
Rendering Humans from Object-Occluded Monocular Videos

Tiange Xiang*, Adam Sun, Jiajun Wu, Ehsan Adeli, Li Fei-Fei
Stanford University

Abstract

3D understanding and rendering of moving humans from
monocular videos is a challenging task. Despite recent
progress, the task remains difficult in real-world scenar-
ios, where obstacles may block the camera view and cause
partial occlusions in the captured videos. Existing meth-
ods cannot handle such defects due to two reasons. First,
the standard rendering strategy relies on point-point map-
ping, which could lead to dramatic disparities between the
visible and occluded areas of the body. Second, the naive
direct regression approach does not consider any feasi-
bility criteria (i.e., prior information) for rendering under
occlusions. To tackle the above drawbacks, we present
OccNeRF, a neural rendering method that achieves bet-
ter rendering of humans in severely occluded scenes. As
direct solutions to the two drawbacks, we propose surface-
based rendering by integrating geometry and visibility pri-
ors. We validate our method on both simulated and real-
world occlusions and demonstrate our method’s superi-
ority. Project page: https://cs.stanford.edu/

˜xtiange/projects/occnerf/

1. Introduction
Rendering 3D human bodies from a sequence of obser-

vations is of great interest in various communities, includ-
ing robotics [70], motion analysis [16], and healthcare [19].
This task is challenging, since one must recover the com-
plete human body with complex textures and poses from
sparse partial observations. It is usually cumbersome to ac-
quire images of the same human object from multiple cam-
era angles simultaneously; hence, capturing a monocular
video from a single camera is more common and feasible.

The task of rendering humans from a monocular video
is not new. Progress so far mainly focuses on rendering
quality [51, 66] and rendering efficiency [49, 28]. How-
ever, most existing neural rendering methods assume that
the human object is placed in a scene with a clear view of
the entire body without any external interference. In con-
trast, real-world environments often contain undesired ob-
stacles that contaminate training data and impact the ren-
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Figure 1. Object obstacles in the scene may cause severe occlu-
sions in the rendered/captured videos, imposing additional chal-
lenges into the rendering process. Top row: Ideal scene with no
defects and clear view of the body; Bottom row: Real-world scene
with undesired obstacles and occluded body parts.

dering quality (See Figure 1). These real-world occlusions
pose significant challenges for training when using only
monocular videos, where no other camera angles can be
used to provide complementary information. As a result, a
direct application of previous neural rendering methods on
object-occluded videos leads to subpar performance. Opti-
mizing a neural radiance field is difficult under occlusions.
There is often no ground truth associated with the occluded
area. Additionally, radiance fields are typically optimized
in a scene-specific manner; that is, no external information
can and should be used to fill in the occluded areas.

Two major drawbacks of previous methods impair their
capabilities to train on object-occluded videos. First, the
prior work does not account for local geometry cues in
their rendering process. Following the point-based render-
ing paradigm as in NeRF [43], most previous methods ren-
der color and density values of a ray sample by only look-
ing at a single 3D coordinate. However, we explain in sec-
tion 3.2 that this basic strategy may lead to dramatically
different rendering results even in very close positions. Sec-
ond, methods suffer from not properly incorporating priors.
In the monocular video setting, geometry (e.g., SMPL [40])
and visibility priors can describe a complete human geome-
try and indicate which body parts are visible to the camera.

In this work, we propose novel methods for dealing with
the above drawbacks, allowing us to accurately render oc-
cluded humans from monocular video. We first present a
surface-based rendering strategy that determines the radi-
ance of each 3D ray sample by conditioning it on a wide re-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3239



gion of the human body’s surface. A geometry prior is used
to discretely parameterize the surface segments. We then
collect visibility frequencies on the human body through
training frames and formulate them as attention maps for
better aggregation of the surface regions. Finally, we design
a loss function to encourage the network to output high-
density values for positions within the human body.

In summary, our contributions are three-fold: (i) We are
the first to study dynamic human rendering under real-world
settings with severe occlusions. (ii) We propose novel meth-
ods that include surface-based rendering, a reformulation of
body part visibility frequency as attention, and a complete-
ness loss to enable human rendering from object-occluded
monocular videos. (iii) We empirically demonstrate that our
methods achieve significant quantitative and qualitative im-
provements compared to the previous state-of-the-art, yield-
ing the first baseline in this topic.

