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Abstract

In this work, we seek to predict camera poses across
scenes with a multi-task learning manner, where we view
the localization of each scene as a new task. We propose
OFVL-MS, a unified framework that dispenses with the tra-
ditional practice of training a model for each individual
scene and relieves gradient conflict induced by optimizing
multiple scenes collectively, enabling efficient storage yet
precise visual localization for all scenes. Technically, in
the forward pass of OFVL-MS, we design a layer-adaptive
sharing policy with a learnable score for each layer to au-
tomatically determine whether the layer is shared or not.
Such sharing policy empowers us to acquire task-shared pa-
rameters for a reduction of storage cost and task-specific
parameters for learning scene-related features to alleviate
gradient conflict. In the backward pass of OFVL-MS, we
introduce a gradient normalization algorithm that homoge-
nizes the gradient magnitude of the task-shared parameters
so that all tasks converge at the same pace. Furthermore, a
sparse penalty loss is applied on the learnable scores to fa-
cilitate parameter sharing for all tasks without performance
degradation. We conduct comprehensive experiments on
multiple benchmarks and our new released indoor dataset
LIVL, showing that OFVL-MS families significantly outper-
form the state-of-the-arts with fewer parameters. We also
verify that OFVL-MS can generalize to a new scene with
much few parameters while gaining superior localization
performance. The dataset and evaluation code is available
at https://github.com/mooncake199809/UFVL-Net.

1. Introduction
Visual localization, a challenging task that aims to fore-

cast 6-DOF camera pose on a provided RGB image, is an
integral part of several computer vision tasks, such as simul-
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taneous localization and mapping [51, 32, 5] and structure-
from-motion [11, 31].

Typically, classical structure-based visual localization
frameworks [36, 34, 59, 58] construct 2D keypoints and
3D scene coordinates associations by matching local de-
scriptors, and afterwards use a RANSAC-based PnP algo-
rithm [15, 25] to retrieve camera pose. Recently, with the
advancements of deep learning [57, 56, 41, 49, 48], scene
coordinate regression (SCoRe) based methods [26, 13, 61,
53, 16, 10], which trains a convolutional neural network
(CNN) to regress the 3D scene coordinate corresponding
to each pixel in the input image and calculates camera pose
with PnP algorithm [25], establish state-of-the-art localiza-
tion performance in small static scenes. Compared with
structure-based methods, these methods require no database
of images or local descriptors and can benefit from high-
precision sensors. While SCoRe based methods achieve
impressive results, they come with some drawbacks. Scene
coordinate regression is scene-specific and required to be
trained for new scenes, resulting in a linear increase in to-
tal model size with the number of scenes. After witness-
ing the success of SCoRe-based methods, a naive problem
arise: could a single SCoRe-based model predict 3D coor-
dinates for multiple scenes concurrently and generalize to a
new scene? Solving this problem is a key step towards truly
SCoRe-based model deployment on autonomous robots.

A naive solution to this problem is that using a shared
backbone to extract features from multiple scenes and then
leveraging different regression heads to regress scene co-
ordinates for each scene. Nevertheless, jointly optimizing
cross-scene localization with a fully shared backbone exists
an insurmountable obstacle, i.e., gradient conflict induced
by competition among different tasks for shared parame-
ters, resulting in inferior performance compared with learn-
ing tasks separately [27, 7, 14, 17]. Towards this end, we
propose OFVL-MS, a unified SCoRe-based framework that
optimizes visual localization of multiple scenes collectively.
OFVL-MS is a multi-task learning (MTL) [12, 23, 29, 8,
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57, 52, 33, 47] framework where localization of each scene
is treated as an individual task. OFVL-MS offers benefits
in terms of model complexity and learning efficiency since
substantial parameters of the network are shared among
multiple scenes, which renders the model more pragmatic
to be deployed on robotics. Technically, OFVL-MS elimi-
nates gradient conflict from forward and backward pass.

In the forward pass, we design a layer-adaptive sharing
policy to automatically determine whether each active layer
of the backbone is shared or not, from which we derive task-
shared parameters for efficient storage and task-specific pa-
rameters for mitigating gradient conflict. The central idea
of the layer-adaptive sharing policy is to transform the layer
selection of the backbone into a learnable problem, so that
deciding which layers of the backbone to be shared or not
can be done during training by solving a joint optimiza-
tion problem. In the backward pass, inspired by gradient
homogenization algorithms in classical multi-task learning
[21, 28], we introduce a gradient normalization algorithm
that homogenizes the gradient magnitude of the task-shared
parameters across scenes to ensure all tasks converge at a
similar but optimal pace, further relieving gradient conflict.
We also apply a penalty loss on the active layers to prompt
all tasks to share as many parameters as possible while im-
proving the performance of some tasks that benefit from the
shared parameters, as illustrated in Sec. 4.4 and Sec. 4.7.
Experiments show that OFVL-MS achieves excellent lo-
calization performance on several benchmarks, including
7-Scenes dataset[39], 12-Scenes datasets [45] and our re-
leased large indoor dataset LIVL in terms of median po-
sitional and rotational errors, etc. We also demonstrate that
OFVL-MS can generalize to a new scene with much few
parameters while maintaining exceptional performance.

