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Abstract

Recently, 3D object detection with sparse annotations
has received great attention. However, current detectors
usually perform poorly under very limited annotations. To
address this problem, we propose a novel Contrastive In-
stance feature mining method, named CoIn. To better
identify indistinguishable features learned through limited
supervision, we design a Multi-Class contrastive learn-
ing module (MCcont) to enhance feature discrimination.
Meanwhile, we propose a feature-level pseudo-label mining
framework consisting of an instance feature mining module
(InF-Mining) and a Labeled-to-Pseudo contrastive learn-
ing module (LPcont). These two modules exploit latent in-
stances in feature space to supervise the training of detec-
tors with limited annotations. Extensive experiments with
KITTI dataset, Waymo open dataset, and nuScenes dataset
show that under limited annotations, our method greatly
improves the performance of baseline detectors: Center-
Point, Voxel-RCNN, and CasA. Combining CoIn with an
iterative training strategy, we propose a CoIn++ pipeline,
which requires only 2% annotations in the KITTI dataset
to achieve performance comparable to the fully supervised
methods. The code is available at https://github.
com/xmuqimingxia/CoIn.

1. Introduction
Recently, 3D object detection, which is becoming in-

creasingly important in a variety of vision applications, in-
cluding autonomous driving, indoor robots, and virtual re-
ality, has received much attention [32, 4, 11, 45, 38, 37, 21,
16, 35, 1]. Popular detectors rely heavily on a large num-
ber of high-quality instance-level 3D annotations. How-
ever, annotating 3D bounding boxes is time-consuming and
labor-intensive, and, therefore, is prohibitive for large-scale
datasets.

The development of effective 3D object detectors using
only limited annotations has recently received increasing at-
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Figure 1. Comparison of performance with different annotation
rates under the KITTI-3D-Car. Green and orange represent
CenterPoint[39] and our proposed CoIn, respectively.

tention [17, 14, 27, 20, 42]. However, when annotations are
limited, two main challenges hinder the effectiveness of 3D
object detection.

(1) Indistinguishable Features. With limited annotations,
it is often difficult for a model that has insufficient training
supervision to differentiate foreground points from back-
ground points. Consequently, extracted features of differ-
ent objects are often not well clustered (see supplementary
materials). We designate such kinds of features as indis-
tinguishable features. This issue is a critical bottleneck
toward more accurate detection. In 2D vision, contrastive
learning-based methods [10, 8] have proven effective in en-
hancing discriminability against indistinguishable features.
However, rather than multi-class object classification tasks
in common 3D detection problems, contrastive learning is
studied mainly for binary classification tasks.

(2) Lacking reliable initial pseudo labels. To deal with
limited annotations, recent sparsely-/semi-supervised 3D
detectors usually adopt instance-level pseudo-label mining
methods to mine unlabeled latent instances [14, 29]. These
strategies rely on the assumption that initial detectors al-
ready generate relatively reliable detections that are used as
preliminary pseudo-labels. However, often this is not pos-
sible if the annotation is very limited. In such a scenario,
initial detectors are often unreliable and in insufficient quan-
tity to produce reasonable pseudo-labels. Fig. 1 shows some
examples where SOTA detectors, such as CenterPoint [39]
hardly provide reliable preliminary pseudo-labels when an-
notations are very limited (e.g., 2%).
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Recent studies on 3D object detection with lim-
ited annotations adopt three general strategies: weakly-
supervised, semi-supervised, and sparsely-supervised ap-
proaches. Weakly-supervised strategies [20, 17] adopt non-
instance-level annotations (e.g., WS3D[17] adopts point-
annotation as supervision signal). However, to achieve
desirable performance, a certain number of full annota-
tions are still required in these methods. Semi-supervised
methods [27, 42] select only a part of the scenes for full
annotations. Sparsely-supervised methods [14] annotate
only some instances in each scene (e.g., [14] annotates
one instance per scene and reduces the annotation work-
load to about 20%). Although these approaches signifi-
cantly reduce annotation workload, applying them to a large
training dataset is still labor-intensive. Furthermore, the
semi/sparsely-supervised methods require a reliable initial
detector to generate pseudo labels. However, if annotations
are very limited, initially generated pseudo-labels usually
suffer from significant noise. Such low-quality pseudo-
labels make it very difficult to support subsequent pro-
cesses. We focus here on developing detectors that have
further reduced dependence on annotations.

