
DiffFit: Unlocking Transferability of Large Diffusion Models
via Simple Parameter-Efficient Fine-Tuning

Enze Xie1, Lewei Yao1, Han Shi1, Zhili Liu1, Daquan Zhou2, Zhaoqiang Liu1, Jiawei Li1, Zhenguo Li1

1Huawei Noah’s Ark Lab 2National University of Singapore

Figure 1: Selected samples to show parameter-efficient fine-tuned DiT-XL/2 model using DiffFit. DiffFit only needs to fine-

tune 0.12% parameters. Top row: 512×512 image generation on ImageNet with 3.02 FID. Bottom rows: 256×256 image

generation on several downstream datasets across diverse domains: Food, Fungi, Scene, Art, Bird, Flower.

Abstract
Diffusion models have proven to be highly effective in

generating high-quality images. However, adapting large
pre-trained diffusion models to new domains remains an
open challenge, which is critical for real-world applica-
tions. This paper proposes DiffFit, a parameter-efficient
strategy to fine-tune large pre-trained diffusion models that
enable fast adaptation to new domains. DiffFit is em-
barrassingly simple that only fine-tunes the bias term and
newly-added scaling factors in specific layers, yet result-
ing in significant training speed-up and reduced model stor-
age costs. Compared with full fine-tuning, DiffFit achieves

Correspondence to {xie.enze, li.zhenguo}@huawei.com

2× training speed-up and only needs to store approximately
0.12% of the total model parameters. Intuitive theoretical
analysis has been provided to justify the efficacy of scal-
ing factors on fast adaptation. On 8 downstream datasets,
DiffFit achieves superior or competitive performances com-
pared to the full fine-tuning while being more efficient. Re-
markably, we show that DiffFit can adapt a pre-trained
low-resolution generative model to a high-resolution one
by adding minimal cost. Among diffusion-based methods,
DiffFit sets a new state-of-the-art FID of 3.02 on ImageNet
512×512 benchmark by fine-tuning only 25 epochs from a
public pre-trained ImageNet 256×256 checkpoint while be-
ing 30× more training efficient than the closest competitor.
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1. Introduction
Denoising diffusion probabilistic models (DDPMs) [20,

51, 49] have recently emerged as a formidable technique

for generative modeling and have demonstrated impres-

sive results in image synthesis [43, 12, 45], video genera-

tion [21, 19, 65] and 3D editing [40]. However, the cur-

rent state-of-the-art DDPMs suffer from significant com-

putational expenses due to their large parameter sizes and

numerous inference steps per image. For example, the re-

cent DALL· E 2 [45] comprises 4 separate diffusion models

and requires 5.5B parameters. In practice, not all users are

able to afford the necessary computational and storage re-

sources. As such, there is a pressing need to explore meth-

ods for adapting publicly available, large, pre-trained dif-

fusion models to suit specific tasks effectively. In light of

this, a central challenge arises: Can we devise an inexpen-
sive method to fine-tune large pre-trained diffusion models
efficiently?

Take the recent popular Diffusion Transformer (DiT)

as an example, the DiT-XL/2 model, which is the largest

model in the DiT family and yields state-of-the-art gener-

ative performance on the ImageNet class-conditional gen-

eration benchmark. In detail, DiT-XL/2 comprises 640M

parameters and involves computationally demanding train-

ing procedures. Our estimation indicates that the train-

ing process for DiT-XL/2 on 256×256 images necessitates

950 V100 GPU days (7M iterations), whereas the training

on 512×512 images requires 1733 V100 GPU days (3M

iterations). The high computational cost makes training

DiT from scratch unaffordable for most users. Further-

more, extensive fine-tuning of the DiT on diverse down-

stream datasets requires storing multiple copies of the

whole model, which results in linear storage expenditures.

In this paper, we propose DiffFit, a simple and

parameter-efficient fine-tuning strategy for large diffusion

models, building on the DiT as the base model. The mo-

tivation can be found in Figure 2. Recent work in natu-

ral language processing (BitFit [61]) has demonstrated that

fine-tuning only the bias term in a pre-trained model per-

forms sufficiently well on downstream tasks. We, there-

fore, seek to extend these efficient fine-tuning techniques

to image generative tasks. We start with directly applying

BitFit [61] and empirically observe that simply using the

BitFit technique is a good baseline for adaptation. We then

introduce learnable scaling factors γ to specific layers of

the model, initialized to 1.0, and made dataset-specific to

accommodate enhancement of feature scaling and results in

better adaptation to new domains. Interestingly, the empir-

ical findings show that incorporating γ at specific locations

of the model is important to reaching a better FID score.

