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Abstract

Recently, Neural Radiance Field (NeRF) has shown great
success in rendering novel-view images of a given scene by
learning an implicit representation with only posed RGB
images. NeRF and relevant neural field methods (e.g., neu-
ral surface representation) typically optimize a point-wise
loss and make point-wise predictions, where one data point
corresponds to one pixel. Unfortunately, this line of research
failed to use the collective supervision of distant pixels, al-
though it is known that pixels in an image or scene can
provide rich structural information. To the best of our knowl-
edge, we are the first to design a nonlocal multiplex training
paradigm for NeRF and relevant neural field methods via a
novel Stochastic Structural SIMilarity (S3IM) loss that pro-
cesses multiple data points as a whole set instead of process
multiple inputs independently. Our extensive experiments
demonstrate the unreasonable effectiveness of S3IM in im-
proving NeRF and neural surface representation for nearly
free. The improvements of quality metrics can be particu-
larly significant for those relatively difficult tasks: e.g., the
test MSE loss unexpectedly drops by 90% for TensoRF and
DVGO over eight novel view synthesis tasks; a 198% F-score
gain and a 64% Chamfer L1 distance reduction for NeuS
over eight surface reconstruction tasks. Moreover, S3IM
is consistently robust even with sparse inputs, corrupted
images, and dynamic scenes.

1. Introduction
Synthesizing novel-view images of a 3D scene from a

group of images is a long-standing task in computer vision
and computer graphics [4, 5, 12, 8, 28]. This long-standing
task has recently made significant progress due to advances
in learning-based neural rendering methods [22, 13, 15].
Learning-based neural field methods can represent 3D scenes
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Figure 1. Qualitative comparison of standard training and multiplex
training for neural radiance field on Replica Dataset [30] and T&T-
Advanced Dataset [10]. Model: DVGO, TensoRF, and NeRF.

and even the corresponding surfaces from posed images
toward photorealistic novel-view synthesis.

Particularly, benefited from strong representations of deep
neural networks (DNNs), Neural Radiance Field (NeRF)
[15] has shown impressive success in synthesizing novel
view synthesis of a given scene by implicitly encoding vol-
umetric density and color through a fully connected neu-
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ral network (often referred to as a multilayer perceptron
or MLP). NeRF regresses from a single 5D representation
(x, y, z, θ, ϕ)- 3D coordinates x = (x, y, z) plus 2D view-
ing directions d = (θ, ϕ)- a single volume density σ and
a view-dependent RGB color c = (r, g, b), computed by
fitting the model to a group of pixels (from training images).
NeRF approximates this continuous 5D scene representation
with an MLP network fΘ : (x;d) → (c;σ) and optimizes
its weights Θ to map each input 5D coordinate to the corre-
sponding volume density and directional emitted color.

Without loss of generality, we focus on the learning mod-
ule of NeRF and write the loss optimized by NeRF as

L(Θ) =
1

∥R∥
∑
r∈R

lMSE(Θ, r), (1)

where lMSE is the point-wise Mean Squared Error (MSE)
loss for each pixel/ray r = (xr,dr, cr) in the training data
or data minibatch R. Obviously, the MLP of NeRF learns
and makes inference point-wisely, because one data point of
the MLP corresponds to one pixel’s information.

NeRF and neural surface representation are two of the
most representative neural field methods [38], which are also
called implicit neural representation methods [29] in com-
puter vision. Neural surface representation [14, 18, 41, 32]
is another important and long-standing problem orthogonal
to NeRF. The point-wise MSE loss not only measures the
accuracy of predictions in NeRF, but is also widely used in
other relevant neural field methods. However, only optimiz-
ing point-wise loss can be a serious but overlooked pitfall of
training NeRF and relevant methods.

In image quality assessment, the point-wise MSE-based
metric Peak Signal-to-Noise Ratio (PSNR) [6] is widely
used but do not correlate well with perceived image quality
[21, 34], since point-wise metrics do not reflect structural
information [11, 35, 36, 27] that is rich in the physical world.