To summarize, the contributions of this work are as fol-
lows: (1) We propose OFVL-MS, a unified visual localiza-
tion framework that optimizes localization tasks of differ-
ent scenes collectively in a multi-task learning manner. (2)
We propose a layer-adaptive sharing policy for OFVL-MS
to automatically determine, rather than manually, whether
each active layer of backbone is shared or not. A penalty
loss is also applied to promote layer sharing across scenes.
(3) We introduce a gradient normalization algorithm to ho-
mogenize gradient magnitudes of the task-shared parame-
ters, enabling all tasks to converge at same pace. (4) We
publish a new large indoor dataset LIVL that provides a
new test benchmark for visual localization. (5) We demon-
strate that OFVL-MS can generalize to a new scene with
much fewer parameters while retaining superior localiza-
tion performance.

2. Related Work
Structured-based Visual Localization. The structure-

based methodologies [36, 34, 59, 58] utilize local descrip-

tors to establish 2D pixel positions and 3D scene coordi-
nate matches for a given query image, afterwards using a
PnP algorithm to recover camera pose. However, as op-
posed to directly matching within an exhaustive 3D map as
in [36], current state-of-the-art methods [34, 59, 58] em-
ploy image retrieval [2] to narrow down the searching space
and utilize advanced feature matching techniques such as
Patch2pix [62], SuperGlue [35], LoFTR [42], MatchFormer
[50], OAMatcher [9], and DeepMatcher [54] to generate
precise 2D-2D correspondences, which are subsequently
elevated to 2D-3D matches. The structured-based meth-
ods demonstrate state-of-the-art performance in large-scale
scenes thanks to expeditious image retrieval techniques
and feature matching algorithms, while they are limited in
small-scale static scenes such as indoor scenes [26, 20].
Moreover, in lifelong localization scenarios, the size of the
image and feature database increases over time due to the
continuous addition of new data. As a result, the memory
requirements for on-device localization in VR/AR systems
may exceed the available limits.

Learning-based Visual Localization. Current learning-
based visual localization approaches can be classified into
absolute pose regression (APR) [24, 55, 22], relative pose
regression (RPR) [1, 11, 44], and scene coordinate regres-
sion (SCoRe) [26, 13, 61, 53, 16]. The APR methods di-
rectly forecast the camera pose via a provided RGB image
in an end-to-end way. However, such methods can not real-
ize accurate visual localization as they are essentially anal-
ogous to approximate pose estimation via image retrieval
[46]. The RPR methods utilize a neural network to identify
the relative pose among the requested image and the most
identical image retrieved from the database, which, how-
ever, is time-consuming and restricts their practical applica-
tion. The SCoRe approaches directly forecast the 3D scene
coordinates, walked by the RANSAC-based PnP algorithm
The SCoRe approaches directly forecast the scene coordi-
nates, succeeded by the PnP algorithm to compute camera
pose. While these methods can be optimized end-to-end
and achieve impressive results, they suffer from some draw-
backs. Pose regression and scene coordinate regression are
both scene-specific and must be retrained for new scenes,
culminating in a linear increase in total model size with the
number of scenes.

Gradient Homogenization over Multi-task Learning
(MTL). During the training process of multi-task learning
(MTL), the gradient magnitudes and directions of different
tasks interact complicatedly together via backpropagation,
a phenomenon known as task interference. Previous meth-
ods [37, 28, 6, 21, 30, 40] simplify the matter to two cate-
gories of gradient discrepancies (i.e., magnitudes and direc-
tions of task gradients) and suggest various techniques to
reconcile this difference. For gradient magnitudes, Sener et
al. [37] characterize multi-task learning as multi-objective
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Figure 1. Overall of OFVL-MS (using ResNet34 [18] as backbone). OFVL-MS jointly optimizes visual localization across scenes and
consists of two components, that is, backbone and regression layer. The layer-adaptive sharing policy and task-specific attention module are
utilized to generate more scene-related features, which are fed into regression layers to predict scene coordinates with uncertainty. Besides,
the penalty loss is proposed to facilitate OFVL-MS to share parameters as many as possible, realizing efficient storage deployment.
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Figure 2. Layer-adaptive Sharing Policy. The scores s are uti-
lized to determine which parameters ((w, b, s) or (w̃, b̃, s)) to be
optimized in current iteration.

optimization and provide an upper bound for the multi-
objective loss. Javaloy et al. [21] homogenize the gradi-
ent magnitudes through normalizing and scaling, ensuring
training convergence. For gradient direction, Sinha et al.
[40] and Maninis et al. [30] propose to enable task gradi-
ents statistically to be indistinguishable through adversarial
training.

3. Method
Given a RGB image, the task of visual localization seeks

to estimate the rigid transformation T ∈ SE(3) from cam-
era coordinate system to world coordinate system. Such
transformation is composed of a 3D rotation matrix R ∈
SO(3) and a translation vector t ∈ R3.

