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Abstract

We present CO-Net, a cohesive framework that optimizes
multiple point cloud tasks collectively across heterogeneous
dataset domains. CO-Net maintains the characteristics of
high storage efficiency since models with the preponderance
of shared parameters can be assembled into a single model.
Specifically, we leverage residual MLP (Res-MLP) block for
effective feature extraction and scale it gracefully along the
depth and width of the network to meet the demands of dif-
ferent tasks. Based on the block, we propose a novel nested
layer-wise processing policy, which identifies the optimal
architecture for each task while provides partial sharing pa-
rameters and partial non-sharing parameters inside each
layer of the block. Such policy tackles the inherent chal-
lenges of multi-task learning on point cloud, e.g., diverse
model topologies resulting from task skew and conflicting
gradients induced by heterogeneous dataset domains. Fi-
nally, we propose a sign-based gradient surgery to pro-
mote the training of CO-Net, thereby emphasizing the usage
of task-shared parameters and guaranteeing that each task
can be thoroughly optimized. Experimental results reveal
that models optimized by CO-Net jointly for all point cloud
tasks maintain much fewer computation cost and overall
storage cost yet outpace prior methods by a significant mar-
gin. We also demonstrate that CO-Net allows incremental
learning and prevents catastrophic amnesia when adapting
to a new point cloud task.

1. Introduction
With the substantial breakthroughs in deep neural net-

works, modern architectures deliver significant enhance-
ments in the realm of point cloud analysis [27, 28, 37, 42,
61], such as 3D point classification, 3D point segmentation,
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and 3D point detection, etc. Nonetheless, these methods are
inefficient when conducting multiple tasks since they are
generally designed to execute singular task. While paral-
lel computing can alleviate this dilemma, it may introduce
additional overheads, such as memory volumes and storage
expenses that increase proportionately with the quantity of
tasks, which is prohibitively expensive for cutting-edge de-
vices with limited resources (e.g., mobile devices).

Multi-task learning (MTL) [3, 14, 47, 15] provides a
remedy for this problem. In visual tasks, MTL methods
have primarily been introduced to jointly accomplish depth
estimate task, surface normal estimate task, and semantic
segmentation task from a single RGB image [16, 19, 59].
An MTL model is capable of delivering advantages in terms
of complexity, inference time, and learning efficiency due to
the fact that a major portion for the network can be shared
across all tasks. Nonetheless, training multiple tasks con-
currently for point cloud presents two critical obstacles:

i) As opposed to typical visual tasks, in which a back-
bone that executes admirably for image classification task
can be effortlessly fine-tuned to other vision tasks, using
the same backbone to jointly optimize all point cloud tasks
may result in suboptimal solution for some tasks. Thus, it is
preferable to find an optimal backbone for each point cloud
task under resource constraint.

ii) We endeavour to operate multiple point cloud tasks
concurrently by taking heterogeneous dataset domains as
input rather than a regular multi-task dataset. Consequently,
the gradients of different tasks will arise substantial discrep-
ancies in the directions under multi-task learning settings, a
phenomenon known as negative transfer [35].

To tackle the first challenge, we leverage residual MLP
(Res-MLP) block, a basic point feature extraction block
that can accommodate the requirements of various tasks
in terms of the depth and width of the model architecture.
Based on Res-MLP, inspired by slimmable neural networks
[55, 54, 56, 4], we introduce a novel nested layer-wise pro-
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cessing policy that progressively handles the weight of each
layer of the network, that is, using NAS technique to find
the optimal architecture for all tasks in terms of model struc-
ture and offering fine-grained parameter sharing adaptively
within the model. Compared with recent Poly-PC [53] that
enables various tasks to share their common parts for a cer-
tain layer while sacrificing the flexibility of sharing, the
central idea of our proposed nested layer-wise processing
policy is that: (1) entangling the weights of multiple tasks
within the same layer, empowering us to find optimal archi-
tectures for all tasks and achieve parameter sharing inside
each layer, (2) transforming the parameter sharing of the
backbone into a learnable problem so that deciding which
parameters of the backbone to be shared or not can be done
after training.

For negative transfer, we primarily consider conflicting
directions of the gradients across various tasks, which pro-
duces a more significant impact than differences in gradient
magnitude, typically for point cloud tasks, as illustrated in
Table 8. Specifically, due to the manner in which gradients
of various tasks are added together, gradients of multiple
tasks can wipe each other out once they point to opposing
directions of the parameter space, resulting in a crappy up-
date direction for a subset or all tasks. Furthermore, CO-Net
is developed for jointly streamlining multiple 3D point tasks
over heterogeneous dataset domains, in which the diverse
dataset domains could exacerbate such conflicting. Only
very recently a few of works begin to offer ways for mitigat-
ing the conflicting gradients problem, such as eliminating
conflicting portions of the gradients [57] or randomly ‘drop-
ping’ pieces of the gradient vector [6]. In this work, we
propose a sign-based gradient surgery that homogenizes the
gradient direction of the task-shared parameters by leverag-
ing a sign-mask manner. In this way, our proposed gradient
surgery emphasizes the usage of task-shared parameters and
guarantees that each task can be fully trained.

