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Abstract

In this paper, we revisit the limitations of anchor-based
lane detection methods, which have predominantly focused
on fixed anchors that stem from the edges of the image, dis-
regarding their versatility and quality. To overcome the
inflexibility of anchors, we decompose them into learning
the heat map of starting points and their associated di-
rections. This decomposition removes the limitations on
the starting point of anchors, making our algorithm adapt-
able to different lane types in various datasets. To en-
hance the quality of anchors, we introduce the Large Ker-
nel Attention (LKA) for Feature Pyramid Network (FPN).
This significantly increases the receptive field, which is cru-
cial in capturing the sufficient context as lane lines typ-
ically run throughout the entire image. We have named
our proposed system the Anchor Decomposition Network
(ADNet). Additionally, we propose the General Lane IoU
(GLIoU) loss, which significantly improves the performance
of ADNet in complex scenarios. Experimental results on
three widely used lane detection benchmarks, VIL-100, CU-
Lane, and TuSimple, demonstrate that our approach outper-
forms the state-of-the-art methods on VIL-100 and exhibits
competitive accuracy on CULane and TuSimple. Code
and models will be released on https://github.com/
Sephirex-X/ADNet.

1. Introduction
Recently, the utilisation of artificial intelligence technol-

ogy for the field of autonomous driving has drawn large at-
tention from academia and industry. As a crucial part of au-
tonomous driving system, Advance Driver Assistance Sys-
tem (ADAS) requires vehicles to respond timely and accu-
rately to changes in the environment. Lane line is a vital
part of the vehicle sensing the environment, as the ADAS
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Figure 1: Illustration of different dynamic anchor proposal
methods. (a) illustrates two common lane prediction scenar-
ios. In the first row, the lane lines originate from the edges
of the image, while in the second row, the lane lines can
emanate from any location within the image. (b) proposes
anchor dispersedly [49], resulting in low anchor quality.
This anchor proposal method is adequate on first row sce-
narios but oversimplistic on the second (emphasised by yel-
low oval). The points and lines represent start points and
anchors respectively. (c) we propose anchor concentra-
tively, possible start points are shown on activation map,
anchors can merge from the whole image, which ensures
anchor quality and flexibility.

needs the shape of lane lines to keep the vehicle on track.
With the advancement of CNN, recent studies on lane

shape detection have made great progress on either accu-
racy [35, 40, 49] or real-time performance [31, 32, 24].
Anchor-based methods have shown superior accuracy and
efficiency compared to other methods on popular bench-
marks such as [29, 2, 37]. However there are still challenges
to the wide application of anchor-based methods.

The first issue is the flexibility of anchors. Previous
anchor-based methods [35, 21, 49, 31] have posited that
lane lines can only originate from the three edges of an
image (left, bottom, right). While this assumption lever-
ages prior information of lane lines to achieve favourable
accuracy and speed, it is oversimplistic as lane lines do not
always start from the three edges due to the obstructions
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such as vehicles in adjacent lanes or a vehicle’s front hood
(shown on Figure 1(a)).

Another problem is the low quality of anchors. Anchor-
based methods [21, 35] usually employ an approach of fixed
anchors, while recent method [49] adopt a dynamic ap-
proach with dispersed anchor prediction. This dispersed
prediction (shown on Figure 1(b)) is possibly unreliable
when the camera resolution is varying, particularly in cases
where lane lines do not start from the edges. Additionally,
the inherent physical characteristics of lane lines, such as
their slenderness and continuity, presenting significant chal-
lenges in capturing their geometric features. However, most
existing approaches are limited in small kernel sizes which
present an obstacle to accurately capture the whole feature
descriptors of lane lines.

In this paper, to address these problems, we introduce
Anchor Decomposition Network (ADNet). Specifically, to
make anchors flexible, we propose Start Point Generate
Unit (SPGU) which decomposes them into predicting the
position of the start points and its associated direction on a
global scale by the probability map (heat map). To enhance
anchors’ quality, we realise the crucial role of large recep-
tive in capturing slender and continue lane lines. Therefore
we introduce a Large Kernel Attention (LKA) module and
integrate it with the Feature Pyramid Network (FPN). Since
we predict anchors in a concentrative way (shown in Fig-
ure 1(c)), the location is invariant to the density of validated
pixels and thus the anchors’ quality and flexibility can be
mutually guaranteed.