3.1. Overall

We propose OFVL-MS, a unified framework that jointly
optimizes localization tasks of different scenes in a multi-
task learning manner, where we view the visual localiza-

tion of each scene as a new task. OFVL-MS is a two-
stage pipeline with scene coordinates prediction followed
by a RANSAC-based PnP algorithm to calculate the cam-
era pose T . Specifically, OFVL-MS takes N RGB im-
ages In ∈ R3×H×W , n ∈ {1, 2, ..., N} from different
scenes as input and predicts dense 3D scene coordinates
D̂n = {d̂n,i = (x̂n,i, ŷn,i, ẑn,i)|i = 1, 2, 3, ..., Q} with 1D
uncertainty Ûn = {ûn,i|i = 1, 2, 3, ..., Q}, where Q is the
predicted 3D scene coordinate numbers. Thus, we derive
Q correspondences between 2D pixel coordinates and 3D
scene coordinates. Finally, OFVL-MS utilizes RANSAC-
based PnP algorithm to calculate 6-DOF camera pose Tn =
[Rn|tn]. In this work, we focus on designing and optimising
OFVL-MS, which encourages all tasks to share as many pa-
rameters as possible for efficient storage deployment while
maintaining superior performance for all tasks.

3.2. Design OFVL-MS

As shown in Fig. 1, OFVL-MS is characterized by two
components: backbone and regression layers.

Backbone. The backbone first utilizes a pre-layer with
stride of 2 to map the input image to a higher dimension
and lower resolution, and then leverages four ResBlocks
[18] with stride of (1, 1, 2, 2) and several attention mod-
ules to extract features. The backbone concludes a set of
task-shared parameters ϕsh for N tasks and task-specific
parameters ϕsp

n for task n to transform each input In into
an intermediate representation Fn = f(In;ϕ

sh, ϕsp
n ) ∈

RCo×Ho×Wo , where Co is the dimension of Fn, H0 = H/8,
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W0 = W/8.
Regression Layer. Additionally, each task n has a re-

gression layer h, with exclusive parameters θn, which takes
Fn as input and predicts 3D scene coordinate D̂n as well as
1D uncertainty Ûn for task n.

In this work, instead of altering the architecture of the
network or adding a fixed set of parameters, we seek a
framework that enables all tasks to share as many param-
eters as feasible while retaining excellent performance, i.e.,
proposed task-adaptive sharing policy and gradient balance
algorithm. We assume the layers with learnable parame-
ters in the backbone except for the attention modules to be
active layers, such as convolution and normalization layer,
while other layers, such as ReLU layer and Sigmoid layer,
are considered as inactive layers.

Layer-adaptive Sharing Policy. Theoretically, when
manually determining whether K active layers are shared or
not, a combinatorial search over 2K possible networks is re-
quired. Thus, in lieu of hand-crafted weight or layer sharing
schemes, inspired by TAPS [47], we relax the combinato-
rial issue into a learnable one and introduce a layer-adaptive
sharing policy that automatically determines whether each
layer of the active layers is shared or not for diverse scenes.
Using a single weight and bias for each active layer, how-
ever, does not enable different tasks to share or monopo-
lize the parameters dynamically at various iterations during
training, hence limiting the adaptivity of OFVL-MS for the
scenes.

To tackle this issue, as shown in Fig. 2, taking a con-
volution layer as example, we cast the initial weight w ∈
RCout×Cin×k×k of the convolution kernel as task-shared
parameters and define two additional parameters: task-
specific weight w̃ ∈ RCout×Cin×k×k, and a learnable score
s ∈ R1, where Cout, Cin and k mean output channels, input
channels, and kernel size, respectively. In forward pass, we
define an indicator function for the score to judge whether
the parameters of convolution layer are shared or not in cur-
rent iteration, formulated as:

Θ(s) =

{
0 if s ≥ λ

1 otherwise,
(1)

where λ is a preset threshold. The task-adaptive weight w̄
used for current iteration is formulated as:

w̄ =Θ(s)w + (1−Θ(s))w̃. (2)

If the score s is larger than the preset threshold λ, the
task-specific parameters w̃ will be activated and optimized,
and vice versa. We apply above procedure on all active lay-
ers to enable different tasks to share or monopolize the pa-
rameters dynamically at various iterations. Besides, con-
cluding additional parameters w̃ into each layer does not

result in a large increase in memory cost since only the se-
lected parameters w̄ and s are optimized at each iteration
and all other parameters are kept offline.

Compared with TAPS, our proposed sharing policy de-
livers following merits: (1) we introduce individual task-
shared weight w and task-specific weight w̃ for each active
layer rather than a coupled weight in TAPS, enabling the
memory footprint to be agnostic to the number of tasks; (2)
once the training for multi-task is done, the new added task
can share task-shared parameters or task-specific parame-
ters with any task in our setting, allowing for more flexible
parameter sharing and real multi-task learning.

NOtably, we set the learnable score s to be task-shared so
that ensuring the parameters of all scenes can be integrated
into a collective model. Moreover, we calculate the sum-
mation of the absolute values of all scores as penalty loss
to enable all tasks to share parameters as many as possible,
achieving efficient storage deployment. Since the indicator
function Θ(·) is not differentiable, we need to modify its
gradient during backward pass, which will be presented in
Appendix 2.1. Notably, as illustrated in Sec. 4.5, learning
task-specific batch normalization can significantly improve
the localization performance while adding small parame-
ters, so we set the parameters of normalization layers in ac-
tive layers as task-specific.

