 50.2

CMDA(I) 93.4 65.6 76.0 40.9 22.4 54.8 48.5 47.6 65.7 30.2 78.1 56.8 46.9 80.8 64.2 12.9 74.7 44.5 37.0 54.8

Table 3. Quantitative semantic segmentation results evaluated with MIoU (%) in the image-based Dark Zurich Dataset. The best result is
highlighted in bold.

Method MIoU(E) MIoU(I) MIoU(I+E)

Baseline - 55.06 -
Base. w/ ICE - 56.78 -

Base. w/ EME 45.06 53.46 55.65
CMDA 46.02 57.76 60.05

Table 4. Ablation of ICE and EME in our CMDA.

DAFormer [14] by +4.1%. The fusion of high dynamic range
event modality facilitates robust feature extracting from the
scene, achieving improved nighttime semantic segmentation
of 60.1%. In addition, we find that training with the event
modality and testing without it is also instrumental. The
performance of CMDA(I) is significantly improved com-
pared to the baseline (+2.7%), which indicates that events
can guide the network in extracting more reliable features
from images at night. Qualitative results in Figure 4 demon-
strate the substantial improvement in the segmentation of
low-light objects and backgrounds.

Dark Zurich Dataset. In Table 3, we conduct exper-
iments on the image-based Dark Zurich dataset to verify
the effectiveness of our proposed Image Content-Extractor.
First, we combine the day-to-night style transfer network of
MGCDA [26] with our baseline, and style transfer on the
input domain is supposed to help the self-training framework
in DAFormer [14] to alleviate the domain adaptation diffi-
culties. However, the result is degraded (-3.3%) due to the
unrealistic and unreliable transferred images. In contrast,
our proposed Image Content-Extractor eliminates most of
the style information while preserving the content informa-
tion, which surpasses the baseline by +1.3% and achieves
the SOTA MIoU score of 54.8%.

4.4. Ablation Studies

Image Content-Extractor and Image Motion-Extractor
are key components of the CMDA framework, bridging the
gaps between domains and modalities. Table 4 provides an
overview of the ablation studies of these two components.
(1) The application of ICE results in an improvement of the
baseline performance MIoU(I) by +1.72%, demonstrating
the assistance of ICE for minimizing the domain shifts be-
tween the representations of daytime and nighttime images.
(2) However, introducing event modality with only EME im-
pairs the features extraction of image. MIoU(I) has a reduc-
tion of -1.6% compared to the baseline and MIoU(I+E) only
has a minor improvement of +0.6%. We consider that when
calculating Lt, pseudo labels Ŷt are generated by the fusion
of both modalities. However, this fusion is unreliable at the
beginning and hinders the initial training of the network,
which in turn has a detrimental effect. (3) When employ-
ing both ICE and EME , we fuse I and E/ICE randomly at
each training step, which alleviates the above problem. The
performance is further improved to 60.05% MIoU(I+E),
improving +4.99% compared to the baseline. More detailed
ablation studies of the Image Motion-Extractor and Image
Content-Extractor are shown below.

4.5. Image Motion-Extractor

We compare our Image Motion-Extractor with ESIM [22]
and EventGAN [42] that directly generate events from two
temporally adjacent images, and a straightforward approach
that generates events from daytime images by a style transfer
network G. Results are presented in Table 5 and Figure 5.

As demonstrated in Table 5, our proposed EME exhibits
superior MIoU(E) performance compared to ESIM [22]
(+2.82%) and EventGAN [42] (+1.23%), even when imple-
mented without G. When combined with G, the proposed
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Images 𝑮𝑮𝑰𝑰→𝑬𝑬(𝑰𝑰) 𝑮𝑮𝑬𝑬𝑴𝑴𝑴𝑴→𝑬𝑬(𝑬𝑬𝑴𝑴𝑴𝑴)EventGAN [42]

𝜶𝜶=0.05 𝜸𝜸=2

𝜸𝜸=6𝜶𝜶=0.3

𝜷𝜷=0

𝜷𝜷=0.06

Figure 5. Comparison of different ways to generate Ês. As shown
in the yellow box, Ês generated from a single image GI→E(I)
cannot simulate motion-related regions, which has a significant
distribution difference from real events. In addition, Ês from
EventGAN [42] does not construct the nighttime style.