We conduct extensive experiments on three lane detec-
tion benchmarks: VIL-100 [47], CULane [29] and TuSim-
ple [37]. Comparing along with state-of-art methods, our
approach shows excellent performance on all datasets. In
particular, on VIL-100 dataset where segmentation-based
methods always perform superior to the anchor/keypoint-
based counterparts, our framework outperforms all exist-
ing state-of-art methods, making the anchor-based method
a more generalised pipeline. The main contributions of this
paper are summarised as :

• We emphasise the importance of anchor flexibility
for the anchor-based approaches by explicitly decom-
posed learning of the heat map of starting points and
their associated directions. The decomposition makes
our algorithm adaptable to different lane types in more
scenarios.

• To our best knowledge, we are the first to investigate
the effectiveness of Large Kernel mechanism on lane
detection task to guarantee the anchor quality, as the
lane lines usually cover the entire image which often
require significantly large context to be accurately cap-
tured.

• We rethink the limitations of LIoU loss and propose

our own General Line IoU (GLIoU) loss tailor for
anchor-based lane detection method on complex sce-
narios. Furthermore, we utilise the explicit physical
modelling by anchor decomposition to guide the learn-
ing of kernel offsets in the proposed Adaptive Lane
Aware Unit (ALAU).

• Experiments on main benchmarks show excellent
trade-offs on performance and speed compared with
SOTA methods, outperforming all recent methods on
VIL-100 dataset.

2. Related Work

2.1. Segmentation-based methods

In segmentation-based methods, the task of identify-
ing lane lines has been converted to a per-pixel prediction
task. [29] first introduces a spatial mechanism passing mes-
sages between pixels row-wise and column-wise that fails
to perform in real time. [48] further proposes a recurrent
aggregator fully utilised lane shape priors to obtain better
performance. On [1], additional affinity fields are predicted
simultaneously with the binary segmentation map, which is
used in the decoder to cluster lane pixels. Segmentation-
based method can achieve high accuracy when lane lines
are visible, but it’s unstable in complex traffic scenarios and
inefficient.

2.2. Anchor-based methods

Anchor-based & detection-based methods define lane
lines in a similar way. They divide an image into slices
or cells, and then convert the lane detection task into ei-
ther offsets’ regression on each slice or a row-wise classi-
fication task. [31] first predicts lane lines via a simple lin-
ear layer using row-wise classification. [21] improves the
representation of lane lines by converting cell representa-
tion into anchor representation, and identifying lane shape
through regression of the offsets on every slice between an-
chors and ground truth. [35] further enhances this formu-
lation by adding anchor-based pooling and a lane attention
mechanism to it. [32] proposes a hybrid anchor system to
improve the performance of UFLD. [24] proposes a condi-
tional convolution and RIM migration to solve the instance-
level discrimination problem on lane detection. [49] devel-
ops ROIGather to fuse lane context from different layers
and, for the first time, changes the anchor-based formula-
tion into an anchor-free manner, achieving state-of-the-art
performance on multiple benchmarks.

Anchor-based and detection-based methods heavily rely
on the position of anchors. On one hand, this can bring
higher accuracy since anchors contain prior information on
lane lines. On the other hand, these inherent properties lead
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Figure 2: Overview of our ADNet. Lane context first extracted by the encoder and enhanced by FPN embedded with Large
Kernel Attention (LKA), which plants after FPN’s lateral layer to reduce computation cost. Then, low-level context F ′ is
delivered into Start Point Generate Unit (SPGU) to generate start point guided anchors and guidance map, while high-level
context F is further aggregated through Adaptive Lane Aware Unit (ALAU) with the help of the auxiliary guidance map.
After pooling, we optimise lane lines via General Lane IoU loss.

to some shortcomings, such as the starting point of the an-
chor may not always be located on the three edges of the
image, limiting its application.

2.3. Keypoint-based methods

Keypoint-based methods treat lane lines’ prediction as
a key point estimation task. Usually, the algorithm will
first predict all the possible key points that most likely be-
long to lane lines, and follow up with a post-process of
assigning different points to different lanes. [19] predicts
key points on lane lines and distinguishes each instance by
embedding features of predicted points. [33] predicts local
key points in a bottom-up manner and refiners key points’
location via its offsets between adjacent points. [40] clus-
ters points via offsets between key points and start points,
and a modified deformable convolution network [4] to ex-
tract holistic lane features. Lane instances are predicted by
keypoint-based methods via low-efficient post-processing
of key points from the heat map, moreover, the accuracy
of the algorithm highly relies on the resolution of the in-
put image, together with time-consuming post-processing,
making keypoint-based methods hard to strike a balance be-
tween latency and accuracy.