Source Domain Denoising Process

Target Domain Denoising Process

Source 
Domain 

Target 
Domain 

Figure 2: The denoising process of a diffusion model typ-

ically involves iteratively generating images from random

noise. In DiffFit, the pre-trained large diffusion model in

the source domain can be fine-tuned to adapt to a target do-

main with only a few specific parameter adjustments.

In other words, the FID score does not improve linearly

with the number of γ included in the model. In addition,

we conducted a theoretical analysis of the mechanism un-

derlying the proposed DiffFit for fine-tuning large diffusion

models. We provided intuitive theoretical analysis to help

understand the effect of the newly-added scaling factors in

the shift of distributions.

We employed several parameter-efficient fine-tuning

techniques, including BitFit [61], AdaptFormer [7],

LoRA [23], and VPT [24], and evaluated their performance

on 8 downstream datasets. Our results demonstrate that

DiffFit outperforms these methods regarding Frechet Incep-

tion Distance (FID) [38] trade-off and the number of train-

able parameters. Furthermore, we surprisingly discovered

that by treating high-resolution images as a special domain

from low-resolution ones, our DiffFit approach could be

seamlessly applied to fine-tune a low-resolution diffusion

model, enabling it to adapt to high-resolution image gener-

ation at a minimal cost. For example, starting from a pre-

trained ImageNet 256×256 checkpoint, by fine-tuning DIT

for only 25 epochs (≈0.1M iterations), DiffFit surpassed

the previous state-of-the-art diffusion models on the Ima-

geNet 512×512 setting. Even though DiffFit has only about

0.9 million trainable parameters, it outperforms the original

DiT-XL/2-512 model (which has 640M trainable parame-

ters and 3M iterations) in terms of FID (3.02 vs. 3.04),

while reducing 30× training time. In conclusion, DiffFit

aims to establish a simple and strong baseline for parameter-

efficient fine-tuning in image generation and shed light on

the efficient fine-tuning of larger diffusion models.

Our contributions can be summarized as follows:

1. We propose a simple parameter-efficient fine-tuning

approach for diffusion image generation named Diff-
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Fit. It achieves superior results compared to full fine-

tuning while leveraging only 0.12% trainable param-

eters. Quantitative evaluations across 8 downstream

datasets demonstrate that DiffFit outperforms existing

well-designed fine-tuning strategies (as shown in Fig-

ure 3 and Table 1).

2. We conduct an intuitive theoretical analysis and design

detailed ablation studies to provide a deeper under-

standing of why this simple parameter-efficient fine-

tuning strategy can fast adapt to new distributions.

3. We show that by treating high-resolution image gener-

ation as a downstream task of the low-resolution pre-

trained generative model, DiffFit can be seamlessly ex-

tended to achieve superior generation results with FID

3.02 on ImageNet and reducing training time by 30

times, thereby demonstrating its scalability.

2. Related Works

2.1. Transformers in Vision

Transformer architecture was first introduced in lan-

guage model [55] and became dominant because of its scal-

ability, powerful performance and emerging ability [41, 42,

3]. Then, Vision Transformer (ViT) [13] and its variants

achieved colossal success and gradually replaced ConvNets

in various visual recognition tasks, e.g. image classifica-

tion [54, 64, 60, 16], object detection [34, 56, 57, 4], se-

mantic segmentation [63, 58, 52] and so on [53, 32, 62, 35,

17, 31]. Transformers are also widely adopted in GAN-

based generative models [14, 25] and the conditional part

of text-to-image diffusion models [45, 46, 43, 1]. Recently,

DiT [39] proposed a plain Transformer architecture for the

denoising portion of diffusion networks and verified its scal-

ing properties. Our paper adopts DiT as a strong baseline

and studies parameter-efficient fine-tuning.