Specifically, our proposed method consists of a Multi-
Class contrastive learning module (MCcont), an Instance
Feature Mining module (InF-Mining), and a Labeled-to-
Pseudo contrastive learning module (LPcont). MCcont si-
multaneously interacts with features from multiple cate-
gories. Features of the same category constitute a posi-
tive sample space; those of the remaining categories consti-
tute a negative sample space thereby helping reduce intra-
class distance and increase inter-class distance in the fea-
ture space, and improve the discrimination of features for
3D detection. The InF-Mining module mines feature-level
pseudo-labels by exploiting the similarity of features of the
same category. We decode the spatial position of the 3D ob-
ject from the location of the feature-level pseudo-label. By
applying the contrastive learning strategy, LPcont selects la-
beled instance features as positive samples and limits the
redundancy of pseudo-positive samples.

We verified this design through extensive experiments
on the well-known KITTI dataset [7] with 2% annotations.
In the moderate level car class, our proposed CoIn signif-
icantly improves the baseline detectors CenterPoint [39],
Voxel-RCNN [5], and CasA [31] by 23.27%, 13.5%, and
17.95%, respectively. Besides, when combining CoIn with
iterative training, our model requires only 2% annotations
to achieve similar detection accuracy with those fully su-
pervised methods.

In summary, our contributions are three-fold:

• We propose a Multi- Class contrastive learning module
(MCcont), which enhances the discriminability of fea-
tures by contrasting the instance features across mul-
tiple categories, thereby improving detection perfor-

mance.

• We design an end-to-end feature-level pseudo-label
mining framework through two new modules: InF-
Mining and LPcont. Without requiring repeated man-
ual iterations, InF-Mining directly mines unlabeled
supervised signals, and LPcont guarantees the correct-
ness of pseudo-positive signals.

• Extensive experiments demonstrated the superiority
of CoIn, which effectively improves the performance
of baseline detectors. Moreover, by using only very
limited annotation, CoIn can be effectively combined
with self-training-based methods to achieve similar
performance to those fully supervised methods.

2. Related Work

2.1. Fully-supervised 3D detectors

Fully-supervised 3D detectors are categorized into three
types: (1) Single-stage methods [46, 12, 39, 9, 43, 44] ,
which directly generate detection results without a refining
operation; (2) Two-stage methods [23, 24, 22, 5, 38, 32],
which add a refinement stage to improve the accuracy
of predicted bounding boxes; and (3) Multi-stage meth-
ods [31, 3], which iteratively regress bounding boxes to
further refine proposals by cascading multiple refinement
stages. With addition of refinement stages, detectors usu-
ally achieve better performance; whereas, benefiting from
the simpler framework structures, single-stage detectors of-
ten show faster reasoning speed.

Although existing 3D detection methods have become
increasingly mature, they deeply rely on the availability of
a large number of precise annotations, which are often pro-
hibitive to obtain. For practical tasks, it is desirable to de-
velop a 3D detector that requires only very few annotations.

2.2. Weakly/semi/sparsely-supervised 3D detectors

Recently, 3D detectors with limited annotations have at-
tracted much attention. To train the proposal generation
in first stage, weakly-supervised methods, such as [18],
adopted click-annotation instead of bounding box annota-
tion. However, with click-annotation, it is difficult to refine
the proposal due to a lack of geometric information. Also,
for proposal refinement, click-annotation requires second
stage to add a certain number of precise bounding box
annotations. For training to mine instance-level pseudo-
labels, semi-supervised methods [27, 42, 40] randomly an-
notate part of the scenes with precise annotations. Sparsely-
supervised methods, such as [14], annotate just some ob-
jects per scene and then use subsequent mining and filtering
modules to obtain instance-level pseudo-labels. In general,
pseudo-label-mining methods have been shown to achieve
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Figure 2. The overview of proposed CoIn, which consists of a Multi-Class contrastive learning module (MCcont), a Instance Feature
mining module (InF-mining), and a Labeled-to-Pseudo contrastive learning module (LPcont). For clarity, we illustrate single object per
class in this figure. We note that, there are multiple labeled objects after Ground Truth Sampling (GT Sampling).

better performance because the supervisory signals are con-
stantly updated iteratively during training.

However, pseudo-label-mining methods require that the
initial detector can work reasonably well. This assumption
does not hold when only extremely limited annotations are
available. Because insufficient supervision from these an-
notations can not support reliable initial pseudo labels. In
this work, we aim to improve the performance of the initial
detector so that reliable pseudo-labels can be generated for
subsequent training.