3. Approach
The overall structure is illustrated in Figure 2. Our

algorithm contains four parts: Start Point Generate Unit
(SPGU), Adaptive Lane Aware Unit (ALAU), General Lane
IoU loss and Large Kernel Attention (LKA).

3.1. Start point generate unit

Motivation. On lane shape detection tasks, predefined
anchors have direct affection toward the anchor-based &
detection-based method [35, 21]. Literature like [49, 3] per-
form in an anchor-free manner but they work under the as-
sumption that lane line rays from three edges of the image,

therefore, limiting its application.
Structure. The ultimate goal is to form an anchor by

predicting the start point location and theta given downsam-
pled feature map F ′ ∈ RH′

f×W ′
f , which can be formulated

as p(xstart, ystart, θ|F ′) . Like most of the Keypoint-based
detection framework [20, 50, 8, 44], we aim to predict the
start point for each lane on the image by estimating the pos-
sibility of a start point on a certain region of the downsam-
pled heat map. Additionally, we observe that the theta of
the anchor is closely associated with the start point in terms
of spatial relation [39], according to the Bayes’ theorem, its
location and shape can be decomposed as:

p(xstart, ystart, θ|F ′) = p(xstart, ystart|F ′)p(θ|xstart, ystart,F ′).

(1)
During the training phase, we generate a supervision heat

map by adding a non-normalised Gaussian kernel to each
ground truth start points:

Hpts
gt (x, y) = exp(− (x−xstart

gt )2+(y−ystart
gt )2

2σ2 ) , Hgt ∈ RH′
f×W ′

f ,

(2)
x, y is the coordinate of pixels on Hpts

gt ; xstart
gt , ystartgt is

ground truth start point’s coordinate; σ is a hyperparameter.
Then supervision for theta map Hθ

gt(x, y) can be formulated
as:

Hθ
gt(x, y) = index(Hpts

gt (x, y) > tθ) · θ(xstart
gt , ystartgt ).

(3)
We can interpret this as follows: if the probability of start

points in a particular region is greater than tθ, we consider
that region to share the same θ as the ground truth start
point. Unlike a strict assumption of one-point-one-theta,
our approach expands the potential occurrence area of pro-
posal anchors, providing a wealth of high-quality anchors
for regression. This allows neural networks to determine
the best fit under different conditions, without needing to
add an additional loss to compensate for the offset between
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Figure 3: Illustration of LKA. LKA can be seen as the com-
bination of (a) attention mechanism and (b) Multi-Scale Ag-
gregator (MSA) .

points on the heat map and the original image due to down-
sampling [40].

We modified [23] to meet the imbalance between start
point regions and the non-start point regions:

Lhm = −1
H′

f×W ′
f

∑
xy

{
(1−Hpts

pred)
αlog(Hpts

gt ) Hpts
gt = 1

(1−Hpts
gt )β(Hpts

pred)
αlog(1−Hpts

pred) otherwise
,

(4)
α and β are hyperparameters of focal loss. Similarly, we
modified L1 loss for theta map over the whole feature map:

Lθ =
1

H ′
f ×W ′

f

∑
xy

|Hθ
pred −Hθ

gt|. (5)

It is noteworthy that the calculation of theta map loss in
the non-start point region is unnecessary due to the uncer-
tainty of their theta values.

3.2. Large kernel attention

Motivation. In recent literature [6, 7], it has been ob-
served that the performance of ConvNet is restricted when
the kernel size exceeds 7 × 7, thereby limiting the poten-
tial benefits of mixed Transformer architecture for down-
stream tasks that require a large receptive field. Building on
the work of [15, 11], we devise a Large Kernel Attention
(LKA) module integrated with Feature Pyramid Network
(FPN) specifically for lane detection.