Over the well-optimized CO-Net, we perform an evolu-
tionary searching under resource constraints to identify op-
timal architectures for diverse 3D point tasks. Experimental
results indicate that the searched CO-Net for different tasks
outperform a number of baselines and can be comparable
with current state-of-the-art works optimized individually
for specific tasks, as illustrated in Table 1, Table 2, and Ta-
ble 3. Besides, we demonstrate that CO-Net permits in-
cremental learning and prevents catastrophic amnesia when
adapting to a new point cloud task, as shown in Table 10.
Hence, CO-Net is designed to be parameter-efficient and
can scale more smoothly as task numbers grow.

To summarize, the contributions of this work are as fol-
lows: 1) We propose CO-Net, a unified framework that op-
timizes multiple point cloud tasks collectively under various
dataset domains. 2) We propose a nested layer-wise pro-
cessing policy that employs NAS technique to identify the

optimal architecture of different tasks while automatically
determining, rather than manually, whether the parameters
of the backbone are shared or not. 3) We introduce a novel
sign-based gradient surgery that utilizes a sign-mask way
to eliminate conflicting gradients. 4) We demonstrate that
once the training for CO-Net is done, CO-Net allows in-
cremental learning with fewer task-specific parameters by
freezing the task-shared parameters.

2. Related work
Point-based methods. Point-based networks have ex-

hibited extraordinary promise for 3D point cloud applica-
tions, i. e., point classification, detection, and segmen-
tation. As a pioneer, PointNet [27] leverages point-wise
MLP and a symmetric function to process the irregular
point cloud independently. To better encode locality, Point-
Net++ [28] introduces the set abstraction (SA) layer to ag-
gregate features from the points’ neighborhood and pro-
poses a hierarchical architecture based on the SA layer
to learn multi-level representations of point cloud. Ow-
ing to the local point representation and multi-scale in-
formation, PointNet++ exemplifies impressive results and
establishes the groundwork of modern point cloud meth-
ods [20, 46, 41, 52, 22, 31, 42, 58, 40, 45], which primarily
employs graphs, convolutions, or self-attention mechanisms
to perform comprehensive point cloud analysis. However,
these works typically design a network to execute a single
task, resulting in a linear increase in total model size with
the number of tasks.

Negative transfer for multi-task learning (MTL).
Compared to the typical single network training, MTL
could culminate in substantial discrepancies in the direc-
tions and magnitudes of various task gradients due to
skewed rivalry throughout tasks for the shared parameters.
Previous researches [5, 14, 18, 23, 36, 38] propose substan-
tial algorithms to homogenize these differences. For gra-
dient magnitudes, GradNorm [5] leverages loss descent to
represent learning speed, which are dynamically adjusted to
preserve the same learning pace of each task. RotoGrad [14]
homogenizes the gradient magnitudes through normalizing
and scaling, ensuring training convergence. For gradient di-
rections, current researches [9, 57, 34] typically investigate
the cosine similarity between gradients to alleviate the ardu-
ous training with multiple objectives. The cosine similarity
is always considered as a regularization or an indicator. [34]
adds a regularization factor that compels the cosine similar-
ity between two distinct losses to be greater than zero. In
[9], once the cosine similarity is negative (gradient conflict),
the auxiliary task’s weight is set to zero. [57] projects the
gradient of each loss to achieve orthogonal gradients for all
tasks. In this work, we propose a novel sign-based gradient
surgery that eliminates conflicting gradient directions in a
sign-mask manner.
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Figure 1. The network architecture of CO-Net. CO-Net jointly optimizes multiple point cloud tasks and consists of three components,
that is, stem MLP, backbone, and heads for various tasks. The nested layer-wise processing policy is applied to each layer of the backbone
to identify optimal architectures for different tasks and automatically decide which parameters of the backbone to be shared, through which
we can generate task-related features. The parts in solid lines mean they are chosen while those in dashed lines are not.

3. Methodology
CO-Net aims to optimize K different point cloud tasks

concurrently, that is, finding K mappings from K differ-
ent datasets {Xk} to a task-specific set of labels {Yk},
k = 1, 2, ...,K. In this work, we focus on the design and
optimization of CO-Net, which encourages all tasks to share
parameters as many as feasible for efficient storage whereas
retaining superior performance for all tasks.

3.1. Design CO-Net

As shown in Fig. 1, CO-Net is comprised of three com-
ponents: stem MLP, a unified backbone, and K heads for
K tasks.

Stem MLP. As illustrated in Section 1, as CO-Net takes
ross heterogeneous dataset domains as input whereas the
dimensions of these dataset domains are various, we utilize
a stem MLP to map the input xk ∈ Xk into the identical
dimension as x̂k. Each task k possesses its own individual
parameters ϕspk .

Backbone. Following typical architecture design of cur-
rent works [13, 28, 22], the backbone consists of four stages
for point feature extraction, with each stage leveraging a
subsampling layer to downsample the incoming points, a
grouping layer to query neighbors for each point, a stack
of Res-MLP blocks to extract features, a reduction layer to
aggregate features within the neighbors, and a symmetrical
Res-MLP block to extract deep aggregated features. Con-
ceptually, the kernel operation of each stage in CO-Net can
be formulated as:

gi = Φexp(R((Φred([fi,j ; (xi,j − xi)/r])))), (1)

where r is the group radius; xi is the i-th sampled point co-
ordinate; xi,j and fi,j are the coordinate and feature of the
j-th neighbor point of xi respectively; Φred and Φexp are
depth-alterable Res-MLP blocks in each stage, with each
Res-MLP block consisting of two MLP layers, two normal-
ization layers, and two ReLU activation layers, as illustrated
in the bottom left of Fig. 1; R is the reduction layer (e.g.
max-pooling) that aggregates features for point i from its
neighbors. By integrating residual connections in the Res-
MLP block, CO-Net can be easily stretched to dozen layers
without vanishing gradient. In addition, bottleneck design
is applied to each Res-MLP block of Φred to reduce compu-
tation, whereas inverted bottleneck design is applied to each
Res-MLP block of Φexp to reinforce point-wise feature ex-
traction. Notably, for the last Res-MLP block of Φred in
each stage, we leverage the second MLP of the block to
map the input into the predefined output channel, and add a
1×1 convolution with a normalization layer in the residual
connection.