2.3. Contrastive learning in 2D object detection

Contrastive learning is a common pre-training technique
that learns global feature representations from sample pairs.
It has been explored for 2D object detection. DenseCL [30]
designed the pixel-level contrast similarity loss to intro-
duce contrast learning into the object detection task. Self-
EMD [15] used Earth Mover’s Distance (EMD) as the spa-
tial similarity between two image representations, which fa-
cilitated the object detection task. To learn consistent repre-
sentation on both image-level and patch-level, Detco [34]
and PatchReID [6] designed both global and local con-
trastive learning, respectively. Meanwhile, InsLoc [36] and
CoDo [41] constructed data pairs for contrastive learning by
pasting foreground images onto background images.

Contrastive learning methods depend on abundant nega-
tive sample space [10]. However, under very limited anno-
tations, existing methods can not directly generate sufficient
negative samples. In contrast, we propose a multi-class
contrastive learning module constructing sufficient negative
sample space from limited feature instance representations.

3. Method

We propose CoIn, a general method for 3D object de-
tection with extremely limited annotations (2%). To ensure
optimal performance, CoIn aims to provide strong super-
vised signals for the training process of sparsely supervised
detectors.

As illustrated in Fig. 2, we adopt CenterPoint [39] as our
basic framework. The CoIn contains three key parts: (1) A
Multi-Class contrastive learning module (MCcont), which
enhances the discriminative power of features; (2) An in-
stance feature mining module (InF-Mining), which uses the
similarity between the instance features of the same cate-
gory to mine feature-level pseudo labels; (3) A Labeled-to-
Pseudo contrastive learning module (LPcont), which refers
to the labeled positive instance features to supervise mined
pseudo-instance features.

3.1. Multi-Class Contrastive Learning

Recently, center point-based pipelines have shown
promising detection performance with full object annota-
tions. However, these methods generally perform poorly
under very limited annotations. The main reason is that a
large number of foreground points are identified as back-
ground points. Consequently, learned indistinguishable fea-
tures degrade the detection performance. By constructing
contrastive learning in pairs, conventional methods enhance
the features’ distinguishability. Nevertheless, under lim-
ited annotations, the sample space of contrastive learning
in pairs is also extremely limited, thereby greatly constrains
the effect of contrastive learning [10]. To use the limited
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sample space efficiently, we develop a Multi-Class con-
trastive learning (MCcont) module to enhance the discrim-
ination of features. Unlike traditional contrastive learning,
which involves only information interaction in pairs, MC-
cont, taking advantage of the information of all categories,
improves the use of limited sample space.

To introduce contrastive learning into 3D ob-
ject detection, we first define the contrastive op-
timization goal. Specifically, we denote F =
{f(i, j) | i = 1, ..., h, j = 1, .., w} as the h × w BEV
(Bird’s-Eye-View) feature of the backbone output. Fol-
lowing CenterPoint [39], Yk = [0, 1]

w×h represents the
heatmap of the category k, k = 1, ...,K. According to
the properties of a heatmap, the position where the heat
value is equal to 1 represents the center of the object.
Based on this point, we define the instance feature set as:
Ik = {f(i, j) | Yk(i, j) = 1}; nk = |Ik| indicates the
number of labeled instances of category k. The contrastive
optimization goal is improving the similarity of instance
features in Ik and encouraging the discrimination between
Ik and {Ii | i = 1, ...,K, i ̸= k}.

Inspired by MOCO [10], we also consider multi-class
contrastive learning as a dictionary look-up task. First, to
enable contrastive learning in a parallel manner across mul-
tiple categories, we designed a reference matrix MK×N ,
and a query matrix, M′ K×N . Each row of M corresponds
to same category and different elements in this row are sam-
ples of different instances in this category. It is worth not-
ing that different categories have a different number of in-
stances. Thus, to facilitate the subsequent matrix opera-
tions, the maximum value, N , among these nk is used as
the predetermined dimension (number of instances). M′

is
obtained by performing column swapping on M. Elements
from the same row of M and M′

, which are different in-
stances from the same category, form positive sample pairs.
Elements from different rows form negative sample pairs.
The main idea of MCcont is as follows: Calculating the sim-
ilarity between M and M′ T by matrix multiplication, we
obtain the similarity matrix S ∈ [0, 1]

K×K . The diagonal
of the similarity matrix records the similarity between posi-
tive samples. The other positions are the similarity between
positive and negative samples. Regarding the similarity ma-
trix, the overall objective of the multi-class contrastive loss
is to maximize the similarity of the diagonal and minimize
the similarity of other positions.