Design. In Figure 2, it can be seen that our LKA module
is placed after the lateral layer of FPN to minimise com-
putation cost. Unlike generating a similarity score Att be-
tween the query and value outputs, we employ Multi-Scale
Aggregator (MSA) to quantify the correlation among input
tokens. The mathematical expression of our approach de-
picted in Figure 3 can be represented as follows:

Att = W1(

3∑
i=0

MultiChi(DConv5×5(X))), (6)

Z1 = Att⊙ (W2X) +X, (7)
Z = FFN(Z1) + Z1. (8)

Ground truth

Prediction A
Prediction B

} }

Figure 4: Illustration of GLIoU. A special scenario that
LIoU fails to address properly. We have extended each point
on the slice to form lane segments with a certain width e,
and it is evident that the L1 distance between the two seg-
ments is significantly larger than what can be captured by
LIoU (LIoUA = −0.5, LIoUB = 0.5, distanceLA

1 = 6e,
distanceLB

1 = e).

In Figure 3(b), the four feed-forward paths are denoted
as MultiChi and are distinguished by different colours,
where MultiCh0 corresponds to an identical forward path.
Instead of using a 7 × 7 depth-wise convolution, strip-like
convolutions are more effective in identifying lane lines
while reducing computation cost. The linear layer is rep-
resented by Wi. As suggested in [15], we use Hadamard
product (denoted as ⊙ in Eq. (7)) instead of matrix product
to leverage the advantages of large kernels in MSA.

3.3. General Lane IoU loss

Motivation. Recently, LIoU [49] loss has been proposed
to address the problem that the lane shape information on
the anchor-based method is considered to be independent
for each point when applying L1 loss. Although LIoU loss
incorporates information on lane shape into a normalized
metric that is invariant to scale, it may not be suitable for
infrequent scenarios. Figure 4 depicts a typical scenario
that exposes the limitations of LIoU. As shown in Figure
4, the LIoU values for Prediction A-Gt and Prediction B-Gt
are -0.5 and 0.5, respectively, whereas the L1 distance gap
between the two is significantly larger than what LIoU can
capture (distanceLA

1 = 6e, distanceLB
1 = e). In other

words, Prediction A is substantially worse than Prediction
B according to the L1 distance metric, yet LIoU fails to ac-
count for this relationship.

Design. To overcome this limitation, we propose Gen-
eral Lane IoU (GLIoU), which can be considered as a gen-
eralisation of LIoU, where an additional penalty term is in-
corporated to highlight the spatial relationship between two
lanes that do not overlap. Similar to LIoU, we begin by
extending each point to form lane segments with a certain
width e and computing the intersection over union ratio as
usual. Then, we calculate the L1 distance between each pair
of extended segments to obtain a gap distance dξi :

dξi = ReLU(dui − 4e). (9)
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Using LIoU subtract the ratio of gap distance to the
union, which is illustrated as follows:

GLIoU =

∑k
i=j d

o
i −ReLU(dui − 4e)∑k

i=j d
u
i

, (10)

where j represents the index of the first validated point. On
Eq. (9) and Eq. (10), dui and doi is defined as introduced
in [49]. If the prediction overlaps with the ground truth,
GLIoU degenerates into LIoU. However, if the prediction
does not overlap with the ground truth, we introduce an ex-

tra penalty term
∑k

i=j dξ
i∑k

i=j du
i

to more accurately capture the L1

distance while still considering the lane as a unified entity.
The GLIoU loss can be defined as:

LGLIoU = 1−GLIoU. (11)

The domain of GLIoU is (−2, 1], when the predicted
lane perfectly matches the ground truth, GLIoU equals 1.
Although the lower bound of GLIoU is -2, which may seem
asymmetric, it is a more appropriate choice for predicting
lane shapes since, in most cases, the prediction and ground
truth do not perfectly align. Rather than emphasising the
overlapped section, the GLIoU loss focuses on improving
the poorly overlapped section.

3.4. Adaptive lane aware unit

Motivation. The use of traditional convolution networks
for lane detection may not be optimal, as they operate on a
fixed grid that does not align well with the irregular shape
of lane lines. Although the Deformable Convolution Net-
work (DCN) [4] has found extensive application in object
detection, its potential for lane detection has not been fully
explored [40]. Directly applying DCN to lane detection is
challenging, as it is not feasible to learn kernel offsets from
high-context lane features. Instead, we observe that start
points and their associated thetas can be regarded as an ef-
fective guidance to predict kernel offsets due to their ex-
plicit physical modelling.