The Structural Similarity (SSIM) index not only reflects
the structure of a group of pixels, but also correlates with
human visual systems significantly better than PSNR/MSE
[35, 9]. SSIM is an important performance metric for eval-
uating NeRF models, but it is not used for training NeRF
models. The conventional training paradigm of NeRF has un-
fortunately overlooked the structural information, as it only
optimizes the point-wise MSE loss but not using the col-
lective supervision of the structural information of multiple
pixels. This is not surprising. The conventional point-wise
paradigm is also common in other machine learning models.

Can we propose a novel training paradigm that can cap-
ture the structural information of a group of inputs in ways
other than the MSE loss of individual pixels? Yes, we for-
mulate a multiplex loss associated with the novel training

paradigm as

LM(Θ) =
1

∥R∥
∑
r∈R

lMSE(Θ, r) + λLS3IM(Θ,R), (2)

where LS3IM(Θ,R) is computed over a group of nonlo-
cal pixels and the hyperparameter λ adjusts the impor-
tance of S3IM. Unlike LS3IM(θ,R), the conventional loss
lMSE(θ, (x,d, c, σ)) is computed pixel-wisely. We empha-
size that LS3IM(Θ,R) cannot be expressed as the sum of
any other loss computed over individual pixels from R. We
call the proposed LS3IM a multiplex loss because it allows a
model to process multiple nonlocal inputs as a whole multi-
plex input. We will formally define S3IM in Section 3.

Main Contributions. We summarize main contributions
as follows. (1) We propose the novel Stochastic Structural
SIMilarity (S3IM) index, which measures the similarity be-
tween two groups of pixels and captures nonlocal structural
similarity information from stochastically sampled pixels.
To the best of our knowledge, we are the first to formulate a
multiplex loss that can process multiple inputs collectively
by capturing nonlocal information rather than processing
multiple inputs independently by capturing individual-pixel
information in neural fields. (2) S3IM is model-agnostic and
can be generally applied to all types of neural field meth-
ods, such as NeRF and neural surface representation, with
limited coding costs and computational costs. Our exten-
sive experiments demonstrate the unreasonable effectiveness
of the nonlocal multiplex training paradigm in improving
NeRF and neural surface representation. Particularly, the
improvement in quality metrics can be especially significant
for those difficult tasks (e.g., Tables 1 and 6 and Figure 1)
and is robust even with sparse inputs, corrupted images, and
dynamic scenes.

2. Background
In this section, we introduce background knowledge.

2.1. NeRF

Recall that NeRF maps from a single 5D representa-
tion (x, y, z, θ, ϕ) to a single volume density σ and view-
dependent RGB color c = (r, g, b) with an MLP network:
fΘ : (x;d) → (c;σ). For a target view with pose, a camera
ray can be parameterized as r(t) = o + td with the ray
origin o and ray unit direction d. The expected color C(r)
of camera ray r(t) with near and far bounds tn and tf is

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t)dt, (3)

where T = exp(−
∫ t

tn
σ(s)ds) denotes the accumulated

transmittance along the ray from tn to t. For simplicity, we
have ignored the coarse and fine renderings via different
sampling methods.
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The rendered image pixel value for camera ray r can then
be compared against the corresponding ground truth pixel
value C(r), for all the camera rays. The conventional NeRF
rendering loss is the MSE loss

L(Θ) =
1

∥R∥
∑
r∈R

∥Ĉ(r)−C(r)∥2. (4)

Obviously, NeRF is a point-wise machine learning model
during both training and inference. The prediction and the
loss are both computed pixel-wisely.

2.2. Quality Metrics: PSNR and SSIM

PSNR and SSIM are two most popular metrics of image
quality assessment [35, 9]. For simplicity, we take grey-level
(8 bits) images as examples. Given a test image Ia and a
reference image Ib, both of size W ×H , the PSNR can be
defined as

PSNR(Ia, Ib) = 10 log10

(
2552

MSE(Ia, Ib)

)
, (5)

where MSE(Ia, Ib) = 1
WH

∑
i,j,k(Ib,ijk − Ia,ijk)