Overall, the backbone concludes a set of task-shared pa-
rameters θsh for K tasks and task-specific parameters θspk
for task k to transform each input x̂k into an intermediate
representation zk = f(x̂k; θ

sh, θspk ).
Heads. Besides, each task k has a head network hk, with

its exclusive parameters ψsp
k , to take zk as input and outputs

the prediction pk = hk(zk;ψ
sp
k ) for the corresponding task.

Nextly, we discuss how to enable CO-Net to perform
multiple point cloud tasks collectively. As illustrated in
Section 1, the backbone for different point cloud tasks must
be designed carefully. Thus, we propose a nested layer-
wise processing policy that utilizes NAS technique to iden-
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tify optimal architectures for various tasks and leverages
a learnable score to adaptively determine whether the pa-
rameters of the backbone are shared or not. We presume
the layers with learnable parameters in the backbone to be
active layers, such as convolution and normalization lay-
ers, whereas other layers, such as grouping layer, activation
layer and reduction layer, are considered as inactive layers.

3.2. Nested Layer-wise Processing Policy

Since each task has its own dataset domain, we distribute
different tasks on different GPUs, withK tasks correspond-
ing to K GPUs. Taking one MLP layer of the Res-MLP
block as an example, we define two search spaces for the
layer, i.e., input channel Cin

k and output channel Cout
k of task

k. Accordingly, we initialize the weight of the layer as W ∈
RCout

max×Cin
max , where Cout

max and Cin
max are the maximum

number of {Cout
1 , Cout

2 , ..., Cout
K } and {Cin

1 , Cin
2 , ..., Cin

K } re-
spectively. Employing a single weight for each layer, how-
ever, does not enable different tasks to share or monopo-
lize the parameters dynamically at various iterations during
training, hence restricting the adaptability of CO-Net for the
tasks.

To tackle this issue, we consider the weight W as task-
shared weight Wsh and introduce two additional parame-
ters: task-specific weight Wsp

k ∈ RCout
max×Cin

max and learn-

able score Sk = [S1
k ,S2

k , ...,S
Cout
max

k ] ∈ RCout
max . We define

an indicator function to judge whether the parameters of the
layer are shared or not in current iteration, formulated as:

Θ(Sj
k) =

{
1 if Sj

k ≥ λ

0 otherwise
, (2)

where λ is a threshold; if Sj
k ≥ λ, the j-th channel of the

layer is transformed to task-shared parameters and conse-
quently optimizing such parameters in the global group. To-
wards this end, we can obtain the task-sharing mask M as
follows:

M = [Θ(S1
k),Θ(S2

k), ...,Θ(Sj
k), ...,Θ(SCout

max

k )]. (3)

For each batch during supernet training, we sample a
number coutk from Cout

k and cink from Cin
k . Based on the

sampled channel and the sharing mask M, we slice out the
task-shared weight for task k by

wsh
k = Wsh[: coutk , : cink ]⊗M[: coutk ], (4)

and slice out the task-specific weight for current batch by

wsp
k = Wsp

k [: coutk , : cink ]⊗ (1−M)[: coutk ], (5)

where ⊗ denotes the element-wise multiplication.
Finally, we can obtain the current weight as wk by

wk = wsh
k + wsp

k , (6)

where wk is used to produce the output for current batch of
the task k, as illustrated in the bottom right of Fig. 1.

During backward pass, we denote the gradient of wsh
k as

Gsh
k . To achieve parameter sharing, the gradients across all

GPUs are averaged. Since gradient Gsh
k is not consistent,

induced by non-equivalence between the search spaces Cin
k

and Cout
k of different tasks, we pad the gradient with zero to

the largest size of the gradient by

Ĝsh
k = [Gsh

k , 0] = max(Gsh
1 , G

sh
2 , ..., G

sh
K ). (7)

In this way, we can average the gradients across all GPUs to
update the task-shared weight. If we ensure that the initial-
ization of task-shared weight, learning rate, and weight de-
cay are the same on all GPUs, the task-shared weight Wsh

across all GPUs would always keep same throughout train-
ing. For the task-specific weight, we directly update the
parameters by using the gradient on each GPU.

We apply above procedure on all active layers of the
backbone to enable different tasks to share or monopolize
the parameters dynamically at various iterations. Besides,
concluding additional parameters Wsp

k and Sk into each
layer does not result in a large increase in memory cost since
only the selected parameters wk are optimized at each iter-
ation and all other parameters are kept offline. Moreover,
during the inference and model deployment phase, we can
slice out the parameters wsh

k and corresponding wsp
k for all

tasks, and deposit weights of all tasks into one to achieve
efficient storage deployment.

It is worth noting that the learnable score Sk is set as
task-shared to ensure the parameters of all tasks can be in-
tegrated into a compact model, that is, S = S1 = S2 =
... = SK . Since the indicator function Θ(·) is not differ-
entiable, we need to modify its gradient during backward
pass, which will be presented in Section 3.4. Moreover,
as illustrated in Table 7, learning task-specific normaliza-
tion can significantly improve the performance for all tasks
while adding a few parameters, so we set the parameters of
normalization layers as task-specific.