However, directly using M and M′
for contrastive

learning allows each positive sample to be paired with only
one positive sample and K − 1 negative samples. As illus-
trated in Fig. 3, to enrich the sample space, we employed a
’rolling’ operation that cyclically shifts each column of ma-
trix M′

and then stacked them to acquire a new query ma-
trix M̄′K×N2

. To facilitate matrix multiplication between
two matrices, we simply use the original reference matrix

ℳ

ℳ

Column
Swapping

1    2    3

3    2    1

Repeat

1    2    3

Rolling

3    2   1    2    1    3   1    3    2

ℳ

ℳ

𝒮

Transpose

1    2    3 1    2    3

Figure 3. Illustration of similarity matrix computing processing.
Let K = N = 3 to understand the meaning of matrix.

and repeat N − 1 times in the row direction to obtain the
new matrix M̄K×N2

. With this, each positive sample can
pair with N − 1 positive samples and (K − 1) ∗N negative
samples. Note that the number of instances in 3D scenarios
is limited. Hence, the dimension of this matrix will not be
excessively large.

Formally, the MCcont loss function is as follows:

LMCcont = − 1

K

K∑
i=1

log
exp(d(M̄(i,:),M̄

′
(:,i))

N2 /τ)∑
j ̸=iexp(

d(M̄(i,:),M̄′ (:,j))
N2 /τ)

.

(1)
where τ is a temperature scaling parameter [33]. The func-
tion d(·, ·) denotes an element-wise product and sum. MC-
cont causes instance features of the same category to be
more similar and those of different categories are more dis-
tinguishable, thereby enhancing feature discrimination.

3.2. Instance Feature Mining

With the assistant of MCcont, we obtain the discrimina-
tive features F̆ =

{
f̆(i, j) | i = 1, ..., h, j = 1, ..., w

}
. It is

apparent that objects of the same category have strong sim-
ilarities in feature space. Additionally, the use of feature
similarity has been validated in the 2D domain[13]. Moti-
vated by this, we exploit the similarity between reference
instance features and unlabeled instance features to mine
stronger supervised signals.

To obtain more representative reference instance fea-
tures, we adopt a weighted average operation to obtain a
meta-instance feature for each category, calculated as fol-
lows:

Ek =

∑
i,j f̆(i, j) · Yk(i, j)∑

i,j Yk(i, j)
, k = 1, ...,K. (2)

where Y is the heatmap [39], K is the number of cate-
gories. The unknown features are denoted as Uk(i, j) =
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{
f̆(i, j) | Yk(i, j) = 0

}
. Inspired by [28], We consider

both Euclidean distance and cosine similarity as two met-
rics to calculate the similarity S ′

k between the feature of a
known instance and an unknown feature as follows:

S
′

k(i, j) = min(D1(Ek,Uk(i, j)), D2(Ek,Uk(i, j))).
(3)

Where, D1 = 1−min(L2, 1), D2 = (cossim+ 1)/2).
And, S ′ ∈ [0, 1], where 0 indicates dissimilarity. The min
function returns the least similar values between two met-
rics. If even the least similar values are still considered sim-
ilar, then we treat them as similar. According to the similar-
ity S ′

k and heatmap Y , we mine the pseudo-heatmap Ŷ as
follows:

Ŷk(i, j) =

{
η ∗ S ′

k(i, j) if Yk(i, j) = 0,S ′
k(i, j) ≥ T

Yk otherwise
.

(4)
where scale factor η is empirically set to 0.7 according
to [33]. The similarity threshold, T , is a hyper-parameter.
In Sec.4.4, we will perform an ablation study to properly
select the hyper-parameters. The pseudo heatmap replaces
the original heatmap as the supervised signal for the detec-
tor training. Following [39], the classification loss of InF-
Mining as follows:

LInF−Mining = LHeatmap(Ȳ , Ŷ ). (5)

where Ȳ is the predicted heatmaps and LHeatmap is the
heatmap prediction loss function in CenterPoint [39].

3.3. Labeled-to-Pseudo Contrastive Learning

By mining pseudo-heatmaps, the InF-Mining module
provides stronger supervised signals. However, errors in-
evitably raise in pseudo-heatmaps. The cross entropy used
in LHeatmap exacerbates this problem [13]. To address
this problem, we propose a Labeled-to-Pseudo contrastive
learning module (LPcont), which refers to the labeled posi-
tive instance features to supervise the prediction of pseudo-
positive signals.