2. Related Work
3D Human Modeling. Reconstructing the appearance and
geometry of humans has always been challenging. From
[42, 12, 15], techniques have been consistently designed
for high-quality and efficient human modeling. Traditional
methods mainly relied on SMPLify [6] or Video-avatars
[1] to regress SMPL [40] to parameterize a structured hu-
man body. More complex networks were subsequently de-
signed that can model 3D humans based on temporal priors
[31, 33], based on depth [27, 55, 23], or multiple human in-
stances simultaneously [29, 59, 60, 71]. Although this line
of methods can generate a reasonable human body mesh
fast, using parametric SMPL models limit their ability to
achieve photo-realistic view synthesis.
Neural Radiance Field for Human Rendering. Since the
emergence of Neural Radiance Fields (NeRF) [43], differ-
ent extensions have been recently developed to enable high-
quality rendering of static scenes [22, 57, 2, 3, 63, 61, 58,
44], moving objects [18, 36, 47, 48, 52, 46], and dynamic
humans [51, 4, 7, 11, 9, 13, 14, 17, 20, 21, 26, 27, 35, 37,
45, 50, 62, 64, 68, 49, 28, 30]. NeRF predicts the color and
density of each ray sample point in a 3D space and aggre-
gates them together through volume rendering (more details
are in section 3.1). This approach enables the capture of in-
tricate lighting effects and textural details that are typically
difficult to model in traditional methods.

Our work is built upon HumanNeRF [66] due to its state-
of-the-art rendering quality for monocular videos. Human-
NeRF maintains a static T-pose human body as the canoni-
cal space and learns a motion field [65] that maps the canon-
ical representation to every frame of the video in the obser-
vation space (more details are in section 3.1). We note that
a concurrent work, SelfNeRF [49], shares a similar regres-
sion schema as ours. However, their method is designed
particularly for fast rendering and compromises rendering

quality. Moreover, all of the above approaches were de-
veloped on clean training data only, where body parts are
assumed to be clearly demonstrated in the monocular video
without any occlusions. On the other hand, our work aims
to render humans under occlusions.
Occluded Human Modelling. Rendering objects under all
kinds of real-world defects, especially partial occlusions,
is a long-standing research problem. Early works sought
to estimate human poses from occluded images and videos
[56, 73, 34, 5], while more recent works [54, 59, 69, 34]
learn both SMPL shape and pose priors directly from oc-
cluded images and videos. The generated SMPL parameters
from these robust methods can be used as good geometric
prior for a subsequent rendering process.

However, optimizing a NeRF from occluded images is
still an unsolved problem. There are very few works that
were specifically designed for rendering under occlusions.
NeuRay [38] was proposed to regress not only the radiance
but also a feature vector of every ray sample to indicate vis-
ibility. This enables the optimization of the radiance field
to focus on visible features and reduce interference from
occlusions. Ha-NeRF [10] presents an appearance halluci-
nation module to handle time-varying appearances and an
anti-occlusion module to decompose the static subjects for
visibility accurately. Unfortunately, these existing methods
are not capable of handling dynamic objects, and the multi-
view inputs used in past work actually make it easier to learn
under occlusions. In this work, we consider visibility as an
additional prior to assist in rendering under occlusions. Our
work is the very first in this field to handle occlusions for
rendering dynamic objects from only a monocular video.

3. Methods
In this section, we first review preliminaries and back-

ground in NeRF [43] and HumanNeRF [66] (section 3.1).
We then present our OccNeRF by introducing a new render-
ing strategy (section 3.2), a formulation of visibility into at-
tention (section 3.3), and a novel loss function (section 3.4)
to ensure high rendering quality as well as geometry com-
pleteness under occlusions. An overview of our OccNeRF
is shown in Figure 2.