Structure. Once we have obtained the start points co-
ordinates and theta values that are spatially related using
SPGU, we encode the thetas heat map and start points heat
map with dense lane information, which can be represented
as Θxy = {θ1, θ2, ..., θN} and Pxy = {p1, p2, ..., pN} re-
spectively, as shown in Figure 5. For instance, we can ab-
stract the task of predicting a set of kernel offsets on one
activation unit (green dot) as follows:

∆Kxy = ϕ(v⃗ · pts) = ϕ(x, y, θ), (12)
S = {(−1,−1), (0,−1), ..., (0, 1), (1, 1)}, (13)

∆Kxy = {∆kixy|i = 1, ..., |S|}. (14)

Let S denote the grid defined by the receptive field size
and dilation, and let pts denote the position of the activa-
tion unit, with coordinates x and y. Let v⃗ be a unit vector

Guidance map

CNN

kernel offsetsoffset map

Figure 5: Illustration of ALAU. We utilise the SPGU-
generated guidance map to predict kernel offsets and embed
them with deformable convolution to gather lane context. In
the following image, the green dot represents the activation
unit, the yellow arrow indicates the offset learned from the
guidance map, and the red dot denotes the sampling loca-
tion (9×2×1 = 18 on each image) in a single 3×3 kernel
level. The deformable group is set to 2.

parallel to the spatially nearest anchor, with θ denoting the
anchor’s theta value. Let ∆Kxy be the kernel offsets on pts,
where ks is the kernel size and ϕ is a non-linear function.
Since the theta value in non-start point regions is uncertain
and the anchors’ direction is mutually related, SPGU will
automatically learn the theta value that has the highest prob-
ability for the region, ensuring the existence of the function
fv : Θxy → v⃗. Since the start point and its theta value are
spatially related, the function can be further expressed as
fv : (Θxy, Pxy) → v⃗. Therefore, Eq. (12) can be rephrased
as:

∆Kxy = ϕ(fv(Θxy, Pxy)). (15)

We can simply use convolutional neural network to fit
these functions. Following [4] we integrated kernel offsets
with deformable convolution to adaptively extract context
of activation unit, which can be expressed as:

F̂(pts) =
∑

ptsixy∈S

w(ptsixy)·F(pts+ptsixy+∆kixy), (16)

where w(ptsixy) is the weights of convolution. In Figure 5,
the green dot, blue dots, yellow arrows, and red dots corre-
spond to pts, pts+ ptsixy , ∆kixy , and pts+ ptsixy +∆kixy ,
respectively.

3.5. Model training detail

Label assignment. Since the algorithm works in an
anchor-free style, assigning a positive label in a predefined
anchor manner is not feasible. We follow [49] to assign
labels dynamically [10].

Loss function. The overall loss function can be written
as:

L = wregLGLIoU + wclsLcls + whmLhm + wθLθ. (17)
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The loss function comprises four components: LGLIoU

is the General Lane IoU loss (Eq. (11)) between proposals
and ground truths; Lcls is focal loss [23] between propos-
als and ground truths; Lhm is modified focal loss (Eq. (4))
between start points heat map and ground truth; Lθ is mod-
ified L1 loss (Eq. (5)) between thetas heat map and ground
truth. The total loss is obtained by taking the weighted sum
of each component.

4. Experiments

4.1. Datasets and evaluation metric

In this paper, we use three popular benchmarks: VIL-
100, CULane and Tusimple.

VIL-100 [47] is a recently released video instance lane
detection dataset, that contains 10,000 frames. There are
10 scenarios in collection including multi-weather, multi-
traffic scenes, day and night. The resolution of the image
varies from 640× 368 to 1920× 1080 and lanes may locate
in 8 different places, which challenges the algorithm.

CULane [29] contains 88,880 images for training. The
main scene is urban traffic, which also includes various
scenery, such as daytime, night, crowded, fog, etc., mak-
ing it a very challenging dataset. All annotated images are
1640× 590 pixels in size.

TuSimple [37] consists of simple scenes where lane
lines are easily identifiable. Each annotated image has a
size of 1280× 720 pixels, and contains a maximum of five
lane lines.