3.3. Sign-based Gradient Surgery

We seek to optimize architecture parameters of CO-Net
by simultaneously learning multiple point cloud tasks. For
convenient portrayal, we define the task-shared and task-
specific parameters of CO-Net as X sh = {θsh} and X sp

k =
{ϕspk , θ

sp
k , ψ

sp
k } respectively.

For task-specific parameters X sp
k , we obtain the gradient

of X sp
k for the k-th task at the i-th iteration as:

Gsp
k,i = ▽X sp

k
Lk,i, (8)

where Lk,i means the loss function for the k-th task at the
i-th iteration. Subsequently, the task-specific parameters on
each GPU will be optimized based on the calculated Gsp

k,i.
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Figure 2. The illustration of sign-mask gradient surgery. In
(a), the gradient directions of the k1-th task and the k2-th task
are in conflict, i.e., their cosine similarity is negative, resulting in
destructive interference. In (b), we construct consensus gradient
Ḡsh

k1,i
and Ḡsh

k2,i
in the case where Ĝsh

k1,i
and Ĝsh

k2,i
are in conflict.

In (c), non-conflicting task gradients are not altered by our algo-
rithm, allowing for positive parameter optimization.

Noting that in the context of optimizing a task with multiple
GPUs, the gradientsGsp

k,i on these GPUs would be averaged
and then the parameters are updated accordingly.

For task-shared parameters X sh
k , the gradient of X sh

k for
the k-th task at the i-th iteration can be also formulated as

Ĝsh
k,i = ▽X sh

k
Lk,i. (9)

To tackle the issue that the task-shared parameters of K
tasks have different gradient sizes, we employ Eq. (7) to
obtain the processed gradients Ĝsh

k,i with the same dimen-
sion.

As outlined in Section 3.2, a straightforward scheme to
optimize the task-shared parameters involves averaging the
gradients Ĝsh

k,i across all GPUs and then updating the cor-
responding weights. Although such scheme simplifies the
optimization problem, it may also spark gradient conflict
among tasks, leading to an overall performance drop due to
a skewed competition among tasks for the shared parame-
ters. Additionally, CO-Net is designed to optimize multiple
point cloud tasks simultaneously, spanning different dataset
domains with varying data distributions. In this way, neg-
ative transfer will be further amplified since the optimiza-
tion directions may diverge under the conditions of multi-
ple data distributions. Inspired by [9, 57, 34, 14], we design
a sign-based gradient surgery that homogenizes the gradi-
ent directions of the task-shared parameters for all tasks by
leveraging a sign-mask way, thus emphasizing the usage of
task-shared parameters.

We employ the gradient inner product to appraise the
consistency of gradient directions. If the gradient inner
product is negative, the gradient directions of any two tasks
are deemed conflicting, as illustrated in Fig. 2 (a) (conflict-
ing) and Fig. 2 (c) (non-conflicting). We design a sign-mask
method to reduce the effect of conflicting gradients. We
first introduce the definition of positive gradient possibility,
which is formulated as:

P[m] =
1

2
+

1

2
·
∑

k Ĝ
sh
k,i[m]∑

k

∣∣∣Ĝsh
k,i[m]

∣∣∣ , 0 ≤ P[m] ≤ 1, (10)

where P[m] represents the positive value possibility of the
m-th component among K gradients. Then, we compute
the m-th component of Tk for the k-th task according to
P[m], formulated as:

Tk[m] =


1 sgn(Ĝsh

k,i[m]) > 0 and P[m] > S̄
1 sgn(Ĝsh

k,i[m]) < 0 and 1− P[m] > S̄
0 otherwise

,

(11)
where Tk[m] is the sign-mask of them-th component for the
k-th task, sgn(·) is the signal function, S̄=Sigmoid(Savg)
in which Savg denotes the average value of the learnable
scores throughout the backbone. Notably, we employ S̄ to
adaptively identify the sign-mask T at each iteration, with
the key insight that: the value of S̄ can implicitly reflect the
sharing ratio of parameters at each iteration, and theoreti-
cally the more shared parameters, the greater probability of
gradient conflict, which implies utilizing a larger threshold
for the computation of T . In this way, we select S̄ as the
threshold is appropriate.

The next step is to determine the value of each compo-
nent for the consensus gradient Ḡsh

k,i of task k. The value of
the m-th component is defined as follows:

Ḡsh
k,i[m] = Ĝsh

k,i[m] · Tk[m], m = 1, 2, ...,M, (12)

where M is the total size of the gradient vectors Ĝsh
k,i, that

is given by the number of task-shared parameters, i.e.,M =∣∣X sh
∣∣.

Finally, the gradient vectorGsh
i of the shared parameters

is formulated as:

Gsh
i =

1

K
(Ḡsh

1,i + Ḡsh
2,i + ...+ Ḡsh

k,i + ...+ Ḡsh
K,i), (13)

where Gsh
i is used to update the shared parameters X sh.

Compared to previous gradient homogenization algo-
rithms, our proposed sign-based gradient surgery uses a
sign-mask strategy to zero out conflicting gradients of one
task with other tasks, as illustrated in Fig. 2 (b).