3.1. Preliminaries and Background

Neural Radiance Field [43]. Consider a (bounded) 3D
scene. NeRF learns a regression function F (usually an
MLP) that takes the encoded coordinates of a 3D point
x ∈ R3 in the scene as input, and outputs the corresponding
color c and density σ at that position:

c, σ = F(γ(x)), (1)

where γ(·) is an encoding function. We refer to the above
point-to-point mapping as point-based rendering. Instead
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Figure 2. OccNeRF functions on video frames and optimizes a neural radiance field for synthesizing novel views of an object-occluded
human. With a pre-computed body pose, we first adopt the motion field to map observable ray samples x into coordinates x̂ in a canonical
space. Nearest parameterization vertices {vi} of every x̂ are searched and conditioned by our surface-based rendering method. During
training, we iteratively update the attention scores {a} for all {v} as indications of their visibility. This ensures more attention on frequently
visible vertices to improve rendering quality. The blended vertex v̂ along with its signed distance to x̂ are jointly encoded via a 4D hash
grid before being fed into the regression MLP along with the encoded vertices. Photometric and perceptual constraints are enforced against
visible pixels, while an additional loss function is designed to encourage geometry completeness in occluded areas.

of sampling points x randomly in the scene, NeRF casts
rays r towards the directions π from the camera origin o
to every pixel, and sample x on the rays uniformly. Then,
NeRF renders the pixel by aggregating the regressed color
and density at each x via volume rendering [39]:∑

i

α(xi)
∏
j<i

(1− α(xj))c, (2)

where α(xi) = 1 − exp(−σiδi), xi = o + ziπ, zi is the
z-axis position of ray samples, and δi = zi+1 − zi is the
distance between two samples along the ray.
HumanNeRF [66]. HumanNeRF is a method based on
NeRF that can render humans from monocular videos by
representing them as neural fields. The method first defines
a moving human in a static canonical space with 3D coor-
dinates x̂, and warps the human in different dynamic poses
by warping the canonical body pose p to the observation
space. This warping process also defines the transformation
of 3D coordinates in the two spaces:

x̂ = T (p,x), (3)

where T is a network that maps x in the observation space
to corresponding coordinates x̂ at the canonical space, de-
noted as the motion field. The motion field achieves the
mapping by performing a weighted sum of a set of K mo-
tion bases defined by rotations Ri and translation ti of the
ith bone of the human body:

x̂ =

K∑
i

wi(x)(Rix+ ti), (4)

where Ri and ti can be directly computed from p. wi

serves as the weights in the observation space, which can

be approximated using the weights defined in the canoni-
cal space. Similar to [67], we removed both the non-rigid
motion and the pose correction part of the motion field.

3.2. Surface-based Rendering

Motivation. Although HumanNeRF and its variants can al-
ready achieve decent rendering quality in an occlusion-free
scene, they fail to excel when obstacles block the view of
the camera that causes severe occlusions. We attribute this
failure to the point-based rendering strategy (reviewed in
section 3.1). Given the ray samples at discrete 3D coor-
dinates x in a continuous 3D space, even a mild variation
between two coordinates xa and xb can lead to dramatic
disparities on the outputs. Let there be no overlaps between
the input distributions {xa} and {xb}:

{xa} ∩ {xb} = ∅ | xa ̸≡ xb. (5)

Then, in an occluded scene, when only xa is visible to the
camera, non-overlapping inputs may yield huge output dif-
ferences, even at very close locations. This is because xa

has visible supervisions while xb does not, which leads to
unexpected artifacts and unstable rendering quality at oc-
cluded regions.

This motivates us to enlarge the range of the inputs to
cover a wider range of 3D space rather than a single 3D
coordinate. We expect that a new rendering strategy with
range-to-point mapping will be able to reduce the output
difference at adjacent locations:∫

R3

min[N (xa),N (xb)]dx ≫ 0, (6)

where N (xa) and N (xb) are 3D sub-regions correspond-
ing to the target coordinates xa and xb. With a focus on
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Figure 3. Left: Point-based rendering takes as input a single 3D
point x that has no overlap with nearby (but not identical) points,
and is poorly conditioned at occluded areas; Right: Our surface-
based rendering approach takes as input a 3D sub-regions N (x)
at location x that yields a large overlap at adjacent locations for
better conditioning at occluded areas.