2.2. Diffusion Models

Diffusion models [20] (aka. score-based models [50])

have shown great success in generative tasks, including den-

sity estimation [26], image synthesis [12], text-to-image

generation [45, 1, 47] and so on. Different from previ-

ous generative models like GAN [8], VAE [27] and Flow

[44], diffusion models [20] transform a data distribution

to a Gaussian distribution by progressively adding noise,

and then, reversing the process via denoising to retrieve the

original distribution. The progressive step-by-step trans-

formation between the two distributions makes the training

process of diffusion models more stable compared to other

models. However, the multiple time-step generations makes

the diffusion process time-consuming and expensive.

Figure 3: Average FID score of fine-tuned DiT across 8

downstream datasets. The radius of each bubble reflects

the training time (smaller is better). We observe that Diff-

Fit performs remarkably well in terms of achieving the best

FID while requiring fewer computations and parameters.

2.3. Parameter-efficient Fine-tuning

Witnessing the success of Transformers in language and

vision, many large models based on Transformer archi-

tecture have been developed and pre-trained on massive

upstream data. On the one hand, the industry continues

to increase the model parameters to billion, even trillion

scales [3, 15, 11] to probe up the upper bound of large mod-

els. On the other hand, fine-tuning and storage of large

models are expensive. There are three typical ways for

parameter-efficient fine-tuning as follows:

1. Adaptor [22, 23, 7]. Adaptor is a small mod-

ule inserted between Transformer layers, consisting of a

down-projection, a nonlinear activation function, and an

up-projection. Specifically, LoRA [23] adds two low-

rank matrices to the query and value results between the

self-attention sub-layer. AdaptFormer [7], however, places

the trainable low-rank matrices after the feed-forward sub-

layer.

2. Prompt Tuning [30, 29, 36, 24, 66]. Usually, prefix

tuning [30] appends some tunable tokens before the input

tokens in the self-attention module at each layer. In con-

trast, prompt-tuning [29] only appends the tunable tokens

in the first layer for simplification. VPT [24] focuses on

the computer vision field and proposes deep and shallow

prompt tuning variants.

3. Partial Parameter Tuning [61, 59, 33]. Compared

with the above parameter-efficient methods, partial param-

eter tuning does not insert any other components and only

fine-tunes the partial parameters of the original model. For

example, BitFit [61] tunes the bias of each linear projection

and Child-Tuning [59] evaluates the importance of parame-
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ters and tunes only the important ones.

3. Methodology
3.1. Preliminaries

Diffusion Models. Denoising diffusion probabilistic mod-

els (DDPMs) [20] define generative models by adding

Gaussian noise gradually to data and then reversing back.

Given a real data sample x0 ∼ qdata(x), the forward pro-

cess is controlled by a Markov chain as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), where βt is a variance schedule

between 0 and 1. By using the reparameterization trick,

we have xt =
√
ᾱtx0 +

√
1− ᾱtε, where ε ∼ N (0, I),

αt = 1 − βt and ᾱt =
∏t

i=1 αi. For larger time step t, we

have smaller ᾱt, and the sample gets noisier.

As for the reverse process, DDPM learns a denoise neu-

ral network pθ(xt−1|xt) = N (xt−1;μθ(xt, t), σ
2
t I). The

corresponding objective function is the following varia-

tional lower bound of the negative log-likelihood:

L(θ) =
∑

t

DKL

(
q(xt−1|xt,x0)

∣∣pθ(xt−1|xt)
)− pθ(x0|x1), (1)

where DKL(p
∣
∣q) represents the KL divergence measuring

the distance between two distributions p and q. Further-

more, the objective function can be reduced to Lvlb =

Ex0,ε,t

[ β2
t

2αt(1−ᾱt)σ2
t
‖ε − εθ‖2

]
and a simple variant loss

function Lsimple = Ex0,ε,t

[‖ε − εθ‖2
]
. Following iD-

DPM [37], we use a hybrid loss function as Lhybrid =
Lsimple + λLvlb, where λ is set to be 0.001 in our experi-

ments.