Task-specific Attention Module. We further embed an
attention module into the backbone, empowering OFVL-
MS to learn more scene-related features. The attention
module learns a soft attention mask to the features, that can
automatically determine the importance of features for each
task along the channel dimension, enabling self-supervised
learning of more scene-related features. In this work, we
adopt SENet [19] as attention module and integrate it into
the BasicBlock of each ResBlock. Each task n has task-
specific attention modules with exclusive parameters.

3.3. Optimize OFVL-MS

Since each task has its own dataset domain, we need to
utilize multiple GPUs to optimize these tasks. For the sake
of description, we assume that a single GPU is used to train
each scene.

Loss. The goal of OFVL-MS is to ensure precise vi-
sual localization for all scenes while enabling different tasks
to share as many parameters as possible. Therefore, we
cast the training process of OFVL-MS as a joint optimiza-
tion problem for predicted scene coordinates and scores in
Eq. (1). For the n-th scene, the loss Ln involves two terms:
the scene coordinates loss Lsc

n and the penalty loss Lpe
n .

Ln = Lsc
n + βLpe

n , (3)

where β denotes weight coefficient used to reconcile Lsc
n

and Lpe
n .
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Scene coordinates loss. We employ the loss function
proposed by KFNet [61] to maximize the logarithmic like-
lihood for the probability density function of the predicted
scene coordinates. Specifically, the loss function of the n-th
scene is formatted as:

Lsc
n =

1

Q

Q∑
i=1

(3logûn,i +
||dn,i − d̂n,i||22

2û2
n,i

), (4)

where Q equals to H/8 × W/8; ûn,i is the i-th predicted
uncertainty; dn,i is the i-th ground truth scene coordinate;
d̂n,i is the i-th predicted scene coordinate.

Penalty loss on the learnable scores. The penalty loss
Lpe
n motivates all tasks to share the parameters of active lay-

ers as many as possible. Such loss is denoted by calculating
the summation of the absolute values of scores sn for the
n-th scene:

Lpe
n =

1

||Sn||
∑

sn∈Sn

|sn|, (5)

where Sn means the collection of the scores; ||Sn|| denotes
the number of scores. It is worth noting that the scores sn
of all scenes are identical since they are set as task-shared.

Backward Pass and Gradient Normalization Algo-
rithm. For convenient portrayal, we denote the task-shared
and task-specific parameters of OFVL-MS for n-th scene as
χsh
n = {ϕsh} and χsp

n = {ϕsp
n , θn}.

For task-specific parameters, we define the gradients of
χsp
n,i for n-th scene at i-th iteration as: Gsp

n,i = ∇χsp
n,i

Ln,i,
where Ln,i means the loss function for the n-th scene at the
i-th iteration. Subsequently, the task-specific parameters on
each GPU will be optimized based on the calculated Gsp

n,i.
Noting that when optimizing a scene with multiple GPUs,
the gradients Gsp

n,i on the GPUs would be averaged and then
the parameters are updated accordingly. For task-shared pa-
rameters, the gradients of χsh

n,i for n-th scene at i-th iteration
is also formulated as: Gsh

n,i = ∇χsh
n,i

Ln,i.
A straightforward scheme for optimizing the task-shared

parameters involves averaging the gradients Gsh
n,i across all

GPUs and then updating the corresponding weights. While
this method streamlines the optimization problem, it may
also trigger gradient conflict among tasks, lowering over-
all performance due to an unequal competition among tasks
for the shared parameters, i.e., gradient magnitude dispar-
ities. Moreover, OFVL-MS is designed for jointly opti-
mizing multiple indoor scenes, where the varied scene do-
mains will further intensify the gradient conflict. Inspired
by [28, 40, 21, 37], we utilize a gradient normalization al-
gorithm to homogenize the gradient magnitude of the task-
shared parameters for all scenes, allowing all tasks to con-
verge at same pace and alleviating the gradient conflict.
Specifically, OFVL-MS first places gradient norms of task-
shared parameters on a common scale D. Considering the

magnitudes and the change rate of gradient reflect whether
the optimization direction in current iteration is dependable
or not, we define D as the linear combination of task-wise
gradient magnitudes:

D =

N∑
n=1

Wn,i||Gsh
n,i||2, (6)

where the weight Wn,i is denoted as the relative conver-
gence of each task:

Wn,i =
||Gsh

n,i||2/||Gsh
n,i−1||2∑N

j=1 ||Gsh
j,i||2/||Gsh

j,i−1||2
. (7)

Then, given the common scale D, OFVL-MS generates
the optimized gradients Ĝsh

n,i:

Ĝsh
n,i = D

Gsh
n,i

||Gsh
n,i||2

. (8)

Ultimately, we average the gradients Ĝsh
n,i on all GPUs

to derive Ĝsh
i , ensuring the gradients of the task-shared pa-

rameters for all scene are equivalent. The Ĝsh
i is formulated

as:

Ĝsh
i =

1

N

N∑
n=1

Ĝsh
n,i. (9)

3.4. Pose Estimation

We design the regression layer as a fully convolutional
structure to predict dense 3D scene coordinates as well as
1D uncertainty, where the uncertainty is utilized to mea-
sure the prediction effect by quantifying the noise induced
from both data and model. Based on the predicted 2D pixel
coordinates-3D scene coordinates correspondences, we ap-
ply the RANSAC-based PnP algorithm to minimize repro-
jection errors and finally derive camera pose T .