3.4. Gradient Estimation of Sk,i

In the backward pass of CO-Net, the gradient of the score
Sk,i for the k-th task at the i-th iteration is formulated as:

▽Sk,i
Lk,i =

∂Lk,i

∂Θ(Sk,i)

∂Θ(Sk,i)

Sk,i
. (14)

Direct application of gradient descent for optimization is
not feasible since the gradient of the indicator function Θ(·)
is zero at almost all points. We choose a straight gradient
estimator to tackle this issue and the modified gradient of
Sk,i is given by ▽Sk,i

Lk,i =
∂Lk,i

∂Θ(Sk,i)
.
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3.5. Search pipeline

Training CO-Net. At each training iteration, we uni-
formly sample a subnet from search space (detailed in Ap-
pendix A.1) for each task, with the corresponding weights
in CO-Net being updated while the rest is frozen. Notably,
the task-shared parameters are optimized by the proposed
sign-based gradient surgery whereas the task-specific pa-
rameters are optimized by Eq. (8). More details are given
in Appendix A.2.

Searching CO-Net. The optimum subnet for each task
will be acquired through evolutionary search over the well-
trained CO-Net. In the searching process, we evaluate and
select the subnets in accordance with the manager of the
evolution algorithm [4] to accomplish the maximization of
the proxy performance and the minimization of the model
size (model parameters) over each task. A detailed process
is also given in Appendix A.3.

4. Experiment
In this part, we first evaluate the performance of CO-

Net when jointly optimizing three tasks, including 3D point
classification, 3D semantic segmentation, and 3D object de-
tection. Then we validate the inner design of CO-Net and
its incremental learning ability when adapted to a new task.

4.1. Datasets and Metric

ScanObjectNN [43]. The ScanObjectNN is commonly
applied in 3D object classification, comprising 15 classes
with 2,902 unique object instances scanned from about
15,000 real objects. ScanObjectNN delivers significant ob-
stacles to conventional point cloud analysis techniques due
to its obstructions and noise. Following PointMLP [22], we
execute experiments on PB T50 RS, the most challenging
and prevalent ScanObjectNN variant. We leverage the over-
all accuracy (OA) across all classes as evaluation metric.

S3DIS [1]. The S3DIS dataset consists of 271 rooms
across three buildings, which is divided into six sections.
We utilize the typical overall point-wise accuracy (OA) and
mean class-wise intersection over union (mIoU) to assess
CO-Net on this dataset. We withhold area 5 when training
and employ it for testing to evaluate CO-Net.

SUN RGBD [39]. SUN RGBD dataset is comprised
of around 5,000 RGB-D training images tagged with 3D
bounding boxes for 37 item classes. We adhere to the stan-
dard data split [26, 21] and data processing protocols of
VoteNet [26] for the dataset. What is more, the results of
SUN RGBD with mean average precision (mAP) at differ-
ent IoU thresholds, 0.25 and 0.5 are released.

4.2. Implementation Details

Search space. We construct an expansive search space
that incorporates multiple variable elements in each stage

of the backbone: the number of neighbour points, group
radius, the number of Res-MLP blocks in Φred and Φexp,
reduction rate in Φred, expansion rate in Φexp, and out-
put channels of current stage. The output channel of the
stem MLP is also designed to be searchable. Notably, each
point cloud task possesses its individual searching space.
Appendix A.1 provides an extensive overview of the search
space for CO-Net (base) and CO-Net (large).

Training CO-Net. CO-Net is an end-to-end pipeline op-
timized by the initial learning rate 0.008 with cosine anneal-
ing and AdamW optimizer with a weight decay 0.05. The
batch size is set to 16 for ScanObjetNN, 8 for S3DIS and
SUN RGBD. We allocate 4 Tesla A100 GPUs for the train-
ing of classification, segmentation and detection respec-
tively, with a total training of 100,000 iterations for each
task. The same head with PointNet++ [28] is utilized for
3D point classification and 3D semantic segmentation while
the identical head with VoteNet [26] is adopted for 3D ob-
ject detection. We embed the upsampling layer within the
head of each task for feature propagation [28], the param-
eters of which are regarded as task-specific. The data aug-
mentations offered in [30] are employed for 3D point clas-
sification and semantic segmentation. Data augmentations
provided in VoteNet [26] are manipulated for 3D object de-
tection. For all of our experiments, we set λ in Eq. (2) as
0.5.

Searching CO-Net. Following the same protocol as in
[11, 4, 53], we implement the evolution search algorithm
with a population size of 50 and a generation number of
20. At each generation, we choose the top 10 architectures
to serve as progenitors for the generation of offspring net-
works via mutation and crossover.

4.3. Comparison with State-of-the-art Methods

In this part, we evaluate CO-Net in comparison with
baselines and current state-of-the-art methods on ScanOb-
jectNN dataset, S3DIS dataset, and SUN RGBD dataset,
with the results reported in Table 1, Table 2, and Table 3.

Method Points Flops (G) #Params (M) OA

PointCNN [17] 1k 1.6 0.6 78.5
DGCNN [48] 1k 4.8 1.8 78.1
GBNet [32] 1k - 8.8 80.5
SimpleView [10] 1k - 0.8 80.5
PRANet [8] 1k - 1.2 82.1
MVTN [12] 1k 1.8 3.5 82.8
PointMLP [22] 1k 31.3 13.2 85.4
PointNeXt [30] 1k 1.4 1.6 87.7
RepSurf-U [33] 1k 0.8 1.5 84.6

PointNet++ [28] 1k 1.7 1.5 77.9
PointNet++† [28] 1k 1.7 1.5 86.1
CO-Net (base) 1k 2.8 1.7 88.4 (+10.5)
CO-Net (large) 1k 4.1 5.7 89.5 (+11.6)

Table 1. The results of 3D point classification on ScanObjectNN
dataset. #Params denotes the number of parameters. † denotes the
results reported in PointNeXt [30].