For category k, we obtain labeled positive instance fea-
ture set, Ik, and pseudo-positive instance feature set, Ok.
Ik =

{
f̆(i, j) | Yk(i, j) = 1

}
, subsets are represented as{

I1k , I
2
k , ..., I

nk

k

}
. Ok =

{
f̆(i, j) | top mk(Ȳk(i, j))

}
;

subsets are represented as
{
O1

k, O
2
k, ..., O

mk

k

}
. The top mk

function returns the mk largest elements from Ȳk. To in-
crease the discrimination power of the meta-instance fea-
ture Ek, we also consider narrowing the feature space dis-
tance between the meta-instance and labeled instance. We
group pseudo-positive instance features and meta-instance
features together as follows:

Îk =
{
Î1k , Î

2
k , ..., Î

mk

k , Îmk+1
k

}
, Îmk+1

k = Ek (6)

The specific objective function of LPcont is as follows:

LLPcont = − 1

nk × (mk + 1)×K
nk∑
n=1

K∑
k=1

mk+1∑
m=1

log
exp(Ĭnk · Îmk /τ)∑
i ̸=k exp(Ĭ

n
k · Îmi /τ)

.

(7)

where τ is a temperature scaling parameter [33]. LPcont
maximizes the similarity between Ĭk and Îk and minimizes
the similarity between Ĭk and

{
Îi, i ̸= k

}
. We use labeled

instance features as references to enhance the competitive-
ness of correct predictions in pseudo-positive prediction.
Thanks to the similarity constraint, false predictions in the
pseudo-positive instance features are filtered, thereby cor-
recting false predictions in the predicted heatmap.

3.4. Training Losses

Our proposed CoIn framework is trained with MCcont
loss LMCcont, InF-Mining loss LInF−Mining , LPcont loss
LLPcont, and regression loss Lreg . The total loss is:

Ltotal = αLMCcont+βLInF−Mining+γLLPcont+δLreg

(8)
where β, δ are empirically set to 1 according to [26], α, γ
are the hyper-parameters that balance the mining tasks with
detection tasks. We will conduct the ablation study to select
hyper-parameters properly. We keep the same regression
loss as CenterPoint [39].

3.5. CoIn++ and Extension to Other Detectors

CoIn++. Recently, self-training based pseudo-label min-
ing methods [14] have made great progress. However, they
heavily depends on the quality of initial pseudo labels. Un-
der limited annotations, it’s difficult for the baseline detec-
tor generate reliable pseudo labels (See Fig.1). Since our
method can provide better initial pseudo labels, the per-
formance of our CoIn can be boosted further by the self-
training framework. Specifically, we propose a CoIn-based
instance-level pseudo-label mining method, CoIn++ (de-
sign details are given in supplementary materials). The ex-
perimental results of CoIn++ demonstrate that our CoIn can
be effectively combined with instance-level pseudo-label
mining methods (See Table 2).
Extension to other detectors. Our CoIn can be extended
to other 3D detectors. To extend CoIn on single-stage 3D
detectors, we simply set their detection heads to Center-
Head [26]. However, for two-stage and multi-stage detec-
tors, directly using the predicted RoIs obtained from CoIn
makes it difficult to improve their performance. Even if
RoIs that are correct predicted are mined in the first stage,
in subsequent stages, the predicted RoIs lack the labeled
supervised signal to refine; therefore, these accurate predic-
tions are eliminated. To overcome this problem, we gener-
ate pseudo RoI labels based on the predicted RoIs’ score.
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Annotation Rate Method(PV-RCNN-based) Self-trainnig Car-3D Pedestrian-3D Cyclist-3D
Yes No Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1%

Only self-training
√

88.4 75.2 69.5 32.7 29.2 26.7 51.4 30.7 28.7
3DIoUMatch [27]

√
89.0 76.0 70.8 37.0 31.7 29.1 60.4 36.4 34.3

DetMatch [19]
√

- 77.5 - - 57.3 - - 42.3 -
SS3D [14]

√
96.2 88.1 86.9 61.7 58.7 54.5 85.6 62.8 58.4

CoIn
√

94.8 84.9 71.0 53.0 52.4 49.8 74.7 55.9 52.1
CoIn++

√
98.4 90.4 86.9 62.0 59.1 55.1 85.2 63.2 59.3

2%

Only self-training
√

92.9 76.8 72.3 49.7 46.0 44.5 68.9 47.2 44.8
3DIoUMatch [27]

√
- 78.7 - - 48.2 - - 56.2 -

DetMatch [19]
√

- 78.2 - - 54.1 - - 64.7 -
SS3D [14]

√
98.28 89.2 88.3 67.5 62.3 61.0 90.1 72.2 68.3

CoIn
√

96.3 86.7 74.4 59.6 57.4 55.2 80.5 66.7 64.3
CoIn++

√
99.3 92.7 88.8 68.2 62.5 60.8 89.7 73.0 70.6

Table 1. Comparison with state-of-the-art semi/sparsely methods on KITTI val split. All methods are based on PV-RCNN. We report the
results of 3D detection with 40 recall positions, respectively.