Diffusion Transformers (DiT). Transformer [55] architec-

ture has proved to be powerful in image recognition, and its

design can be migrated to diffusion models for image gen-

eration. DiT [39] is a recent representative method that de-

signs a diffusion model with Transformers. DiT follows the

design of latent diffusion models (LDMs) [45], which have

two parts given a training sample x: (1) An autoencoder

consisting of an encoder E and a decoder D, where the la-

tent code z = E(x) and the reconstructed data x̂ = D(z);
(2) A latent diffusion transformer with patchify, sequential

DiT blocks, and depatchify operation. In each block Bi,

we have zi = Bi(x, t, c), where t and c are time embed-

ding and class embedding. Each block Bi contains a self-

attention and a feed-forward module. The patchification/de-

patchification operations are used to encode/decode latent

code z to/from a sequence of image tokens.

3.2. Parameter-efficient Fine-tuning

DiffFit Design. This section illustrates the integration of

DiT with DiffFit. Note that DiffFit may be generalized to

other diffusion models e.g. Stable Diffusion. Our approach,

illustrated in Figure 4, involves freezing the majority of pa-

rameters in the latent diffusion model and training only the

Figure 4: Architecture comparison between full fine-tuning

and the proposed DiffFit. DiffFit is simple and effective,

where most of the weights are frozen and only bias-term,

scale factor γ, LN, and class embedding are trained.

bias term, normalization, and class condition module. We

moreover insert learnable scale factors γ into several blocks

of the diffusion model, wherein the γ is initialized to 1.0

and multiplied on corresponding layers of each block. Each

block typically contains multiple components such as multi-

head self-attention, feed-forward networks, and layer nor-

malization, and the block can be stacked N times. Please

refer to Algorithm 1 for additional detailed information.

Fine-tuning. During fine-tuning, diffusion model param-

eters are initially frozen, after which only specific param-

eters related to bias, class embedding, normalization, and

scale factor are selectively unfrozen. Our approach, out-

lined in Algorithm 2, enables fast fine-tuning while min-

imizing disruption to pre-trained weights. DiT-XL/2 re-

quires updating only 0.12% of its parameters, leading to

training times approximately 2× faster than full fine-tuning.

Our approach avoids catastrophic forgetting while reinforc-

ing the pre-trained model’s knowledge and enabling adap-

tation to specific tasks.

Inference and Storage. After fine-tuning on K datasets,

we only need to store one copy of the original model’s

full parameters and K× dataset-specific trainable param-

eters, typically less than 1M for the latter. Combining these

weights for the diffusion model enables adaptation to mul-

tiple domains for class-conditional image generation.

3.3. Analysis

In this subsection, we provide intuitive theoretical jus-

tifications for the efficacy of scaling factors and reveal the
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Algorithm 1 Add trainable scale factor γ in the model.

import torch
import torch.nn as nn

class Block():
# An example of adding trainable scale factors
def __init__():
# Initilize gamma to 1.0
self.gamma1 = nn.Parameter(torch.ones(dim))
self.gamma2 = nn.Parameter(torch.ones(dim))

def forward(x, c, t):
# Apply gamma on self-attention and ffn
x = x + self.gamma1 * self.attn(wrap(x, c, t))
x = x + self.gamma2 * self.ffn(wrap(x, c, t))

return x

Algorithm 2 Parameter-efficient fine-tuning strategy.

# List of trainable parameters
trainable_names = ["bias","norm","gamma","y_embed"]

def finetune():
# Step 1: Freeze all params
for name, param in model.named_parameters():
param.requires_grad = False

# Step 2: Unfreeze specific params
for name, param in model.named_parameters():
# unfreeze specific parameters with name
if match(name, trainable_names):
param.requires_grad = True

# Step 3: Fine-tuning
train(model, data, epochs)

Method

Dataset
Food SUN DF-20M Caltech CUB-Bird ArtBench

Oxford

Flowers

Standard

Cars

Average

FID

Params.