ScanObjectNN. As shown in Table 1, we implement the
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experiments with 1k points as input on ScanObjectNN and
the results demonstrate the superority of CO-Net. Specif-
ically, CO-Net (base) outpreforms PointNet++ [28] and
PointNet++† by 10.5 units and 2.3 units in terms of over-
all accuracy with the increase of 1.1G FLOPs and 0.2M
number of parameters. Furthermore, the large model CO-
Net (large) improves the overall accuracy to 89.5 units,
exceeding current state-of-the-art methods PointNeXt [30]
and PointMLP [22] by 1.8 units and 4.1 units with compa-
rable FLOPs and parameters.

Method Flops (G) #Params (M) OA mIoU

PointCNN [17] - 0.6 85.9 57.3
PCCN [2] 7.3 5.4 - 58.3
Kpconv [42] 2.1 14.9 - 67.1
ASSANet [29] 2.5 2.4 - 63.0
ASSANet-L [29] 36.2 115 - 66.8
Point Trans. [61] 7.8 5.6 90.8 70.4
PointNeXT-S [30] 3.6 0.8 87.9 63.4
PointNeXT-B [30] 8.8 3.8 89.4 67.5
RepSurf-U [33] 1.0 1.0 90.2 68.9
Poly-PC (base) [53] 1.0 1.0 88.2 63.0
Poly-PC (large) [53] 5.6 5.6 89.5 66.0

PointNet++* [28] 1.0 1.0 85.8 56.9
PointNet++† [28] 1.0 1.0 87.5 63.2
CO-Net (base) 1.2 1.5 89.7 (+3.9) 65.4 (+8.5)
CO-Net (large) 10.6 2.7 90.4 (+4.6) 68.0 (+11.1)

Table 2. 3D point semantic segmentation results on the S3DIS
dataset, evaluated on area 5.

S3DIS. Table 2 illustrates the comparison results of CO-
Net with other state-of-the-art methods under the S3DIS
dataset. CO-Net (base) achieves 65.4 mIoU and 89.7 overall
accuracy respectively, which exceeds PointNet++ [28] by
8.5 units and 3.9 units with an acceptable increase of FLOPs
and parameters. Again, CO-Net (base) demonstrates its pre-
eminence over PointNeXT-S [30], exceeding it by 2.0 units
in mIoU and 1.8 units in overall accuracy. Compared to the
state-of-the-art methods KPConv[42], ASSANet-L[29] and
PointNext-B[30], CO-Net (large) also achieves competitive
results in the condition of fewer FLOPs and parameters.
Compared with Poly-PC [53], CO-Net families surpass it
by large margins, revealing that the significance of offering
fine-grained parameter sharing adaptively within the model.
It seems that CO-Net may not achieve the same level of per-
formance as current state-of-the-art segmentation methods
(e.g., Point Transformer [61] and RepSurf [33]) deliberately
designed for segmentation task, however, the utilization of
a framework to simultaneously accomplish multiple point
cloud tasks is figured out through the experiment, which is
conducive to final model deployment.

SUN RGBD. We evaluate CO-Net under SUN RGBD
dataset against several competitive approaches and the re-
sults are exhibited in Table 3. CO-Net (base) possesses
an outstanding performance compared with the baseline
VoteNet/VoteNet* [26], 3.5/1.2 units improvement under

*We report the results of MMDetection3D (https://github.
com/openmmlab/mmdetection3d), which are superior to those of
the official paper.

Method Flops (G) #Params (M) mAP@0.25 mAP@0.5

ImVoteNet* [25]‡ 241 42.5 64.5 -

3Detr [24] 9.8 7.0 59.1 32.7
MLCVNet [51] 7.2 1.2 59.8 -
H3DNet [60] 14.5 6.3 60.1 39.0
BRNet [7] 8.0 3.2 61.1 43.7
VENet [50] 30.3 4.9 62.5 39.2
Group-free* [21] 11.2 19.8 63.0 45.2
RBGNet [44] 3.5 2.2 64.1 47.2
RepSurf-U [33] - 11.5 64.3 45.9
Poly-PC (base) [53] 6.1 1.0 62.3 40.2
Poly-PC (large) [53] 18.8 7.8 63.5 41.9
Farp-Net [52] - 1.8 64.0 -

VoteNet* [26] 5.8 1.0 59.1 35.8
VoteNet* [26] 5.8 1.0 61.4 37.9
CO-Net (base) 6.6 1.1 62.6 (+3.5) 41.1 (+5.3)
CO-Net (large) 16.4 6.6 63.7 (+4.6) 44.6 (+8.8)

Table 3. The performance of CO-Net against previous works on
3D object detection under SUN-RGBD. Note that ‡ means it uses
RGB as extra inputs whereas CO-Net is geometric only. * means
our implementation, detailed in Appendix F.3.