4. Experiments
4.1. Datasets

7-Scenes [39] dataset records 41k RGB-D images and
corresponding camera poses of seven different indoor envi-
ronments using a handheld Kinect camera. 12-Scenes [45]
dataset, whose recorded environment is larger than that of
7-Scenes, records RGB-D images in twelve indoor environ-
ments with an iPad color camera.

4.2. Experimental Settings

Implementation Details. We employ the Adamw solver
for optimization with a weight decay of 0.05. The ini-
tial learning rate is set to 1.4 × 10−3 for 7-Scenes while
2.4 × 10−3 for 12-Scenes with cosine annealing. Consid-
ering the number of images for each scene is distinct, we
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Methods Metrics Chess Fire Heads Office Pumpkin Redkitchen Stairs Average

AS [36] Med. Err. 0.03, 0.87 0.02, 1.01 0.01, 0.82 0.04, 1.15 0.07, 1.69 0.05, 1.72 0.04, 1.01 0.03, 1.18
Acc. — — — — — — — 68.7

InLoc [43] Med. Err. 0.03, 1.05 0.03, 1.07 0.02, 1.16 0.03, 1.05 0.05, 1.55 0.04, 1.31 0.09, 2.47 0.04, 1.38
Acc. — — — — — — — 66.3

HLoc [34] Med. Err. 0.02, 0.85 0.02, 0.94 0.01, 0.75 0.03, 0.92 0.05, 1.30 0.04, 1.40 0.05, 1.47 0.03, 1.09
Acc. — — — — — — — 73.1

MS-Transformer [38] Med. Err. 0.11, 4.66 0.24, 9.6 0.14, 12.19 0.17, 5.66 0.18, 4.44 0.17, 5.94 0.26, 8.45 0.18, 7.27
Acc. — — — — — — — —

DSAC* [3] Med. Err. 0.02, 1.10 0.02, 1.24 0.01, 1.82 0.03, 1.15 0.04, 1.34 0.04, 1.68 0.03, 1.16 0.02, 1.35
Acc. — — — — — — — 85.2

SCoordNet [61] Med. Err. 0.019, 0.63 0.023, 0.91 0.018, 1.26 0.026, 0.73 0.039, 1.09 0.039, 1.18 0.037, 1.06 0.029, 0.98
Acc. — — — — — — — —

HSCNet [26] Med. Err. 0.02, 0.7 0.02, 0.9 0.01, 0.9 0.03, 0.8 0.04, 1.0 0.04, 1.2 0.03, 0.8 0.03, 0.9
Acc. 97.5 96.7 100.0 86.5 59.9 65.5 87.5 84.8

FDANet [53] Med. Err. 0.018, 0.64 0.018, 0.73 0.013, 1.07 0.026, 0.75 0.036, 0.91 0.034, 1.03 0.041, 1.14 0.026, 0.89
Acc. 95.70 96.10 99.20 88.08 65.65 78.32 62.80 83.69

VS-Net [20] Med. Err. 0.015, 0.5 0.019, 0.8 0.012, 0.7 0.021, 0.6 0.037, 1.0 0.036, 1.1 0.028, 0.8 0.024, 0.8
Acc. — — — — — — — —

OFVL-MS18 Med. Err. 0.021, 0.67 0.018, 0.67 0.010, 0.56 0.030, 0.83 0.033, 0.96 0.035, 1.02 0.031, 0.89 0.025, 0.80
Acc. 96.20 97.55 98.90 81.73 67.15 75.06 79.80 85.19

OFVL-MS34 Med. Err. 0.019, 0.63 0.017, 0.65 0.008, 0.53 0.027, 0.74 0.031, 0.93 0.032, 1.01 0.027, 0.69 0.023, 0.74
Acc. 97.40 96.60 100.0 85.58 67.50 77.14 87.40 87.37

OFVL-MS50 Med. Err. 0.015, 0.50 0.015, 0.59 0.008, 0.56 0.023, 0.63 0.030, 0.86 0.031, 0.99 0.026, 0.76 0.021, 0.69
Acc. 97.10 99.40 100.0 89.53 68.80 81.48 84.70 88.72

Table 1. The median positional error (m), rotational error (◦), and 5cm-5◦ accuracy (%) of different methods on 7-Scenes dataset.

Methods Med. Err. Acc.