(M)

Train

Time

Full Fine-tuning 10.46 7.96 17.26 35.25 5.68 25.31 21.05 9.79 16.59 673.8 (100%) 1×
Adapt-Parallel [7] 13.67 11.47 22.38 35.76 7.73 38.43 21.24 10.73 20.17 4.28 (0.63%) 0.47×
Adapt-Sequential 11.93 10.68 19.01 34.17 7.00 35.04 21.36 10.45 18.70 4.28 (0.63%) 0.43×
BitFit [61] 9.17 9.11 17.78 34.21 8.81 24.53 20.31 10.64 16.82 0.61 (0.09%) 0.45×
VPT-Deep [24] 18.47 14.54 32.89 42.78 17.29 40.74 25.59 22.12 26.80 2.81 (0.42%) 0.50×
LoRA-R8 [23] 33.75 32.53 120.25 86.05 56.03 80.99 164.13 76.24 81.25 1.15 (0.17%) 0.63×
LoRA-R16 34.34 32.15 121.51 86.51 58.25 80.72 161.68 75.35 81.31 2.18 (0.32%) 0.68×
DiffFit (ours) 6.96 8.55 17.35 33.84 5.48 20.87 20.18 9.90 15.39 0.83 (0.12%) 0.49×

Table 1: FID performance comparisons on 8 downstream datasets with DiT-XL-2 pre-trained on ImageNet 256×256.

principle behind their effectiveness. We note that these the-

oretical justifications are intended as a simple proof of con-

cept rather than seeking to be comprehensive, as our contri-

butions are primarily experimental.

Specifically, recent theoretical works for diffusion mod-

els, such as [10, 9, 28, 6, 5], have shown that under suit-

able conditions on the data distribution and the assumption

of approximately correct score matching, diffusion mod-

els can generate samples that approximately follow the data

distribution, starting from a standard Gaussian distribution.

Given a mapping f and a distribution P , we denote f#P as

a pushforward measure, i.e., for any measurable Ω, we have

(f#P )(Ω) = P (f−1(Ω)). Note that our base model DiT

is pre-trained on ImageNet with a resolution of 256 × 256
and is fine-tuned on downstream datasets with the same res-

olution but much fewer data points and classes. Motivated

by this, if assuming that the data in the ImageNet 256×256
dataset follows a distribution Q0, then we can assume that

the data in the downstream dataset follows a distribution

P0 = fγ∗#Q0, where fγ∗ is a linear mapping dependent

on some ground-truth scaling factors γ∗.

With these assumptions in place, we can formulate an

intuitive theorem that provides insight into the effectiveness

of scaling factors. A formal version of this theorem is in-

cluded in the supplementary material.

Theorem 1 (informal). Suppose that for a dataset gener-
ated from data distribution Q0, we can train a neural net-

work such that the diffusion model generates samples that
approximately follow Q0. Further assuming that the data
distribution P0 for a relatively small dataset can be written
as P0 = fγ∗#Q0 with fγ∗ being a linear mapping depen-
dent on ground-truth scaling factors γ∗. Then, if only re-
training the neural network with the goal of optimizing scal-
ing factors (and all other parameters remain unchanged),
under suitable conditions, a simple gradient descent algo-
rithm seeks an estimate γ̂ that is close to γ∗ with high prob-
ability. Furthermore, with the fine-tuned neural network
corresponding to γ̂, the denoising process produces sam-
ples following a distribution that is close to P0.

In summary, Theorem 1 essentially states that when

distributions Q0 and P0 satisfy the condition that P0 =
fγ∗#Q0 with fγ∗ being dependent on ground-truth scal-

ing factors γ∗, diffusion models can transfer from distribu-

tion Q0 to P0 in the denoising process with fine-tuning the

scaling factors in the training process.

4. Experiments
4.1. Implementation Details

Our base model is the DiT1, which is pre-trained on Ima-

geNet 256×256 with 7 million iterations, achieving an FID

score of 2.272. However, since the original DiT reposi-

1https://github.com/facebookresearch/DiT
2https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
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Figure 5: Fine-tune DiT-XL/2-512 from the checkpoint of DiT-XL/2-256 using DiffFit with the positional encoding trick.

tory does not provide training code, we re-implemented this

and achieved reasonable results. Following DiT, we set the

constant lr=1e-4 for full fine-tuning and set the classifier-

free guidance to 1.5 for evaluation and 4.0 for visualization.

In addition, we re-implemented several parameter-efficient

fine-tuning methods such as Adaptor, BitFit, Visual Prompt

Tuning (VPT), and LoRA. We found VPT to be sensitive

to depth and token number while training was exception-

ally unstable. As such, we sought for a more stable con-

figuration with depth=5, token=1, and kept the final layers

unfrozen for all tasks. We enlarge lr ×10 for parameter-

efficient fine-tuning settings to obtain better results follow-

ing previous works [23, 7].