Method OA mIoU mAP@0.25 S-Score #Params-t (M)

Baseline 77.9 56.9 59.1 193.9 3.500
RepSurf-U [33] 84.6 68.9 64.3 217.8 13.959
CO-Net (base) 88.4 65.4 62.6 216.1 (+22.2) 3.362 (-0.138)
CO-Net (large) 89.5 68.0 63.7 221.2 (+27.3) 10.431 (+6.931)

PointNet++† [28] 86.1 63.2 - 149.3 2.500
PointCNN [17] 78.5 57.3 - 135.8 1.200
PointNeXT-S [30] 87.7 63.4 - 151.1 2.400
PointNeXT-B [30] 87.7 67.5 - 155.2 5.400
CO-Net* (base) 88.4 65.4 - 153.8 2.731
CO-Net* (large) 89.5 68.0 - 157.5 6.116

Table 4. The overall performance of CO-Net with baseline and
other state-of-the-art methods. #Params-t denotes the total param-
eters when jointly optimizing multiple tasks.

mAP@0.25 and 5.3/3.2 units under mAP@0.5 with few pa-
rameters increasing. Additionally, CO-Net (large) reaches
63.7 on mAP@0.25 and 44.6 mAP@0.5, achieving compet-
itive results with current state-of-the-arts Groupfree [21],
RBGNet [44], Poly-PC [53], Farp-Net [52], and Rep-
Surf [33]. Despite it turns out to operate without intricate
heads like Groupfree [21] and RBGNet [44], CO-Net still
acquires comparable performance with them and surpasses
many previous works [50, 7] that only designed for detec-
tion task, indicating the significance of a strong backbone
for boosting performance.

Overall performance. To further highlight the superi-
ority of CO-Net, we compare the overall performance of
CO-Net on the above three tasks with that of the base-
lines (e.g., PointNet++ [28] and VoteNet [26]), as well
as with the total model parameters for concurrently opti-
mizing these tasks. In this process, PointNet++ [28] and
VoteNet [26] are incorporated as the baselines as CO-Net
utilize the identical heads with them. In addition, we define
CO-Net* for 3D point classification and 3D semantic seg-
mentation tasks such that comparing it with current cutting-
edge works that typically evaluate performances on these
two tasks. We designate the S-Score as a proxy for overall
performance acquired by the linear summation of perfor-
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Training scopes cls seg det #Params-t (M)

CO-Net (base) individual 88.6 64.8 62.9 4.300
CO-Net (base) joint&nas 88.4 65.4 62.6 3.362

CO-Net (large) individual 89.9 67.6 63.8 15.000
CO-Net (large) joint&nas 89.5 68.0 63.7 10.431

Table 5. The overall performance of CO-Net under joint training
scope and individual training scope.

mances in all tasks. The results in Table 4 demonstrate that
CO-Net (base) exceeds the baseline by 22.2 units in the S-
Score, accompanied by a decrease of 0.138M parameters.
CO-Net (large) outperforms RepSurf-U [33] by 3.4 units in
S-Score with 3.528M fewer #Params-t, highlighting the su-
periority of CO-Net. CO-Net* (base/large) secures compa-
rable results when compared with the current cutting-edge
methods, which merely evaluate performances on 3D point
classification and 3D semantic segmentation tasks. Specif-
ically, CO-Net* (base) achieves superior performance rel-
ative to PointNet++† [28]/PointNeXT-S [30], with 4.5/2.7
units increase in terms of S-Score with comparable param-
eters. CO-Net* (large) also exceeds current state-of-the-art
PointNeXT-B [30] by 2.3 units regarding to S-Score with
0.716M parameters increase.

4.4. Ablation Study

The effect of multi-task training for point cloud. We
retrain the optimal model architecture searched by CO-Net
for each point cloud task from scratch and compare the re-
sults with CO-Net for all point cloud tasks, to verify the ef-
fectiveness of CO-Net. As demonstrated in Table 5, the per-
formance of subnets produced from CO-Net is comparable
to that trained separately, with somewhat lower accuracy in
classification and detection tasks while higher in segmenta-
tion task. Notably, CO-Net (base)/CO-Net (large) acquire a
storage margin of 0.938M/4.569M, respectively, due to the
fact that the majority of parameters in CO-Net are shared
across all tasks.

The effect of nested layer-wise processing policy. As
illustrated in Section 3.2, our proposed nested layer-wise
processing policy leverages NAS technique to identify the
optimal architecture for each task while automatically de-
termining whether the parameters of backbone are shared
or not. Thereby, we evaluate the effectiveness of the NAS
technique to determine the optimal architecture for various
tasks. Particularly, we randomly select three networks un-
der parameter constraint and train them independently from
scratch for different tasks. The results compared with net-
works retrieved by CO-Net are summarized in Table 6. CO-
Net substantially achieves almost 1 unit increase on all three
tasks, whilst the parameters yield only a minor change, il-
lustrating the superiority of the NAS technique in the nested
layer-wise processing policy. Subsequently, to present the
potency of sharing policy in nested layer-wise processing
policy, we apply three distinct parameter sharing strategies

Training scopes cls seg det #Params-t (M)

random individual 87.3 63.6 62.1 4.751
CO-Net (base) individual 88.6 64.8 62.9 4.300

random individual 88.4 62.7 62.6 15.762
CO-Net (large) individual 89.9 67.6 63.8 15.000

Table 6. The effect of NAS technique in the nested layer-wise pro-
cessing policy.

cls seg det S-Score #Params (M)

EXP1 85.8 63.2 61.1 210.1 2.698
EXP2 87.6 64.5 62.3 214.4 3.306
EXP3 88.4 65.4 62.6 216.1 3.362

Table 7. The effect of different parameter sharing strategies.