DSAC* [4] — 99.1
SCoordNet [61] — 98.9
HSCNet [26] 0.011, 0.50 99.3
FDANet [53] 0.014, 0.37 99.6

OFVL-MS18 0.013, 0.48 98.7
OFVL-MS34 0.007, 0.25 99.9
OFVL-MS50 0.008, 0.30 99.5

Table 2. The median positional error (m), rotational error (◦), and
5cm-5◦ accuracy (%) of different methods on 12-Scenes dataset.

train OFVL-MS for 200k iterations with batch size of 4. For
layer-adaptive sharing policy, we set the threshold λ = 0.5
in Eq. (1) to determine whether each active layer of the
backbone is shared or not. Besides, we set β = 0.25 in
Eq. (2) to reconcile scene coordinates loss and penalty loss.
More implementation details can be found in Appendix 2.

Evaluation Metrics. Following previous works [53, 61,
26], we evaluate our method using the following metrics: (i)
the median positional and rotational errors of the predicted
pose; (ii) the percentage of images with positional and rota-
tional errors less than 5cm and 5◦.

4.3. Comparison with State-of-the-art Methods

We design three versions OFVL-MS18, OFVL-MS34
and OFVL-MS50 of our method by using ResNet18,
ResNet34, ResNet50 [18] as backbone respectively, and
then compare OFVL-MS families with other state-of-the-
arts on 7-Scenes and 12-Scenes datasets, with the results

reported in Table 1 and Table 2.
Localization on 7-Scenes. We compare OFVL-MS

with representative structure-based methods (AS [36], In-
Loc [43], HLoc [34]), APR methods (MS-Transformer
[38]), and SCoRe-based methods (DSAC* [4], SCoordNet
[61], HSCNet [26], FDANet [53], and VSNet [20]). As
shown in Table 1, OFVL-MS surpasses existing methods
by non-trivial margins in terms of all evaluation metrics.
Specifically, OFVL-MS18/34 outperforms the structure-
based method HLoc by 12.09%/14.27% in terms of 5cm-5◦

accuracy. Besides, compared with SCoRe-based methods
HSCNet and FDANet, OFVL-MS18/34 realizes outstand-
ing performance with the improvement of 0.4%/2.57% and
1.51%/3.68%. Compared with the cutting-edge method
VS-Net, OFVL-MS18/34 also achieve higher performance.
Moreover, OFVL-MS50 yields 0.021m median position
error, 0.69◦ median rotational error and 88.72% 5cm-5◦

accuracy, establishing a new state-of-the-art for 7-Scenes
dataset. Fig. 3 shows the cumulative pose errors distribu-
tion of different approaches on 7-Scenes dataset, which fur-
ther demonstrates the superiority of OFVL-MS families in
visual localization.

Localization on 12-Scenes. As illustrated in Ta-
ble 2, we compare OFVL-MS families with state-of-the-
arts on 12-Scenes dataset. It can be observed that all meth-
ods achieve excellent results since the training trajectories
closely resemble the test trajectories. Despite this, OFVL-
MS families exhibit exceptional performances, in which
OFVL-MS34 realizes the most superior performance with
the positional errors of 7mm and localization accuracy of
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Figure 3. The cumulative pose errors distribution of different
methods on 7-Scenes dataset. We aggregate the poses across all
scenes and calculate the percentage of poses with the error thresh-
old increasing.

Methods Total Params (M) Med. Err. Acc.

7-Scenes

DSAC++ [3] 182.384 0.036, 1.10 74.4
HSCNet [26] 288.751 0.030, 0.90 84.8
FDANet [53] 168.758 0.026, 0.89 83.69

OFVL-MS18 48.803 0.025, 0.80 85.19
OFVL-MS34 64.403 0.023, 0.74 87.37
OFVL-MS50 53.015 0.021, 0.69 88.72

12-Scenes

HSCNet [26] 495.002 0.011, 0.50 99.3
FDANet [53] 289.299 0.014, 0.37 99.6

OFVL-MS18 75.453 0.013, 0.48 98.7
OFVL-MS34 158.693 0.007, 0.25 99.9
OFVL-MS50 126.694 0.008, 0.30 99.5

Table 3. The model size of different methods. OFVL-MS fami-
lies achieve the best localization accuracy with much less parame-
ters.

99.9%.
Model Size Comparison. We compare the storage space

occupied by different methods to demonstrate the efficient
storage deployment of OFVL-MS families. Previous works
typically train a separate model for each scene, resulting in
a linear increase in model size with the number of scenes.
However, OFVL-MS deposits multiple models with a ma-
jority of shared parameters into a single one, realizing ef-
ficient storage. As shown in Table 3, OFVL-MS families
reduce the model parameters significantly compared with
other state-of-the-arts. For 7-Scenes dataset, the parameters
size of OFVL-MS50 is only 1/5 of that of HSCNet, but the
localization accuracy is improved by 3.92%. For 12-Scenes
dataset, OFVL-MS34 achieves the best performance with
much fewer parameters (only 1/3 of HSCNet).

4.4. Joint Training vs Separate Training

To further demonstrate the efficiency of jointly optimiz-
ing localization tasks across scenes, we train a separate
model for each scene. We choose OFVL-MS34 as the
benchmark for validation. As shown in Table 4, OFVL-
MS34 reduces total model size from 177.779M to 64.403M
by sharing parameters for all scenes. Besides, it is astonish-
ing to find OFVL-MS34 achieves competitive performance
through joint training, indicating that closely-related tasks
have mutual benefits.