human rendering, we define the sub-regions as continuous
segments on the body surface. We name this rendering strat-
egy surface-based rendering. A high-level comparison to
the standard point-based rendering is outlined in Figure 3.
Parameterization. It is difficult to process continuous vari-
ables, especially ones with irregular distributions, which
is the case with human surfaces. We approach this chal-
lenge by using a discretized parameterization of the contin-
uous 3D sub-regions. Specifically, we use the pre-computed
SMPL [40] mesh as a geometry prior to roughly outline the
surface of the human body. The surface segments are then
parameterized by the k nearest mesh vertices {v1, · · · ,vk}
when using the target coordinates x as queries. We denote
these discrete neighboring coordinates as parameterization
vertices. With our surface-based rendering approach, we
now reformulate Equation 1 as a hybrid combination of both
the target coordinate and the parameterized surface:

c, σ = F( γ(x̂)︸︷︷︸
point term

∥ ϕ({γ(v1), · · · , γ(vk)})︸ ︷︷ ︸
surface term

), (7)

where ϕ is a function that aggregates all {vi} of a query
x and ∥ denotes concatenation. The above formulation re-
quires all parameterization points v to be as accurately laid
on the human body as possible. However, this is difficult for
the coarsely structured SMPL mesh with potential approxi-
mation errors. Therefore, we rely on the inaccurate SMPL
mesh only as an initialization and enable the positions of v
to be optimized jointly with the network. This formulation
is analogous to area sampling [41] for ray tracing, which not
only integrates samples along the ray but in vicinity area.
Multi-Scale Representations. Choosing the area of sur-
face segments and the number of parameterization vertices
k per query is another issue. A small area leads to less over-
lap and more unstable results, while a large area leads to
more overlap of {vi} at two query locations but a more
inefficient search of nearest neighbors. Taking inspiration
from the multi-scale mechanism used in I-NGP [44], we
construct the set of parameterization vertices by finding the
nearest neighbors on the SMPL mesh at multiple scales. We
define the default SMPL mesh at the finest scale and itera-
tively down-sample the mesh with sparse vertices through

furthest point sampling [53] with a ratio of 0.25 for 3 itera-
tions. In practice, we set a small k = 5 at all 4 scales, which
enables an efficient span over a large surface area.
Surface-Aware Regression. The additional operations in-
troduced above inevitably slow down network training.
Similar to [49, 28], we adopt a hash grid [44] in the canoni-
cal space as our encoding function γ(·) instead of the stan-
dard frequency-based positional encoding [43]. Further-
more, for better awareness of the human body surface, we
represent a query point in the canonical space x̂ by the com-
bination of its closest parameterization vertex v̂ and their
signed distance d. For simplicity, we reuse the previously
searched k nearest vertices and blend them through normal
similarities to form the closest vertex v̂:

v̂ =

∑k
i |cos(x̂,vi)|vi∑k
i |cos(x̂,vi)|

, (8)

where cos(x̂,vi) denotes the cosine similarity between the
vector x̂ − vi and the normal vector at vi. After obtaining
v̂, we can easily determine d between v̂ and x̂ via a mul-
tiplication with the normal vectors at vi. Inspired by [49],
we then rely on a 4D hash grid to encode the combination
[v̂,d]. Note that our formulation differs from [49], which
encodes a 4D feature vector for every nearest neighbor first
and then blends the feature vectors afterward. Our imple-
mentation encodes every x̂ only once.

With the above formulation, we can rewrite the point
term γ(x̂) in Equation 7 into γ([v̂,d]). The surface term
is formulated with visibility priors, as discussed below.

3.3. Visibility Attention

In occluded videos, some parts of the human body may
be more frequently visible by the camera than others. As a
result, more supervision is provided for these highly visible
parts which makes F fit on these visible areas much better.
When conditioning on a wide range of surfaces, we hope
to pay more attention to the highly visible vertices than the
hardly visible ones. We achieve this through an attentive
aggregation of the neighbor vertices {vi} via the function ϕ
(Equation 7) based on their visibility frequency.