SGS PCGrad DWA cls seg det S-Score

✗ ✗ ✗ 87.0 64.3 61.9 213.2
✓ ✗ ✗ 88.4 65.4 62.6 216.1
✗ ✓ ✗ 87.9 65.1 62.1 215.1
✗ ✗ ✓ 87.3 64.8 61.9 214.2

Table 8. Results of CO-Net (base) with various gradient homoge-
nization algorithms to resolve negative transfer. SGS denotes the
proposed sign-based gradient surgery.

λ cls seg det S-Score

0.25 88.1 65.2 62.4 215.4
0.50 88.4 65.4 62.6 216.1
0.75 88.6 64.9 62.3 215.5

Table 9. The ablation results for λ.

to CO-Net (base). EXP1: All parameters of the back-
bone are set as task-shared. EXP2: All parameters of the
layers (both convolutional and normalization layers) in the
backbone are determined whether to be shared by scores.
EXP3: All parameters of the layers (only convolutional lay-
ers) in the backbone are determined whether to be shared
by scores. As demonstrated in Table 7, compared to set all
parameters as task-shared, CO-Net significantly improves
the overall performance of all tasks from 210.1 to 216.1 at
the expense of a small increase in parameters, which in-
dicates that utilizing additional task-specific parameters to
learn task-related features is essential for effective feature
extraction. Besides, the performance of CO-Net is further
enhanced with normalization layers set as task-specific, i.e.,
EXP2 vs EXP3.

The effect of sign-based gradient surgery. In this sec-
tion, the results of CO-Net (base) with and without sign-
based gradient surgery are first illustrated in Table 8. In
addition, we train the network along with other typical al-
gorithms (e.g., PCGrad [57] and Dynamic Weight Aver-
age [19]) designed for tackling negative transfer in multi-
task learning tasks. Our method achieves superior perfor-
mance in comparison to PCGrad [57] and DWA [19], fur-
ther demonstrating the effectiveness of the proposed sign-
based gradient surgery. Particularly, the overall perfor-
mance of our algorithm surpasses that of DWA by 1.9 units,
indicating that homogenizing the conflicting directions of
the gradients for different tasks is more significant.

The selection of λ. In this part, we conduct an ablation
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Method Points FLOPs (G) #Params-e OA

PointNet++ [28] 1k 3.2 100% 90.7
PointNet++ [28] 5k 3.2 100% 91.9

CO-Net (base) 1k 2.9 62.15% 92.1
CO-Net (large) 1k 5.9 58.11% 92.9

Table 10. Incremental learning. #Params-e indicates that the per-
centage of extra parameters required by each method when gener-
alizing to a new task.

experiment to verify the selection of λ, with the results re-
ported in Table 9. When setting λ to 0.5, CO-Net achieves
the best performance compared with other settings.

4.5. Incremental learning of CO-Net

When CO-Net is applied to a new task, only the task-
specific parameters require to be retrained, while the task-
shared parameters will be frozen due to their capacity to en-
capsulate generalized features of the point cloud. It is con-
cluded that CO-Net enables incremental learning and can
scale smoothly with the task numbers increasing. To exem-
plify this concept, we implement the Human-made Object
Classification ModelNet40 [49] into CO-Net and compare
it to PointNet++ [28]. The training recipe and details of
ModelNet40 are given in Appendix B. Notably, we use the
searched architecture for ScanObjectNN to conduct the in-
cremental experiment on ModelNet40 dataset. The incre-
mental results of CO-Net are summarized in Table 10. We
observe that CO-Net (base/large) achieves 92.1/92.9 over-
all performance with fewer parameter proportions, further
indicating that CO-Net is capable of achieving genuinely
incremental learning. The catastrophic forgetting analysis
is also detailed in Appendix B.

4.6. Generalization Of CO-Net

To evaluate the flexibility of CO-Net, following Poly-
PC [53], we utilize CO-Net to jointly optimize ModelNet40,
S3DIS, and SUN RGBD, and then conduct incremental
experiments (IE) on ScanObjectNN, with results summa-
rized in Table 11. Under such setting, CO-Net (base/large)
exceed Poly-PC (base/large) [53] by non-trivial margin in
terms of S-Score while maintain much fewer total param-
eters, emphasizing the significance of offering fine-grained
parameter sharing adaptively within the model.

Method OA mIoU mAP@0.25 S-Score #Params-t (M) OA (IE)

Poly-PC (base) [53] 92.6 63.0 62.3 217.9 3.4 86.8
Poly-PC (large) [53] 93.7 66.0 63.5 223.2 13.7 87.9
CO-Net (base) 93.2 66.1 62.5 221.8 3.314 87.1
CO-Net (large) 94.1 68.4 63.8 226.3 10.569 88.3

Table 11. CO-Net vs Poly-PC under the setting of jointly optimiz-
ing ModelNet40, S3DIS, and SUN RGBD.

5. Conclusion
In this work, we introduce CO-Net, a cohesive network

that jointly learns multiple point cloud tasks under hetero-

geneous dataset domains. Leveraging the nested layer-wise
processing policy and sign-based gradient surgery, CO-Net
attains great performance for all tasks and maintains stor-
age efficiency for model deployment. Moreover, CO-Net
is demonstrated to achieve superior performance when gen-
eralizing to a new task with minimal task-specific parame-
ter expansion. Extensive experiments illustrate that CO-Net
outperforms previous methods by a large margin while re-
taining fewer total FLOPs and parameters.
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