The excellent performance of this strategy can be attributed
to the successful mining of unlabeled supervised signals by
CoIn in the first stage, and the mined results can still achieve
positive results in the refinement stage. In subsequent ex-
periments, we introduce CoIn’s performance on multiple
detectors: a single-stage detector CenterPoint [39], a two-
stage detector Voxel-RCNN [5], and a multi-stage detector
CasA [31].

4. Experiments

4.1. KITTI Datasets and Evaluation Metrics

Recently, the KITTI 3D object detection dataset [7] has
been used wildly by weakly/semi-supervised and fully su-
pervised 3D object detectors. Following recent works [5,
31, 14], we divided the KITTI training set (7,481 scenes)
into a train split (3,712 scenes) and a val split (3,769
scenes). For evaluation, we generated an extremely lim-
ited annotation split (denoted as the limited split). Specifi-
cally, we randomly select 10% of the scenes from the train
split and kept only one object annotation in each selected
scene. Compared with the original train split, the limited
split requires only 2% of the object annotations. To ensure
a fair comparison, we followed the primary official evalua-
tion metric: 3D Average Precision (AP) under forty recall
thresholds (R40).

4.2. Implementation Details

Our CoIn is trained from scratch in an end-to-end man-
ner. For the KITTI dataset, we trained CoIn with a batch
size of 32 and a learning rate of 0.003 for eighty epochs on
4 RTX 3090 GPUs. We set the similarity threshold, T , at
0.9 (For greater details, see Table 7). For the weights of the
four losses, we set α, β, γ, δ at 0.5, 1, 0.5, 1, respectively.
Following state-of-the-art methods [31, 5, 22, 39, 44], we
adopted a series of data augmentation methods to improve
detection robustness. Specifically, we first applied random
flipping, global scaling, and global rotation to the input

point clouds. Then, to increase the diversity of training
scenes, we performed a ground truth sampling [23].

4.3. Main Results

Comparison with state-of-the-art methods. We con-
ducted experiments to compare our approach with state-
of-the-art semi/sparsely-supervised methods. All methods
adopted PV-RCNN [22] as the baseline detector and evalu-
ated their performance using 1% and 2% annotations with
IoU thresholds of 0.5, 0.25, and 0.25. To obtain the 1%
annotation, 2% annotation was halved. The 3D detection
performance of different methods is presented in Table 1.
For the most important 3D detection benchmark, car class,
our method outperforms previous state-of-the-art methods.
Specifically, at the 2% annotation rate, our method achieves
an increase in AP on easy, moderate, and hard difficulty
levels of 1.1%, 3.5%, and 0.5% respectively. For 1% anno-
tations, our method surpasses SS3D [14] on easy and mod-
erate levels of 2.2%, and 2.3% respectively. For the detec-
tion of pedestrian and cyclist, our CoIn++ achieves better or
comparable results to the state-of-the-art methods.

It is worth noting that, different from the evaluation in
Table 1, fully supervised methods typically use higher IoU
thresholds of 0.7, 0.5, 0.5 for the three object classes. To
validate the effectiveness of our method under 2% annota-
tions, we also evaluated our method on multiple fully super-
vised baseline detectors.

Verification on fully-supervised methods. First, as
baselines, we chose three popular detectors: Center-
Point [39], Voxel-RCNN [5], and CasA [31], which are
based on single-stage, two-stage, and multi-stage detec-
tion frameworks, respectively. Then we trained the three
detectors directly on the limited split (2% annotations)
of the KITTI dataset. The results are reported in Ta-
ble 2. Due to the significant noise caused by indistin-
guishable features and missing sufficient instance-level su-
pervision, the performance of the three baseline detectors
trained on limited split decreases dramatically. By adding

6259



Car-3D AP(R40) Car-BEV AP(R40)Annotation Rate Stage Method Easy Mod Hard Easy Mod Hard
100% 1.CenterPoint* [39] 89.07 80.50 76.49 92.98 89.01 87.50

2% 2.CenterPoint [39] 49.69 31.55 25.91 56.78 42.50 34.14
2% 3.CoIn(Our CenterPoint-based) 72.03 54.82 43.77 87.20 73.54 72.03
2% 4. CoIn++(Our CenterPoint-based) 88.51 75.23 64.83 95.79 88.10 77.39

Improvement (3-2) +22.34 +23.27 +17.86 +30.42 +31.04 +37.89

Single-stage

Improvement (4-1) -0.56 -5.27 -11.66 +2.81 -0.91 -10.11
100% 1.Voxel-RCNN [5] 92.38 85.29 82.86 95.52 91.25 88.99