Method MIoU(E) MIoU(I) MIoU(I+E)

ESIM[22] → Et 42.09 53.59 54.10 (+0.51)
I → Et 41.81 54.21 54.50 (+0.29)

EME → Et 44.91 55.47 56.63 (+1.16)
EventGAN[42] → Et 43.68 55.79 56.74 (+0.95)

I +G → Et 39.03 55.24 57.21 (+1.97)
EME +G → Et 46.02 57.76 60.05 (+2.29)

Table 5. Different approaches of adapting to nighttime event modal-
ity. The values in parentheses of MIoU(I+E) represent the gain
compared to MIoU(I) after fusion with the event modality.

Images 𝑮𝑮𝑰𝑰→𝑬𝑬(𝑰𝑰) 𝑮𝑮𝑬𝑬𝑴𝑴𝑴𝑴→𝑬𝑬(𝑬𝑬𝑴𝑴𝑴𝑴)EventGAN [42]

𝜶𝜶=0.05 𝜸𝜸=2

𝜸𝜸=6𝜶𝜶=0.3

𝜷𝜷=0

𝜷𝜷=0.06
Figure 6. Visualization of nighttime ICE generated with different
parameters.

EME +G achieves a remarkable improvement of +2.29%.
It surpasses the improvement +1.97% of I +G and achieves
the SOTA performance of 60.05%.

Visualization of Ês is shown in Figure 5. EventGAN [42]
ignores the noise of event cameras at night, and Ês generated
by I depicts all edges in the scene, which fails to accurately
simulate the motion-capture property of event cameras. By
employing EME with G, our Ês simulates events only in
the regions with the relative motion and achieves a more
accurate depiction of nighttime events.

α 0.05 0.1 0.15 0.2

MIoU(I+E) 57.59 60.05 59.43 59.70

β 0 0.005 0.015 0.03

MIoU(I+E) 58.38 60.05 59.04 57.61

γ 1 2 3 4

MIoU(I+E) 60.05 59.40 59.28 58.57

Table 6. Analysis of α, β and γ. When adjusting one parameter, the
other two parameters in the gray background remain unchanged.

4.6. Image Content-Extractor

Our Image Content-Extractor plays a key role in bridg-
ing the domain gap between daytime and nighttime images.
In Figure 6, we provide a visualization of nighttime ICE

generated with α, β in Eq. 3 and γ in Eq. 5. α controls the
lower-bound and upper-bound of FLogDiff(I1, I2). A large
value of α narrows down the effective information in the
scene, while a small value of α amplifies the proportion of
noise. β aims to filter out the values less than β. A smaller
β will retain more noise while a larger β will destroy the
information of the scene. γ controls the shift pixels of the
image relative to itself. A small value of γ can better capture
scene details. Conversely, a large value of γ blurs the edges.
Experiments in Table 6 demonstrate that the moderate values
of α, β, and small value of γ have the optimal trade-off.

5. Conclusion
We introduce a novel framework, Cross-Modality Do-

main Adaptation (CMDA), for semantic segmentation on
nighttime image and event modalities. Our proposed Image
Motion-Extractor and Image Content-Extractor effectively
bridge the gaps between modalities and domains. Notably to
the best of our knowledge, our work is the first to introduce
event modality into nighttime semantic segmentation. To
facilitate our research, we present the DSEC Night-Semantic
dataset that comprises 1,692 training samples and 150 test-
ing samples. A comprehensive evaluation demonstrates that
our CMDA achieves substantial performance improvements
and effectively leverages the complementary modalities.
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