Evaluation metric. There are two main evaluation met-
rics widely used in lane detection: F1 and Accuracy. F1
is defined as F1 = 2×Precision×Recall

Precision+Recall . To evaluate IoU,
lanes are extended with a width of 30 pixels [29], and
predictions with IoU greater than a threshold are consid-
ered as true positive (TP). Accuracy (Acc) is defined as
Acc =

∑
clip Cclip∑
clip Sclip

, where Cclip is the number of points
within 20 pixels of ground truth per image, denoted as cor-
rect points; Sclip is the total number of points within an
image. A prediction is considered correct if it has more
than 85% of points noted as correct points. False Positive
Rate (FPR) and False Negative Rate (FNR) are defined as
FPR =

Fpred

Npred
and FN =

Mpred

Ngt
, respectively.

4.2. Implementation details

We employ Resnet [14] pre-trained on ImageNet [5] as
the backbone.

For the TuSimple dataset, we utilise Adam [18] opti-
miser with an initial learning rate of 2e-5 per batch, and
train for 150 epochs using the CosineLR [26] learning rate
decay strategy. The number of anchors is set to 100, and the
hyperparameters for the supervision of the heat map are set
to σ = 2 and tθ = 0.2, respectively. The weights for the
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Figure 6: Latency vs F1@50 of other methods on VIL-100
lane detection benchmark. Our method outperforms all ex-
isting methods and maintains a promising inference speed.

loss function in Eq. (17) are set to wreg = wcls = whm =
10, and wθ = 1.

For the CULane dataset, we use AdamW [27] optimiser
and train for 15 epochs with 300 anchors. The loss func-
tion’s weights are wreg = wcls = 6, whm = 2, and wθ = 3,
while the hyperparameters for the heat map are σ = 4 and
tθ = 0.5.

We use the same training settings for VIL-100 as TuSim-
ple, except the training epoch is 80.

During training and inference, we resize input images
for all datasets to 800× 320. The extend radius e in GLIoU
is set to 15. For FPS test on Table 1 and Table 2, we set
the batch size to 1 and forward model for 2000 times. All
experiments are conducted on a single RTX3090.

4.3. Performance on benchmarks

VIL-100. Our approach achieves state-of-the-art results
on the recently released VIL-100 lane detection dataset. In
Table 2, we compare our results with the previous state-of-
the-art method MMA-Net [47], and show that our method
has increased F1@50 from 83.90 to 90.90. We have also
achieved a lane accuracy of 94.27 with ResNet101 and
94.38 with ResNet34, which is much better than MMA-Net.
Our results have also compared with the anchor-free state-
of-the-art method CLRNet, which performs very well on
multiple benchmarks such as CULane and LLAMAS [2].
However, on VIL-100, CLRNet fails to maintain its edge.
To provide a fair comparison with CLRNet, we have relo-
cated our start points into three edges of the image, and our
smallest model has outperformed CLRNet in multiple indi-
cators.

CULane. The performance of ADNet is compared with
other state-of-the-art methods on CULane and the results
are presented in Table 1. Compared to the previous fixed
anchor method, for example, LaneATT [35], our method
achieves a convincing F1 score of 78.94 with ResNet34,
outperforming LaneATT with ResNet122 by 1.92%. Our
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Table 1: Comparison with state-of-art methods on CULane test set. ‘R18’ stands for ResNet18, the rest can be analogised.

Method F1@50 ↑ FPS ↑ Normal ↑ Crowded ↑ Dazzle ↑ Shadow ↑ No Line ↑ Arrow ↑ Curve ↑ Cross ↓ Night ↑
Segmentation Based
SCNN-VGG16 [29] 71.60 25 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10

RESA-R50 [48] 75.30 65 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90
SAD-ENet [16] 70.80 33 90.10 68.80 60.20 65.90 41.60 84.00 65.70 1998 66.00

LaneAF-DLA34 [1] 77.41 28 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
AtrousFormer-R34 [43] 78.08 - 92.83 75.96 69.48 77.86 50.15 88.66 71.14 1054 73.74

Keypoint Based
PINet-Hourglass [19] 74.40 27 90.30 72.30 66.30 68.40 49.80 83.70 65.20 1427 67.70

FOLOLane-ERFNet [33] 78.80 - 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
GANet-R34 [40] 79.39 69 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67

Parameter Based
BézierLaneNet-R34 [9] 75.57 78 91.59 73.20 69.20 76.74 48.05 87.16 62.45 888 69.90
Laneformer-R50 [12] 77.06 - 91.77 75.41 70.17 75.75 48.73 87.65 66.33 19 71.04