2. It is
easy to see that PSNR directly depends on MSE and over-
looks the collective information of a group of pixels.

In contrast, SSIM is a well-known quality metric that
can capture local structural similarity between images or
patches. SSIM is considered to be correlated with the
quality perception of the human visual system well and
is widely used for evaluating NeRF [35, 9]. Suppose
a = {ai|i = 1, 2, 3, . . . , n} and b = {bi|i = 1, 2, 3, . . . , n}
to be two discrete non-negative signals paired with each
other (e.g., two image patches extracted from the same spa-
tial location from paired images). SSIM is expressed by
the combination of three terms which are the luminance,
contrast, and structure comparison metrics:

SSIM(a, b) = l(a, b)c(a, b)s(a, b). (6)

The luminance l(a, b), contrast c(a, b), and structure com-
parison s(a, b) are, respectively, written as

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1
, (7)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
, (8)

s(a, b) =
σab + C3

σaσb + C3
. (9)

where C1, C2, and C3 are small constants given by C1 =
(K1L)

2, C2 = (K2L)
2, and C3 = C2/2. Following the

common setting [35, 15], we have K1 = 0.01, K2 = 0.03,
and L = 1 for RGB. The range of SSIM lies in [−1, 1].

In practice of image quality assessment, people usually
apply the SSIM index locally rather than globally for ro-
bust statistics and efficient computation. The local statistics,

including mean µa, variance σa, and covariance σab are com-
puted within a local K ×K kernel window, which moves
with a stride size s over the entire image. At each step, the
local statistics and SSIM index are calculated within the
local window. The final SSIM metric for evaluating NeRF
is actually the mean SSIM (MSSIM) which is computed by
averaging the SSIM indexes over each step. We leave the
more details of SSIM in Appendix B.

3. Methodology: Multiplex Training via S3IM
In this section, we formulate a novel multiplex loss, S3IM,

with a novel model-agnostic multiplex training paradigm for
neural fields.

3.1. S3IM

Our motivation is to let the collective and nonlocal struc-
tural information contained in the group of data points super-
vise the learning of neural fields. Therefore, we must first
define a multiplex-style loss over a group of pixels that can
capture structural information, rather than the conventional
point-wise loss (e.g., MSE) defined over individual pixels.

The pixels in a local patch may contain certain positional
information. However, due to the stochastic training, the
stochastically sampled pixels in a minibatch R cannot form
a local patch and lose the positional relationship completely.

We formulate a stochastic variant of SSIM, namely S3IM,
for stochastic training of NeRF. The idea is concise. Suppose
we have B (e.g., 1024) pixels per minibatch and choose the
kernel size and the stride size of S3IM as K×K (e.g., 4×4)
and s = K. For simplicity and efficiency, we choose the
stride size to be the same as the kernel size because the
stochastic patches from one minibatch are independent and
without overlapping pixels in this case.

We summarize S3IM as three steps:
1. We let B rays/pixels from a dataset/minibatch R ran-

domly form a rendered patch P(Ĉ) and the corre-
sponding ground-truth image patch P(C), where Ĉ =

{Ĉ(r)|r ∈ R} and C = {C(r)|r ∈ R}.
2. We compute SSIM with the kernel size K ×K and the

stride size s over the rendered patch and the correspond-
ing ground-truth patch, which is exactly an estimator of
the proposed S3IM over the paired stochastic patches.

3. Due to stochasticity of P(·), we may repeat steps (1)
and (2) M times and average the M estimated SSIM
values to obtain the final S3IM.

In summary, the final S3IM can be written as

S3IM(R̂,R) =
1

M

M∑
m=1

SSIM(P(m)(Ĉ),P(m)(C)), (10)

where SSIM needs to apply the kernel size K ×K and the
stride size s.
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Algorithm 1: Multiplex Training via S3IM

1 Let A be an SGD-like training algorithm;
2 while no stopping criterion has been met do
3 Sample a data minibatch of rays R from D;
4 Obtain the ground-truth pixels

C = {C(r)|r ∈ R};
5 Compute the rendered pixels

Ĉ = {Ĉ(r)|r ∈ R};
6 for m = 1 to M do
7 Initialize the stochastic patch generation

function P(m);
8 Transform the rendered pixels into the

rendered stochastic patch P(m)(Ĉ);
9 Transform the ground-truth pixels into the

ground-truth stochastic patch P(m)(C);
10 Compute SSIM(P(m)(Ĉ),P(m)(C)) with the

given kernel K ×K and the stride size K;
11 end
12 Obtain the S3IM loss LS3IM(Θ) = 1−