Methods Total Params (M) Med. Err. Acc.

Separate Learning 177.779 0.023, 0.74 86.50
Joint Learning 64.403 0.023, 0.74 87.37

Table 4. The comparison between joint and separate training of
OFVL-MS34 on 7-Scenes dataset.

Methods Total Params (M) Med. Err. Acc.

EXP1 50.243 0.027, 0.82 79.94
EXP2 64.391 0.024, 0.76 86.10
EXP3 (Ours) 64.403 0.023, 0.74 87.37

Table 5. The comparison between different parameters sharing
strategies on 7-Scenes dataset.

Methods Increased Params (M) Med. Err. Acc.

EXP1: 12-Scenes to 7-Scenes

HSCNet [26] 41.250 × 7 0.030, 0.90 84.80
FDANet [53] 24.108 × 7 0.026, 0.89 83.69
OFVL-MS18† 5.476 × 7 0.029, 0.93 77.59
OFVL-MS34† 12.117 × 7 0.023, 0.75 85.73
OFVL-MS50† 9.881 × 7 0.021, 0.71 86.75

EXP2: 7-Scenes to 12-Scenes

HSCNet [26] 41.250 × 12 0.011, 0.50 99.3
FDANet [53] 24.108 × 12 0.014, 0.37 99.6
OFVL-MS18† 5.597 × 12 0.009, 0.38 96.7
OFVL-MS34† 6.501 × 12 0.009, 0.31 97.3
OFVL-MS50† 5.835 × 12 0.008, 0.29 98.3

Table 6. Experiments of generalizing to new scenes. † indi-
cates using the models trained on 12-Scenes/7-Scenes to conduct
the generalization experiments on 7-Scenes/12-Scenes. Increased
Params (M) means the extra parameters size that each method re-
quires when generalizing to new scenes.

4.5. Diverse Parameters Sharing Strategies

To verify the effectiveness of the proposed layer-adaptive
sharing policy, we apply three different parameter sharing
strategies on OFVL-MS34 for 7-Scenes dataset. EXP1: All
parameters of active layers are set as task-shared. EXP2:
All parameters of active layers (both convolutional and
batch normalization layers) are determined whether to be
shared by scores. EXP3: All parameters of active layers
(only convolutional layers) are determined whether to be
shared by scores, and the batch normalization layers are set
as task-specific. As shown in Table 5, compared to setting
all parameters as task-shared, OFVL-MS34 significantly
improves localization performance from 79.94 to 87.37 in
terms of 5cm-5◦ accuracy at the expense of a small increase
in model parameters, indicating that using additional task-
specific parameters to learn scene-related features is critical
to resolve gradient conflict. Besides, the performance of
OFVL-MS is further enhanced with BN layers set as task-
specific.

4.6. Generalize to New Scenes

In this part, we conduct two experiments to demonstrate
that OFVL-MS can generalize to new scenes with much
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Methods TSAM GNA PL Med. Err. Acc. Params-t (M)

EXP1 ✗ ✓ ✓ 0.026, 0.79 84.30 63.297
EXP2 ✓ ✗ ✓ 0.025, 0.77 84.16 64.403
EXP3 ✓ ✓ ✗ 0.023, 0.74 86.25 78.059
EXP4 ✓ ✓ ✓ 0.023, 0.74 87.37 64.403

Table 7. Ablation study with various variants of OFVL-MS on
7-Scenes dataset. TSAM: Task-specific Attention Module, GNA:
Gradient Normalization Algorithm, PL: Penalty Loss. Params-t
means the total parameters of OFVL-MS34 for the seven scenes.

fewer parameters and thus can scale up gracefully with
the number of scenes. We utilize the model trained on
12-Scenes/7-Scenes and conduct the generalization exper-
iments on 7-Scenes/12-Scenes. Specifically, we freeze the
task-shared parameters trained on 12-Scenes/7-Scenes, and
add task-specific parameters as well as an additional regres-
sion layer for each scene of 7-Scenes/12-Scenes to predict
the scene coordinates.

As shown in Table 6, despite generalizing to a new scene,
OFVL-MS34/50 still outperform HSCNet and FDANet by
0.93%/1.95% and 2.04%/3.06% in terms of 5cm-5◦ accu-
racy for EXP1, illustrating that OFVL-MS can avoid catas-
trophic forgetting and achieve genuine incremental learn-
ing. Besides, compared with 41.250/24.108 M increased
parameters of HSCNet and FDANet, OFVL-MS18/34/50
only need 5.476/12.117/9.881 M parameters when gener-
alizing to a new scene, realizing efficient storage.

For EXP2, OFVL-MS families yield the lowest localiza-
tion errors. It is worth noting that the incremental mod-
els achieve more precise localization performance in most
of scenes except for Floor5b, resulting in the 5cm-5◦ ac-
curacy declined, which will be presented in Appendix 3.
Moreover, OFVL-MS families realize efficient storage de-
ployment with 5.597/6.501/5.835 M additional parameters
compared with HSCNet and FDANet.