Anchor & Detection Based
FastDraw-R50 [30] - - 85.90 63.60 57.00 69.90 40.60 79.40 65.20 7013 57.80
UFLDv2-R34 [32] 76.00 114 92.50 74.80 65.50 75.50 49.20 88.80 70.10 1910 70.80
CurveLanes-L [42] 74.80 - 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90
LaneATT-R122 [35] 77.02 38 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81

SGNet-R34 [34] 77.27 - 92.07 75.41 67.75 74.31 50.90 87.97 69.65 1373 72.69
CondLane-R34 [24] 78.74 70 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92
CLRNet-R34 [49] 79.73 63 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02

ADNet-R18 (Ours) 77.56 87 91.92 75.81 69.39 76.21 51.75 87.71 68.84 1133 72.33
ADNet-R34 (Ours) 78.94 77 92.90 77.45 71.71 79.11 52.89 89.90 70.64 1499 74.78

Table 2: Comparison with state-of-art methods on VIL-100
test set. Our proposed ADNet are flexible in modelling the
locations of start points (they can be anywhere in the im-
ages). For more comparisons, we also provide a “ADNet∗”
version where the start points are extended to the three
edges likewise in CLRNet, showing inferior performance.

Methods F1@50 ↑ Acc ↑ FP ↓ FN ↓ FPS ↑
VOS Methods

GAM [17] 70.30 85.50 24.1 21.2 24
RVOS [38] 51.90 90.90 61.0 11.9 -
STM [28] 75.60 90.20 22.8 12.9 10

AFB-URR [22] 60.00 84.60 25.5 22.2 9
TVOS [46] 24.00 46.10 58.2 62.1 36

MMA-Net [47] 83.90 91.00 11.1 10.5 20
Lane Detection

Methods
LaneNet [41] 72.10 85.80 12.2 20.7 64

SCNN-VGG16 [29] 49.10 90.70 12.8 11.0 25
SAD-ENet [16] 75.50 88.60 17.0 15.2 33
UFLD-R34 [31] 31.00 85.20 11.5 21.5 124

LSTR [25] 70.30 88.40 16.3 14.8 40
CLRNet-R18 [49] 57.27 88.99 6.9 13.5 80
CLRNet-R101 [49] 59.41 88.65 2.1 12.5 38
ADNet-R18∗ (Ours) 65.05 94.25 5.0 5.0 -
ADNet-R34∗ (Ours) 64.97 94.37 4.5 4.9 -
ADNet-R18 (Ours) 89.97 94.23 5.0 5.1 87
ADNet-R34 (Ours) 90.39 94.38 4.4 4.9 77

ADNet-R101 (Ours) 90.90 94.27 4.7 5.0 45

approach also surpasses subsequent anchor-free techniques,
such as SGNet [34], by 1.67%. Additionally, our method
achieves state-of-the-art performance among segmentation-
based and parameter-based methods, but is ranked second
after CLRNet [49] on Anchor & Detection-based methods.

TuSimple. The comparison results on TuSimple are pre-
sented in Table 3. Due to the limited scenario of TuSimple,

the differences between each method are minimal. As can
be observed from the table, our method performs better than
most of the compared methods.

Table 3: Comparison with state-of-art methods on TuSim-
ple test set.

Methods F1@50 ↑ Acc ↑ FP ↓ FN ↓
SCNN [29] 95.97 96.53 6.17 1.80

RESA-R50 [48] 96.93 96.82 3.63 2.48
PolyLaneNet [36] 90.62 93.36 9.42 9.33
E2E-ERFNet [45] 96.25 96.02 3.21 4.28
UFLD-R34 [31] 88.02 95.86 18.91 3.75

UFLDv2-R34 [32] 96.22 95.56 3.18 4.37
SGNet-R34 [34] - 95.87 - -

LaneATT-R34 [35] 96.77 95.63 3.53 2.92
CondLaneNet-R101 [24] 97.24 96.54 2.01 3.50
FOLOLane-ERFNet [33] 96.59 96.92 4.47 2.28