4.2. Transfer to Downstream Datasets

Setup. For fine-tuning downstream small datasets with

256×256 resolutions, we use 8 V100 GPUs with a total

batch size of 256 and train 24K iterations. We choose 8

commonly used fine-grained datasets: Food101, SUN397,

DF-20M mini, Caltech101, CUB-200-2011, ArtBench-10,

Oxford Flowers and Stanford Cars. We report FID using

50 sampling steps for all the tasks. Most of these datasets

are selected from CLIP downstream tasks except ArtBench-

10 since it has distinct distribution from ImageNet, which

enables a more comprehensive evaluation of the out-of-

distribtion generalization performance of our DiffFit.

Results. We list the performance of different parameter-

efficient fine-tuning methods in Table 1. As can be seen,

by tuning only 0.12% parameters, our DiffFit achieves the

lowest FID on average over 8 downstream tasks. While full

fine-tuning is a strong baseline and has slightly better re-

sults on 3/8 datasets, it is necessary to fine-tune 100% pa-

rameters. Among all baselines, the performance of LoRA

is surprisingly poor. As discussed in [18], LoRA performs

worse on image classification tasks than other parameter-

efficient fine-tuning methods. As the image generation task

is conceptually more challenging than the image classifica-

tion task, it is reasonable that the performance gap between

LoRA and other approaches becomes larger here.
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Method FID ↓ Training Cost

(GPU days)
↓

BigGAN-Deep [2] 8.43 256-512

StyleGAN-XL [48] 2.41 400

ADM-G, AMD-U [12] 3.85 1914

DiT-XL/2 [39] 3.04 1733

DiffFit (ours) 3.02 51 (+950†)

Table 2: Class-conditional image generation on Ima-
geNet 512×512. The training cost of the original DiT

model and our method is measured on V100 GPU devices,

and other methods are quoted from original papers. †:

950 GPU days indicates the pre-training time of DiT-XL/2

model on ImageNet 256×256 with 7M steps.

Method
Pre-trained

Checkpoint
FID ↓

Full Fine-tune IN256(7M)→Food256 23.08

DiffFit IN512 (3M) 19.25

DiffFit IN256 (7M)→Food256 19.50

+PosEnc Trick IN256 (7M)→Food256 19.10

Table 3: Class-conditional image generation on Food-
101 512×512. We use two pre-trained models from: (1)

ImageNet 512×512, and (2) ImageNet 256×256 and firstly

fine-tuned on Food-101 256×256.

4.3. From Low Resolution to High Resolution

Setup. Considering the generating images with differ-

ent resolutions as a special type of distribution shift, our

proposed method can effortlessly adapt a pre-trained low-

resolution diffusion model to generate high-resolution im-

ages. To demonstrate the effectiveness of DiffFit, we load a

pre-trained ImageNet 256 × 256 DiT-XL/2 checkpoint and

fine-tune the model on the ImageNet 512 × 512. We em-

ploy a positional encoding trick to speed up fine-tuning. We

fine-tune DiT-XL/2 on ImageNet 512× 512 using 32 V100

GPUs with 1024 batch size and 30K iterations. We report

FID using 250 sampling steps. Note that we do not need to

fine-tune the label embedding here since the label does not

change.

Positional Encoding Trick. DiT [39] adopts a static sinu-

soidal 2D positional encoding scheme. To better utilize the

positional information encoded in the pre-trained model, we

develop a sinusoidal interpolation that aligns the positional

encoding of 512×512 resolution with that of 256×256 res-

olution. This is implemented by replacing each pixel coor-

dinate (i, j) in the positional encoding formula with its half

value (i/2, j/2), which is simple and have no extra costs.

Results. As demonstrated in Table 2, DiffFit achieves 3.02

FID on the ImageNet 512 × 512 benchmark, surpassing

ADM’s 3.84 and the official DiT’s 3.04. DiffFit sets a

new state-of-the-art among diffusion-based methods. Im-

portantly, our method is significantly more efficient than the

previous methods, as the fine-tuning process only requires

an overhead of 51 GPU days. Even when accounting for

the 950 GPU days of pre-training, our method remains su-

perior to the 1500+ GPU days required by DiT and ADM.