1
M

∑M
m=1 SSIM(P(m)(Ĉ(R)),P(m)(C(R)));

13 Obtain the conventional MSE loss
L(Θ) = 1

∥R∥
∑

r∈R ∥Ĉ(r)−C(r)∥2;
14 LM (Θ) = L(Θ) + λLS3IM(Θ);
15 Compute the gradient ∇LM(Θ);
16 Update the model parameters Θ by A;
17 end

We note that computing S3IM can be well vectorized
and multiplex training also only requires back-propagation
for once per iteration. Thus, the extra computational cost
of multiplex training is limited. As S3IM lies in [−1, 1]
and positively correlated with image quality, we define the
S3IM-based loss LS3IM as

LS3IM(Θ,R) =1− S3IM(R̂,R), (11)

=1− 1

M

M∑
m=1

SSIM(P(m)(Ĉ),P(m)(C)).

We present the pseudocode in Algorithm 1; for generality,
we focus on the shared machine learning module of various
neural field methods and ignore the details of sampling in
Equation (3). Fortunately, similar to SSIM, we may directly
apply a default setting that K = 4 and S = K without fine-
tuning. The multiplex training paradigm via S3IM brings in
two extra hyperparameters λ and M . If we let M approach
+∞, we will eliminate the stochasticity of S3IM and ob-
tained its expected value. According to our experimental
results in Section 5, we observe that M = 1 usually produce
nearly same good results as M = 10, while we choose the

default value M = 10 mainly for reducing the stochastic-
ity of the final results. Thus, only the S3IM loss weight λ
requires fine-tuning in practice.

While the original SSIM is also differentiable, directly
optimizing it may not work well. Even if we use a pixel data
loader that provides a minibatch of pixels per iteration, and
an additional local-patch dataloader, which yields a mini-
batch of local patches per iteration, our ablation study shows
that optimizing S3IM (via stochastic patches) significantly
outperforms optimizing SSIM (via local patches). This is
not surprising. SSIM over local patches can only capture
structural information carried by nearby pixels from one
image, while S3IM over stochastic patches can capture non-
local structural information carried by distant pixels from
different images. The additional data loader not only brings
in extra coding and computational costs, but also hurts the
performance of NeRF.

3.2. S3IM for Neural Surface Representations

In this subsection, we show that it is very easy to apply the
proposed multiplex training to other neural field methods.

NeuS [32] is a recent powerful neural surface represen-
tation method. We choose neural surface representation as
another benchmark task in this paper because neural surface
representation is another line of research which has received
much attention and made great progress recently in computer
vision and computer graphics.

NeuS optimize a color loss with a regularizer loss and an
optional mask loss, which can be written as

LNeuS = Lcolor + λregLreg, (12)

where the color loss use the L1 loss form as

Lcolor =
1

∥R∥
∑
r∈R

∥Ĉ(r)−C(r)∥1. (13)

Similarly, when we train NeuS in the proposed multiplex
training paradigm, we replace the original color loss by the
multiplex color loss via S3IM as

LM,color = Lcolor + λLS3IM. (14)

Our neural surface reconstruction experiments demonstrate
that S3IM not only improves RGB image quality metrics, but
also improves other geometric quality metrics (e.g., Chamfer
Distance ) even more significantly. This suggests that S3IM
is generally useful for neural fields.

4. Related Work
In this section, we review representative related works

and discuss their relations to our method.
Neural Fields. Fields can continuously parameterize

an underlying physical quantity of an object or scene over
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space and time. Since a long time ago, fields have been
used to describe physical phenomena [25], compute image
gradients [26], simulate collisions [20]. Recent advances
showed increased interest in employing coordinate-based
neural networks to parameterize some physical quantities
over space and time, such as a neural network that maps a
3D spatial coordinate to a flow field in fluid dynamics, or a
colour and density field in 3D scene representation. Such
networks are often referred to as neural fields [38]. The
application of neural fields in visual computing has make
remarkable progress on various computer vision problems
such as 3D scene reconstruction and generative modelling.
In computer vision, people often refer to neural fields as
implicit neural representations [29, 14, 18, 41, 32] (e.g.,
neural surface representation).