2% 2.Voxel-RCNN [5] 70.52 54.97 44.82 83.67 71.14 57.71
2% 3.CoIn(Our Voxel-RCNN-based) 84.56 68.47 58.02 92.31 81.01 70.24
2% 4. CoIn++(Our Voxel-RCNN-based) 92.01 79.59 71.58 96.12 88.87 82.57

Improvement (3-2) +14.04 +13.5 +13.2 +8.64 +9.87 +12.53

Two-stage

Improvement (4-1) -0.37 -5.7 -11.28 +0.6 -2.38 -6.42
100% 1.CasA [31] 93.08 86.33 81.86 93.93 90.20 87.72

2% 2.CasA [31] 74.18 57.37 45.05 85.90 73.21 57.23
2% 3.CoIn(Our CasA-based) 89.17 75.32 62.98 95.99 85.02 72.47
2% 4. CoIn++( Our CasA-based) 93.08 82.80 74.67 96.82 91.31 84.00

Improvement (3-2) +14.99 +17.95 +17.93 +10.09 +11.81 +15.24

Multi-stage

Improvement (4-1) 0 -3.53 -7.19 +2.89 +1.11 -3.72
Table 2. Verification on different detectors with full annotations (100%) and extremely limited annotations (2%) on KITTI val split. The
3D object detection benchmark is evaluated by mean average precision with R40, under IoU thresholds 0.7. * denotes the results obtained
by referring to its open source code. ++ indicates the addition of instance-level pseudo-label mining method.

our InF-Mining, MCcont, and LPcont to the three base-
line detectors, our CoIn pipeline improves the baselines on
Car-3D-Mod AP(R40) by 23.27%, 13.5%, and 17.95% re-
spectively. This improvement is attributed to our modules
learning discriminative features and generating high-quality
feature-level pseudo labels. Furthermore, we integrated our
CoIn into an iterative self-training framework [14] to obtain
CoIn++, thereby achieving on-par performance with fully-
supervised methods (See table 2). This achievement is due
to our module providing strong and high-quality supervi-
sion signals for iterative self-training, resulting in a signifi-
cant performance boost.

Under IoU thresholds of 0.7, SOTA sparsely/semi-
supervised methods [14, 27] require 20% or more annota-
tions to approach the performance of fully supervised de-
tectors. In contrast, CoIn++ achieves this using only 2%
annotations.

Evaluation on Waymo open dataset and nuScenes
dataset. To verify the wide applicability of our de-
sign, we conducted experiments on the large-scale Waymo
dataset [25] and nuScenes dataset [2]. We followed the
sparsely annotated generation method in [14] and kept only
a single object annotation in each frame during training.
The results with the Waymo validation set see table 3. Our
method outperforms the baseline by 16.10%/16.05% in the
AP/APH LEVEL 1 metric. The LEVEL 2 results (See Ta-
ble 3) show that our method brings significant improvement
even for objects with fewer than five points. As shown in
Table 4, CoIn significantly improves the performance of
most categories on the nuScenes dataset. The outstanding
results with Waymo and nuScenes further verify the gener-
alization ability of our method on different datasets.

4.4. Ablation Study

Effectiveness of MCcont, InF-Mining, and LPcont. The
effects of different components of CoIn are listed in Ta-
ble 5, where the first row shows the performance of ba-
sic CenterPoint [39] and the last row shows the results of
CoIn. We added different components on CenterPoint to
form three models, for which the results are shown in the
second and the third rows. Benefiting from the indistin-
guishable features that have been distinguished by multi-
class contrastive learning, our proposed MCcont improves
the baseline performance (See the second row of Table 5).
This benefits from that the indistinguishable features have
been distinguished by multi-class contrastive learning. Our
InF-Mining module contributes most to performance and
outperforms the baseline CenterPoint [39] by 17.91% on
moderate. This highlighted performance shows that feature-
level pseudo-labels successfully capture latent unlabeled su-
pervised signals. Based on the InF-Mining module, by com-
bining MCcont and LPcont modules, our CoIn further im-
proves the performance by guaranteeing the correctness of
mined feature-level pseudo-labels.
Comparison with different annotation rates. To demon-
strate the superiority of our method under different annota-
tion rates, we compared our method with CenterPoint [39]
under 10%, 5%, and 2% annotations. The 10% and 5% an-
notation rates are generated by randomly selecting 50% and
25% scenes from the train split and labeling only a single
object for each selected scene. As a comparison reference,
we also presented the results of fully supervised (100% an-
notation rate) CenterPoint [39]. The results on the KITTI
dataset are shown in Table 6. It is seen that, due to the lack
of supervision signals, the performance of the CenterPoint
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VEHICLE PEDESTRIAN CYCLIST
LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2Data Method
AP/APH AP/APH AP/APH AP/APH AP/APH AP/APH