4.7. Ablation study

To comprehensively confirm the veracity of the mod-
ules suggested in this work, various variants of OFVL-
MS34 are validated using the 7-Scenes dataset. As shown
in Table 7, all of the components contribute to outstand-
ing performance. EXP1: Removing all task-specific atten-
tion modules results in a large drop in localization accu-
racy, demonstrating the strong ability of TSAM to generate
more scene-related features, realizing efficient scene pars-
ing. EXP2: Removing gradient normalization algorithm
leads to much lower accuracy, validating that homogenizing
the gradient magnitude of the task-shared parameters alle-
viates the gradient conflict significantly. EXP3: Removing
penalty loss results in degraded localization accuracy, in-
dicating that promoting the informative parameters sharing
across scenes improves localization performance.

Mobile Chassis

RealSense D435 Camera

VLP-16 Laser Radar

Mobile Chassis

RealSense D435 Camera

VLP-16 Laser Radar

Room

Parking Lot1 Parking Lot2

Hall

K544

Parking Lot1 Parking Lot2

Floor5

Figure 4. LIVI dataset. The blue lines indicate training trajecto-
ries whereas the red lines indicate test trajectories.

Methods Metric K544 Floor5 Parking lot1 Parking lot2 Average Params-t (M)

SCoordNet [61]
Med. Err. 0.171, 2.12 0.208, 1.94 0.353, 2.97 0.184, 2.13 0.229, 2.29

93.086
Acc. 9.86 20.31 11.28 20.82 15.57

FDANet [53]
Med. Err. 0.143, 1.89 0.167, 1.59 0.291, 2.75 0.138, 1.61 0.185, 1.96

96.432
Acc. 12.64 23.87 13.31 22.89 18.18

OFVL-MS18
Med. Err. 0.074, 1.12 0.174, 1.84 0.274, 2.28 0.100, 1.31 0.155, 1.64

37.246
Acc. 39.21 16.92 24.50 28.34 27.24

OFVL-MS34
Med. Err. 0.071, 1.01 0.147, 1.48 0.278, 2.08 0.095, 1.17 0.147, 1.43

73.184
Acc. 42.53 25.54 25.72 29.03 30.71

OFVL-MS50
Med. Err. 0.050, 0.81 0.148, 1.37 0.265, 2.48 0.107, 1.02 0.142, 1.42

45.678
Acc. 49.91 30.72 26.17 28.34 33.79

Table 8. The median positional error (m) and rotational error (◦)
of OFVL-MS families on LIVL dataset. Params-t means that the
total parameters of OFVL-MS for the four scenes.

4.8. Camera Localization on LIVI

Despite the existence of publicly available datasets for
visual localization, there is no dataset for large-scale indoor
scenes. Thus, we introduce the challenging LIVL dataset
containing RGB-D images tagged with 6-DoF camera poses
collected around four scenes. (i) K544: spanning about
12×9m2. (ii) Floor5: spanning about 12×5m2. (iii) Park-
ing lot1 spanning about 8 × 6m2. (iv) Parking lot2 span-
ning about 8 × 8m2. Each scene contains three sequences
for training and one sequence for test. A massive propor-
tion of motion blur and sparse texture in the scene make
visual localization in the four scenes challenging. We give
the visualization of LIVL dataset in Fig. 4. The dataset was
collected using a autonomous platform armed with a Re-
alSense D435 camera and a VLP-16 laser radar. The RGB
and depth images are captured at a resolution of 640× 480
pixels and aligned with point clouds using timestamp. We
utilize the LiDAR-based SLAM system A-LOAM [60] to
compute the ground truth pose. More details of the dataset
can be found in Appendix 4.

As shown in Table 8, we can observe that OFVL-
MS50 realizes the best performance with 0.142m and 1.42◦

median localization error. Wherein, OFVL-MS50 yields
0.05m and 0.81◦ localization error in K544 scene that con-
tains discriminative texture. Moreover, Floor5 and Park-
ing lot1 are laborious for OFVL-MS families to localize
since there exists repetitive and sparse texture, and illu-
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mination disturbance. Besides, we can also observe that
5cm-5◦ accuracy is inferior due to the large scale of LIVI
dataset. Compared with typical SCoRe based methods SCo-
ordNet [61] and FDANet [53], OFVL-MS families outper-
form them by non-trivial margins in terms of all evaluation
metrics while necessitating much fewer total parameters,
further indicating that the closely-related tasks benefit from
the shared parameters and the efficacy of our OFVL-MS.

5. Conclusion

In this work, we introduce OFVL-MS, a unified network
that achieves precise visual localization across scenes in a
multi-task learning manner. OFVL-MS achieves high per-
formance for all tasks and keeps storage efficient for model
deployment through forward pass (layer-adaptive sharing
policy) and backward pass (gradient normalization algo-
rithm) of the network. Moreover, a penalty loss is proposed
to motivate OFVL-MS to share parameters as many as pos-
sible while maintaining precise localization accuracy. We
demonstrate that OFVL-MS can generalize to a new scene
with small task-specific parameters while realizing superior
localization performance. We also publish a new large in-
door dataset LIVL to provide a new test benchmark for the
community.
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