Specifically, for each of the vertices vi, we maintain a
separate attention score ai to be updated on-the-fly as the
training proceeds. Instead of recording the visibility fre-
quency of all sample points in the camera rays, only the
termination point t per ray should be considered. However,
it is computationally expensive to find the exact intersection
point between the camera rays and the human body. We ap-
proximate t as the sample point with the highest α along
each of the rays, such that t = x̂argmax{α}. For each t,
we again rely on the k nearest vertices {vi} found earlier
to determine the visible area on the body. At each training
step, for all neighbors {vi} of every t, we increment their
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Figure 4. Formulating visibility as attention. Highly visible
body parts along with associated parameterization vertices are ex-
pected to correspond to more attention.

corresponding attention scores {ai} by 1. Taking visibility
into account, Equation 7 can be reformulated as:

c, σ = F( γ([v̂,d])︸ ︷︷ ︸
point term

∥
∑k

i aiγ([vi,d
(vi)])∑k

i ai︸ ︷︷ ︸
surface term

), (9)

where the hash grid encoding γ(·) is shared for both point
and surface. Recall that all vertices v have learnable coordi-
nates, and we compute their signed distance d(vi) w.r.t the
vertices on the initial SMPL mesh. The updating process of
our visibility attention is demonstrated in Figure 4.

3.4. Loss Functions

Following HumanNeRF, we mainly supervise the train-
ing of OccNeRF through pixel-wise photometric loss LMSE
and LPIPS [72] loss LLPIPS to encourage high-quality ren-
dering at the visible parts. Unfortunately, these constraints
do not apply to the occluded parts, where supervisions are
hardly available. Hence we design another constraint to ex-
plicitly penalize renderings with incomplete geometry and
encourage high-density values within the human body. The
previously computed signed distances d are good approxi-
mations of the position of ray samples w.r.t the SMPL mesh.
Instead of only enforcing the samples near the body surface,
we apply the constraint to all samples with negative d. Our
completeness loss Lcomp is therefore defined as:

Lcomp = m · exp(ReLU(−ReLU(σ) + β)− β), (10)

where m = 1 if d < 0 and 0 otherwise, and β = 10 is a
hyper-parameter. Intuitively, it is designed to penalize in-
completeness inside the human body. We use ReLU to clip
negative σ in the range of [−β, 0] and use exponential trick
to decrease penalty for high densities. OccNeRF is super-
vised by a weighted combination of the three losses:

λ1LMSE + λ2LLPIPS + λ3Lcomp. (11)

4. Experiments
4.1. Datasets

ZJU-MoCap [51]. This dataset contains humans perform-
ing a wide variety of activities. Following HumanNeRF

[66], we mainly evaluate our methods on the 6 subjects
(377, 386, 387, 392, 393, 394) for direct comparisons.
Videos captured by camera 1 are used as training data, and
the other 22 cameras are used for evaluation. Since the Mo-
Cap data was captured in a lab environment without the in-
terference of any obstacles, we simulate occlusions to be
applied to the training videos. Without losing generality, we
simulate the presence of a box-like obstacle right in front of
the camera that causes a rectangular area at the center of the
frame to be occluded. To do so, we first determine a center
point of the valid pixels from video frames, and then mask
out 50% of these pixels (demonstrated in Figure 1). Our
simulated obstacle and the occluded area are not intended
to be moving along with the subject. Since there is no obvi-
ous horizontal movement of subjects, we further expect that
they can move out of the occluded area for a short time and
therefore only apply the mask to 80% of the frames.
OcMotion [24]. This dataset contains humans interact-
ing with various objects, subject to real-world occlusions.
There are a total of 48 videos, and each video was captured
at 6 different camera poses. We evaluated on 2 videos with
different extents of occlusions. Specifically, we selected
540 frames from video 14, camera 4 and 500 frames from
video 11, camera 2 as benchmarks for mild and severe real-
world occlusions respectively. For both benchmarks, we use
the camera matrices, human body poses, and SMPL param-
eters provided by the dataset, which were computed by [25]
directly on the occluded videos. We provide more results
in supplementary materials. We also show the robustness of
our method to inaccurately estimated priors.

4.2. Comparison and Metrics

We mainly compare our method with HumanNeRF [66],
the state-of-the-art human rendering method. We also com-
pare against a baseline method Neural Body [51] in supple-
mentary materials. Note that all methods use identical prior
information, including pre-computed binary human mask
and SMPL/camera parameters. The extra visibility prior
used in OccNeRF can be calculated from the videos.