Neural Radiance Fields and Neural Surface Repre-
sentations. Neural radiance field [15] and neural surface
representation are two of the most representative neural field
methods. This is why we let NeRF and NeuS serve as the
base models for evaluating the proposed S3IM and the re-
sulted multiplex training paradigm.

The line of NeRF has developed a number of useful NeRF
variants. NeRF++ [45] helped resolve the shape-radiance
ambiguity of NeRF. Mip-NeRF [1] adopted a multiscale rep-
resentation method and significantly improved the quality
of representating fine details. D-NeRF [23] extends neu-
ral radiance fields to modeling dynamical scences. Some
works, such as Pixel-NeRF [43] and Reg-NeRF [17], fo-
cused on view synthesis from sparse inputs. NeRF−− [37]
performs view synthesis by estimating approximate cam-
era poses rather than known camera poses. As the common
NeRF methods suffers a lot from slow training and inference,
some works, including DVGO [31], TensoRF [3], and Instant
NGP[16], aimed at accelerating training and inference of
NeRF. Inspired by NeRF, NeuS [32] related the occupancy
function of a volume to its volume density, thereby leading to
improved rendering results and better geometry reconstruc-
tion. The proposed multiplex training paradigm via S3IM,
orthogonal to the existing point-wise training paradigm, is
model-agnostic and orthogonal to these NeRF variants.

5. Empirical Analysis and Discussion
In this section, we empirically demonstrate that multiplex

training via S3IM significantly outperform the conventional
training paradigm for NeRF and its variants.

We let the experimental settings follow original papers
to produce the baselines, unless we specify otherwise. The
main principle of our experimental setting is to fairly com-
pare multiplex training via S3IM and standard training for
NeRF and relevant neural field methods. Thus, we keep all
hyperparameters same for standard training and multiplex
training except S3IM. We mainly used five recent represen-
tative methods, including, vanilla NeRF [15], DVGO [31],

Table 1. Quantitative results of NeRF methods on Replica Dataset
[30]. Model: DVGO.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 13.26 0.506 0.719
Multiplex 32.63 0.929 0.0685

Scene 2
Standard 14.82 0.653 0.637
Multiplex 35.03 0.957 0.0527

Scene 3
Standard 15.24 0.644 0.636
Multiplex 29.88 0.957 0.0639

Scene 4
Standard 17.73 0.691 0.505
Multiplex 39.32 0.976 0.0325

Scene 5
Standard 16.52 0.659 0.505
Multiplex 35.70 0.969 0.0589

Scene 6
Standard 20.10 0.843 0.309
Multiplex 29.27 0.947 0.0944

Scene 7
Standard 23.20 0.845 0.248
Multiplex 31.53 0.952 0.0648

Scene 8
Standard 15.67 0.729 0.521
Multiplex 34.66 0.956 0.0740

Mean
Standard 17.07 0.696 0.510
Multiplex 33.50 0.955 0.0637

Table 2. Quantitative results of NeRF methods on Replica Dataset
[30]. Model: TensoRF.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 12.13 0.468 0.7786
Multiplex 37.15 0.958 0.0335

Scene 2
Standard 14.17 0.605 0.709
Multiplex 36.55 0.952 0.0563

Scene 3
Standard 15.20 0.642 0.695
Multiplex 38.79 0.977 0.0287

Scene 4
Standard 19.63 0.625 0.659
Multiplex 44.65 0.990 0.00965

Scene 5
Standard 19.63 0.638 0.525
Multiplex 40.96 0.980 0.0273

Scene 6
Standard 10.92 0.507 0.693
Multiplex 37.94 0.969 0.0473

Scene 7
Standard 11.06 0.475 0.751
Multiplex 36.77 0.966 0.0437

Scene 8
Standard 11.73 0.630 0.797
Multiplex 39.59 0.977 0.0307

Mean
Standard 14.30 0.574 0.689
Multiplex 39.05 0.971 0.0454
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TensoRF [3], D-NeRF [23], and NeuS [32]. We present the
experimental details in Appendix A.