We observe faster training convergence using the positional

encoding trick, as shown in Figure 5. For more visualiza-

tions please see Figure 1 and appendix.

In Table 3, we conducted fine-tuning experiments on

the Food101 dataset with a resolution of 512×512 using

the DiffFit method. Our results reveal that fine-tuning

a pre-trained Food101 256×256 checkpoint with DiffFit

yields a FID of 4 improvements over full fine-tuning. In-

terestingly, we found that utilizing a pre-trained ImageNet

512×512 checkpoint leads to a FID performance similar

to that achieved by the pre-trained Food101 with 256×256

resolution. Moreover, we observed a slight improvement in

FID performance by incorporating the proposed positional

encoding trick into the fine-tuning process.

4.4. Fine-tuning Convergence Analysis

To facilitate the analysis of converging speed, we present

the FID scores for several methods every 15,000 iterations

in the Food-101, ArtBench-10, Flowers-102 and CUB-200

datasets, as shown in Figure 6. Our observations demon-

strate that full fine-tuning, BitFit, and our proposed Diff-

Fit exhibit similar convergence rates, which surpass the ini-

tial performance of AdaptFormer and VPT. While Adapt-

Former initially presents inferior performance, it shows a

rapid improvement in the middle of training. In contrast,

VPT exhibits the slowest rate of convergence. Compared

to full fine-tuning, DiffFit freezes most of the parameters

and thus maximally preserves the information learned dur-

ing the pre-training and thus achieves a better fine-tuned

performance. Compared to BifFit, DiffFit adjusts the fea-

ture using scale factor, resulting in faster convergence and

better results.

The above observation and analysis verify that our pro-

posed DiffFit demonstrates fast adaptation abilities to target

domains and an excellent image generation capability.

4.5. Ablation studies

Setup. We conduct ablation studies on Food101 dataset,

which has 101 classes. Each class has 750/250 images in

the train/test set. Other settings are the same as Section 4.2.

Scale factor γ in different layers. We investigate the ef-

fect of the scaling factor γ via 2 designs: gradually adding

γ from deep to shallow (Table 4a) and from shallow to
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Blocks #params (M) FID ↓
28→25 0.747 10.04

28→22 0.754 10.03

28→18 0.763 10.33

28→14 0.770 10.51

28→11 0.779 9.92

28→8 0.786 9.28

28→4 0.796 8.87

28→1 0.803 8.19

(a) Scale: Deep→Shallow.

Blocks #params (M) FID ↓
1→3 0.745 8.29

1→7 0.754 7.99

1→11 0.763 7.72

1→14 0.770 7.61
1→18 0.779 7.63

1→21 0.786 7.67

1→25 0.796 7.85

1→28 0.803 8.19

(b) Scale: Shallow→Deep.

#ID Scale Factor FID ↓
1 NA (BitFit) 9.17

2 +Blocks 8.19

3 +PatchEmb 9.05

4 +TimeEmb 8.46

5 +QKV-Linear 7.37

6 +Final Layer 7.49

7 +ID 1, 2, 5, 6 7.17

8 +(1→14 Layers) 6.96

(c) Scale Location.

LR Ratio FID ↓
0.1× 25.85

0.2× 21.42

0.5× 17.16

1× 15.68

2× 13.84

5× 10.97

10× 8.19
20× 8.30

(d) Learning Rate.

Table 4: Ablation experiments on Food101 dataset with DiT-XL/2. Red means adding scale factor leads to negative

results and green means positive. The best setting are marked in gray .
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Figure 6: FID of five methods every 15K iterations on four downstream datasets. Our observations indicate that DiffFit

can rapidly adapt to the target domain while maintaining a robust FID score.

deep (Table 4b). The results demonstrate that adding γ be-

fore the 14th layer of DiT-XL/2 gradually increases the per-

formance from 8.29 to 7.61 FID while adding more γ in the

deeper layers hurts the performance. We hypothesize that

deeper layers are responsible for learning high-level fea-

tures that capture abstract data patterns, which contribute to

synthesizing the final output and are often complex and non-

linear. Adding γ in deeper layers poses a risk of disrupting

the learned correlations between the high-level features and

data, which might negatively impact the model.