CentePoint 32.15/31.55 27.97/27.45 25.66/21.65 22.00/18.56 59.25/57.84 57.22/55.86
CoIn 48.25/47.60 41.82/41.25 28.25/24.28 23.79/20.45 63.99/62.60 61.71/60.37Sparsely-supervised

Improvements +16.10/+16.05 +13.85/+13.80 +2.59/+2.63 +1.79/+1.89 +4.74/+4.76 +4.49/+4.51
Table 3. Comparison on the Waymo open dataset for vehicle detection, pedestrian detection, and cyclist detection.

Data Method mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

Sparsely-supervised
CenterPoint 8.09 25.77 24.62 2.84 0 15.66 0.0 4.07 3.33 0.29 25.11 4.96

CoIn 12.47 33.79 38.70 6.85 0.0 20.67 7.81 11.51 2.85 3.36 34.85 8.5
Improvement 4.38 8.02 14.08 4.01 0.0 5.01 7.81 7.44 - 3.07 9.74 3.54

Table 4. The multi-class results on the nuScenes val set. ‘C.V.’, ‘Ped.’, and ‘T.C.’ are short for construction vehicle, pedestrian, and traffic
cone, respectively.

MCcont InF-Mining LPcont
Car-3D Benchmark

Easy Mod. Hard

− − − 49.69 31.55 25.91√
− − 53.21 34.37 29.61

−
√

− 65.19 49.46 37.74√ √ √
72.03 54.82 43.77

Table 5. Effects of the different components of CoIn. We report
the mAP with R40, under IoU threshold 0.7.

Car-3D AP(R40)
Annotation Rate Method

Easy Mod Hard
100% CenterPoint [39] 89.07 80.50 76.49

CenterPoint [39] 62.62 47.64 39.59
CoIn 85.95 71.80 62.6410%
Improvements +23.33 +24.16 +23.05
CenterPoint [39] 55.42 41.48 34.56
CoIn 81.64 67.48 58.325%
Improvements +26.22 +26.00 +23.76
CenterPoint [39] 49.69 31.55 25.91
CoIn 72.03 54.82 43.772%
Improvements +22.34 +23.27 +17.86

Table 6. Comparison with different annotation rates (10%, 5%,
2%) on KITTI val split.

drops significantly on all annotation rates. Specifically, un-
der annotation rates of 10%, 5%, and 2%, the AP of Moder-
ate Car decreased by 32.07%, 38.2%, and 46.30%, respec-
tively. By applying our CoIn design, the performance of
CenterPoint is improved by 24.16%, 26.00%, and 23.27%,
respectively.

Similarity Threshold T 0.99 0.9 0.8 0.7 0.6
mAP (%) 38.0 54.8 54.5 54.0 53.9

Table 7. The mAP of 3D-Car-Mod. benchmark with different sim-
ilarity threshold with R40, under IoU threshold 0.7.

Similarity threshold. We compared the performance of the
3D-Car-Mod AP with different similarity thresholds. To
mine the more reliable pseudo-label, we select relatively
large thresholds. However, when T is too large (e.g., 0.99),
it’s difficult for the module to mine feature-level pseudo-
labels, leading to low detection performance, as shown in

Table 7. When T is relatively small (e.g., 0.6), the mAP
drops considerably due to the introduction of more noisy
labels. Finally, we select the similarity threshold, T = 0.9.
Weight selection of MCcont and LPcont. The weights α
and δ determine the contribution of MCcont and LPcont on
the framework. We conducted experiments to find the most
appropriate weights. Specially, we fix the δ as 0 and tune α.
Then, we fix α and tune δ. As shown in Fig. 4, the optimal
results are achieved when α = 0.5 and δ = 0.5.
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Figure 4. Weights Selection for MCcont and LPcont.

5. Conclusion
This paper presented a novel feature-level pseudo-label

mining method, CoIn, for 3D object detection with very
limited annotations. To enhance the discrimination of in-
distinguishable features, CoIn introduces contrast learning
into sparsely supervised 3D object detection. CoIn uses the
similarity between instance features to mine the supervision
information of unlabeled instances. Experimental results on
the KITTI 3D/BEV detection benchmark and the Waymo
Open dataset showed that CoIn improves the performance
of baseline detectors with limited annotations (2%). Af-
ter effectively combining with a self-training strategy, our
CoIn++ achieves on-par performance with fully-supervised
detectors.
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