ADNet-R18 (Ours) 96.90 96.23 2.91 3.29
ADNet-R34 (Ours) 97.31 96.60 2.83 2.53

4.4. Ablation studies

Overall. We conduct overall ablation study using
ResNet18 as the backbone in CULane. The baseline model
extracts features from the backbone and FPN, pooling lane
features according to the strategy in [13], identical to AD-
Net, and regressing lane lines using LIoU loss with prede-
fined anchors from [21]. We gradually add SPGU, ALAU,
and GLIoU to the baseline, and finally embed LKA with
FPN. The overall ablation study results in Table 4 show that
GLIoU has the least effect, while SPGU has the greatest ef-
fect. The remaining strategies has effects that ranged from
big to small, namely ALAU and LKA. Adding SPGU sig-
nificantly increases the F1@50 score from 72.17 to 76.47,
strongly supporting our assumption.

6410



R
AW

G
T

A
nc

ho
rs

Pr
ed

ic
tio

ns
Pr

ed
ic

tio
ns

A
nc

ho
rs

A
D

N
et

 (O
ur

s)
C

L
R

N
et

Figure 7: Visualisation results on VIL-100 compare with CLRNet. We visualised every anchors before predictions, yellow
oval is applied to highlight the anchor flexibility issue discussed on Section 1. It is evident that our anchors exhibit higher
quality compared to CLRNet, which consequently leads to better performance, highlighted by red oval.

Table 4: Overall ablation study of ADNet-R18 on CULane.

Baseline +SPGU +ALAU +GLIoU +LKA F1@50√
72.17√

76.47 (+4.30)√ √
76.91 (+4.74)√ √ √
77.15 (+4.98)√ √ √ √
77.56 (+5.39)

Effectiveness of guidance map. In ALAU, kernel off-
sets are obtained from the guidance map as discussed in
Section 3.4. This allows us to promote fv : Θxy → v⃗ to
fv : (Θxy, Pxy) → v⃗, as the starting point and its theta
value are spatially related. Our experiments on CULane
and VIL-100, as shown in Table 5, confirm this conclusion.
Without guidance map represents that we obtain kernel off-
sets simply from thetas map. The result indicates that when
guidance map is added, improvement can be observed on
both benchmarks.

Necessity of GLIoU loss. In our overall ablation study,
only a 0.24% improvement is brought by GLIoU loss com-
pared to LIoU loss, which is explainable. The scenario we
describe in Section 3.3 rarely occurs since on CULane lane
lines always ray from three edges of the image. Further
experiments on CULane (shown in Table 5) demonstrate
that switching the backbone from ResNet18 to ResNet34
with GLIoU loss only brings a 0.18% increment, similar
to the phenomenon in Table 4. However, when we con-
duct the same experiments on VIL-100, both ResNet18 and
ResNet34 get a huge boost on F1@50.

Ablation study of LKA. We validate the effectiveness

Table 5: Ablation study on different components. “w/o” un-
der Guidance map represents obtaining kernel offsets from
thetas map; “baseline” under Attention follows [15].

Dataset Back-
bone

Guidance
map Loss Attention F1@50

R34 w/o GLIoU baseline 78.53
R34 w GLIoU baseline 78.66 (+0.13)
R34 w LIoU baseline 78.48
R34 w GLIoU baseline 78.66 (+0.18)
R34 w GLIoU baseline 78.66

CULane

R34 w GLIoU LKA 78.94 (+0.28)
R34 w/o GLIoU baseline 87.83
R34 w GLIoU baseline 89.22 (+1.39)
R34 w LIoU LKA 90.17
R34 w GLIoU LKA 90.39 (+0.22)
R18 w LIoU baseline 83.44
R18 w GLIoU baseline 88.65 (+5.21)
R34 w GLIoU baseline 89.22

VIL-100

R34 w GLIoU LKA 90.39 (+1.17)

of our LKA by conducting experiments with different back-
bones and datasets. Results in Table 5 and Table 4 indicate
that our LKA not only improves upon plain FPN, but also
outperforms the baseline attention module on both VIL-100
and CULane.

5. Conclusion
In this paper, we propose ADNet for lane shape predic-

tion, incorporating SPGU to predict start points and ALAU
to aggregate context near lane lines. We introduce GLIoU
loss to address limitations of LIoU loss and modify the
small kernel attention module into LKA. Our algorithm out-
performs current state-of-the-art methods on VIL-100 and
achieves nearest state-of-the-art on CULane and TuSimple.
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