Methods are compared qualitatively and quantitatively.
For qualitative evaluations, we directly visualize novel
views to assess the quality of the renderings. For quantita-
tive evaluations, we rely on the commonly used peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) met-
rics [51, 66, 49]. Previous methods computed these metrics
on full-scale images, which contain a majority of transpar-
ent backgrounds. These regions are identical between pre-
dictions and references, which inflate the overall metrics.
To focus on the quality of rendered humans, we compute
metrics on the pixels with non-zero accumulated α. For
OcMotion, since there is no ground truth for real-world oc-
clusions, we compute the metrics on the visible area only.
We refer to the standard metrics as PSNRfull/SSIMfull and
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Occluded input HumanNeRF HumanNeRFReference ReferenceOursOurs
Novel View Synthesis 1 Novel View Synthesis 2

Figure 5. Qualitative results on simulated occlusions in the ZJU-MoCap dataset [51].

modified metrics as PSNRvis/SSIMvis.

4.3. Implementation Details

Using the loss formulated in Equation 11, we optimize
OccNeRF with the Adam optimizer [32]. We set the learn-
ing rate to 5 × 10−4 for the regression MLP F , 1 × 10−4

for the parameterization vertices v, and 5 × 10−5 for the
rest. λ1, λ2, and λ3 were set to 0.2, 1.0, and 10.0 re-
spectively. We adopted patch-wise sampling of rays, each
with 128 sample points. Due to the usage of the hash grid,
OccNeRF converges faster than HumanNeRF. As a result,
we trained our models for only 10K iterations while Hu-

3244



Occluded input HumanNeRF HumanNeRFReference ReferenceOursOurs
Novel View Synthesis 1 Novel View Synthesis 2

Figure 6. Qualitative results on real-world occlusions in OcMotion dataset [24].

manNeRF models for 40K iterations.

4.4. Results on Simulated Occlusions

Qualitative comparison on ZJU-MoCap videos with sim-
ulated occlusions between HumanNeRF and OccNeRF is
shown in Figure 5. OccNeRF is capable of rendering a
mostly completed body geometry with sensible details filled
in at occluded areas. On the contrary, HumanNeRF fails to
recover occluded body parts and produces significant arti-
facts in the occluded areas. Additionally, the quantitative
results in Table 1 show that OccNeRF surpasses Human-
NeRF for all subjects and under both metrics by a great
margin. Note that this straightforward simulation of occlu-
sions is in fact uncommon in real-world settings, where ob-
stacles should have various shapes and humans are able to
move across the entire scene with interactions with obsta-
cles. More comparisons against Neural Body [51] can be
found in supplementary materials.

4.5. Results on Real-world Occlusions

For better validating on real-world scenes, we present
the rendering results on OcMotion videos in Figure 6. For
the video with mild occlusions (top row), OccNeRF out-
performs HumanNeRF with a higher fidelity rendering of
texture details and much fewer artifacts at non-human re-
gions. For the video with severe occlusions (bottom row),
OccNeRF is still able to generate novel views with high-
level rendering quality. However, HumanNeRF fails com-
pletely in such challenging cases when most body parts are
occluded. This validates the superiority of OccNeRF in
real-world scenes. OccNeRF also exceeds HumanNeRF on
quantitative benchmarks as indicated in Table 1. Note that
the metrics were computed on visible pixels in training im-
ages only, which ignored most of the artifacts HumanNeRF

generated. More comparisons on real-world scenes can be
found in supplementary materials.

4.6. Ablation Studies

In this section, we conduct additional experiments by
simply removing each of the proposed components from the
OccNeRF framework to prove their effectiveness. Quantita-
tive metrics are also presented in the figures. More ablation
studies can be found in supplementary materials.

Occluded input HumanNeRF w/o visibility attention Full OccNeRF

PSNR: 13.38
SSIM: 0.6544

PSNR: 13.59
SSIM: 0.6256

PSNR: 14.56
SSIM: 0.6814

Figure 7. Our visibility attention improves rendering quality with
more confident predictions at occluded areas with fewer blurs.