Scale factor γ in different modules. We study the impact

of scaling factor γ in various DiT modules, as illustrated in

Table 4c. Based on BitFit [61]’s FID score of 9.17, incorpo-

rating the scaling factor γ in transformer blocks and QKV-

linear layers of self-attention can significantly enhance the

performance, resulting in a FID score of 7.37 (row 5). How-

ever, introducing scale factors in other modules, such as

patch embedding (row 3) and time embedding (row 4), does

not bring noticeable improvements. By integrating the ef-

fective designs, i.e., adding γ in blocks, QKV-linear and

final layers, we improve FID score to 7.17 (row 7). We fur-

ther improve the FID score of 6.96 by placing γ in the first

14 blocks (Table 4b). This optimal setting is adopted as the

final setting for our approach.

Learning rate. Adjusting the learning rate is a crucial

step in fine-tuning. Parameter-efficient fine-tuning typically

requires a larger learning rate than the pre-training [23,

7] since pre-training has already initialized most of the

model’s parameters to a certain extent and a larger learn-

ing rate can help quickly adapt the remaining parameters to

the new tasks. We perform a learning rate search on our

method, as shown in Table 4d. We observe that using a

learning rate 10× greater than pre-training yields the best

result. Larger learning rates than 10× resulted in decreased

performance and even unstable training.

5. Conclusions and Limitations
In this paper, we propose DiffFit, a straightforward yet

effective fine-tuning approach that can quickly adapt a

large pre-trained diffusion model to various downstream do-

mains, including different datasets or varying resolutions.

By only fine-tuning bias terms and scaling factors, DiffFit

provides a cost-effective solution to reduce storage require-

ments and speed up fine-tuning without compromising per-

formance. One limitation is that our experiments mainly fo-

cus on class-conditioned image generation. It is still unclear

whether this strategy could perform equally well in more

complex tasks such as text-to-image generation or video/3D

generation. We leave these areas for future research.
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Petroni, Sameer Singh, and Sebastian Riedel. Cutting down

on prompts and parameters: Simple few-shot learning with

language models. arXiv, 2021. 3

[37] Alexander Quinn Nichol and Prafulla Dhariwal. Improved

denoising diffusion probabilistic models. In ICML, 2021. 4

[38] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On

aliased resizing and surprising subtleties in gan evaluation.

In CVPR, 2022. 2

[39] William Peebles and Saining Xie. Scalable diffusion models

with transformers. arXiv, 2022. 3, 4, 7

[40] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,

2022. 2

[41] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya

Sutskever, et al. Improving language understanding by gen-

erative pre-training. 2018. 3

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, Ilya Sutskever, et al. Language models are unsu-

pervised multitask learners. OpenAI blog, 2019. 3

[43] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gener-

ation with clip latents. arXiv, 2022. 2, 3

[44] Danilo Rezende and Shakir Mohamed. Variational inference

with normalizing flows. In ICML, 2015. 3

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image syn-

thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4

[46] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

Rapha Gontijo Lopes, et al. Photorealistic text-to-image

diffusion models with deep language understanding. arXiv,

2022. 3

[47] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan,

Tim Salimans, et al. Photorealistic text-to-image diffusion

models with deep language understanding. In NeurIPS. 3

[48] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-

xl: Scaling stylegan to large diverse datasets. In SIGGRAPH,

2022. 7

[49] Yang Song and Stefano Ermon. Generative modeling by es-

timating gradients of the data distribution. NeurIPS, 2019.

2

[50] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-

hishek Kumar, Stefano Ermon, and Ben Poole. Score-based

generative modeling through stochastic differential equa-

tions. In ICLR. 3

[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-

hishek Kumar, Stefano Ermon, and Ben Poole. Score-based

generative modeling through stochastic differential equa-

tions. In ICLR, 2021. 2

[52] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia

Schmid. Segmenter: Transformer for semantic segmenta-

tion. In ICCV, 2021. 3

[53] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie,

Zehuan Yuan, Changhu Wang, and Ping Luo. Transtrack:

Multiple object tracking with transformer. arXiv, 2020. 3

[54] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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