Impact of Visibility Attention. Our ablation studies start
by proving the benefits of reformulating visibility priors as
attention maps to be applied during surface-based render-
ing. Figure 7 shows that when disabling the attentive aggre-
gation from Equation 9, the model becomes less confident
in occluded areas, resulting in more blurs.
Impact of Lcomp. The proposed completeness loss Lcomp
is designed to encourage high-density values at locations
inside the SMPL mesh. When removing this loss, Figure 8
shows that our method cannot render a complete geometry
anymore. However, with our surface-based rendering, we
still yield better results than HumanNeRF.
Impact of Surface-based Rendering. As discussed in sec-
tion 3.2, we claimed that our proposed rendering strategy
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ZJU-MoCap Subject 377 Subject 386
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

HumanNeRF [66] 11.29 0.5649 22.15 0.9612 9.491 0.4877 19.89 0.9531
OccNeRF 13.23 0.6097 23.43 0.9642 13.44 0.5974 23.66 0.9639

ZJU-MoCap Subject 387 Subject 392
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

HumanNeRF [66] 9.551 0.4140 19.47 0.9408 11.04 0.5290 21.01 0.9543
OccNeRF 13.27 0.5243 22.26 0.9513 13.00 0.5692 22.13 0.9575

ZJU-MoCap Subject 393 Subject 394
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

HumanNeRF [66] 10.86 0.4483 20.92 0.9476 10.55 0.4764 20.56 0.9489
OccNeRF 12.00 0.4655 21.58 0.9489 13.12 0.5317 22.06 0.9532

OcMotion Video Mild Video Severe
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

HumanNeRF [66] 13.38 0.6544 21.18 0.9680 11.40 0.4545 17.96 0.9470
OccNeRF 14.56 0.6814 21.50 0.9695 14.95 0.5998 21.16 0.9692

Table 1. Quantitative comparison on the ZJU-MoCap and OcMotion datasets. We color cells that have the best metric values.

PSNR: 9.551
SSIM: 0.4140

PSNR: 12.21
SSIM: 0.5092

PSNR: 13.27
SSIM: 0.5243

Occluded input HumanNeRF w/o ℒ!"#$%&'&(&)) Full OccNeRF

Figure 8. Our Lcomp improves geometry completeness a step fur-
ther when combined with the proposed rendering strategy.

enables F(·) to condition on inputs better with more over-
laps. Here we validate the necessity of such a design by re-
moving it from the framework. We, however, still keep the
hash grid encoding to see its impact. According to Figure 9,
the hash grid encoding alone is not able to achieve compara-
ble performance to our full OccNeRF. It has to be equipped
together with the proposed rendering strategy. This vali-
dates that major performance improvements do come from
surface-based rendering.

5. Discussions and Conclusion

Discussions. It is difficult to optimize scene-specific neu-
ral radiance fields under occlusions. There is neither a
ground truth for the occluded parts nor external information
from different scenes to inpaint the missing area. OccNeRF
achieves rendering of the occluded regions by referring to
nearby visible correspondences and enforcing complete ge-
ometry. However, OccNeRF can yield subtle artifacts. This
is because we have more parameters to optimize and fewer
training data due to occlusions. Since no external informa-

PSNR: 9.551
SSIM: 0.4140

PSNR: 10.86
SSIM: 0.4734

PSNR: 13.27
SSIM: 0.5243

Occluded input HumanNeRF w/o surface rendering Full OccNeRF

Figure 9. Our surface-based rendering method fills in the occluded
parts with both accurate geometry and appropriate appearance.

tion is accessible, OccNeRF is not capable of inpainting an
area that has never been seen in the video. The above limita-
tions can be overcome with a better geometry prior [27] and
a cross-scene training strategy [8]. Although the hash grid
encoding accelerates the convergence at training, OccNeRF
runs relatively slower than HumanNeRF at inference.
Conclusion. We proposed OccNeRF for rendering hu-
mans from object-occluded monocular videos. Most exist-
ing methods assume clear views of the entire human body
without any interference, which is not feasible in real-world
scenes. We designed a surface-based rendering strategy that
incorporates geometry and visibility priors to assist render-
ing under occlusions. Moreover, our novel loss function is
also able to help maintain geometry completeness. In our
experiments, we compared OccNeRF against the state-of-
the-art method under both simulated and real-world video
occlusions. Our state-of-the-art results set up a new bench-
mark in this field of research.
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