5.1. Novel View Synthesis Experiments

Table 3. Quantitative results of NeRF methods on T&T. The mean
PSNR, SSIM, LPIPS are computed over four scenes of T&T. Model:
DVGO, TensoRF, and (vanilla) NeRF.

Model Training PSNR(↑) SSIM(↑) LPIPS(↓)

DVGO
Standard 22.42 0.776 0.236
Multiplex 23.20 0.809 0.176

TensoRF
Standard 19.69 0.650 0.365
Multiplex 22.85 0.777 0.230

NeRF
Standard 21.02 0.659 0.364
Multiplex 22.64 0.725 0.304

Static scene synthesis. We first study how multiplex
training via S3IM improves NeRF on two benchmark
datasets, Replica Dataset [30] and Tanks and Temples Ad-
vanced (T&T) [10]. Replica Dataset is a relatively difficult
dataset which include large-scale scenes with less training
images. T&T is a popular benchmark dataset for image-
based 3D reconstruction with more training images. We use
T&T Advanced as the defaulted T&T in the main text as it
contain more complex details, while we leave the experimen-
tal results of T&T Intermediate in Appendix C.

We first choose the accelerated NeRF variants, DVGO,
and TensoRF, as representatives of the NeRF family because
training the accelerated NeRF methods is more environment-
friendly and can significantly reduce the energy costs and
carbon emissions of our work.

Our quantitative results on eight Replica scenes and four
T&T scenes in Tables 1, 2, and 3 demonstrate that multiplex
training via S3IM remarkably improves all three common
image quality metrics for the NeRF faimily, including vanila
NeRF, DVGO, and TensoRF. Particularly, the mean improve-
ment in PSNR over eight Replica scenes can be incredibly
up to 16.43 and 24.75 for DVGO and TensoRF, respectively,
over eight novel view synthesis tasks. The PSNR gain sug-
gests that test MSE can decrease by 2-3 orders of magnitude
due to S3IM. As PSNR directly depends on MSE, it is sur-
prising to see the improvement in PSNR given the fact that
S3IM distract the training objective from the original MSE
loss. It means that S3IM significantly improve the general-
ization of NeRF.

Why is S3IM so important on Replica Dataset? We con-
jecture that this is because Replica contains more complex
details but fewer training images, while T&T Dataset con-
tains less complex details but more training images. We will
further verify this in the following experiments.

To the best of our knowledge, this is the most significant
performance improvement along this line of research. We
visualize the qualitative comparisons in Figure 1. We leave
the results of each T&T scenes in Appendix C.

Few-shot Learning with sparse inputs. Learning with
sparse or very few examples is a hot topic in machine learn-
ing [33] as well as neural rendering. In practice, we may
not be able to collect many images of a scene. Does S3IM
work well even if we have very few images? To answer this
question, we train DVGO with the sparse version of a simple
truck scene from T&T Intermediate, called Sparse Truck,
where we randomly remove some training images.

We visualize the qualitative comparisons in Figure 2. The
experimental results in Figure 3 further suggest that the per-
formance improvement of multiplex training can be more
significant when we have fewer training images. For ex-
ample, when only 20% of the original training dataset is
available, the improvement in PSNR can be surprisingly
up to 4.32 for the simple Truck scene of T&T Intermedi-
ate. The more significant improvement with sparser inputs
may explain why multiplex training makes more significant
improvements on Replica Dataset than T&T Dataset.

Robustness to image corruption. While common bench-
mark datasets in NeRF studies are relatively clear, the train-
ing images in practice may be corrupted or noisy due to the
realistic limitation of data collection. Gaussian image noise
in digital images often arise during acquisition due to the in-
herent noise in the sensors [2]. Robustness to data corruption
and noise memorization can be an important performance
metric for neural networks [39] in weakly-supervised learn-
ing but unfortunately overlooked by most existing NeRF
studies.

We again use the Truck scene to make an image-corrupted
dataset, called Corrupted Truck, where we inject Gaussian
noise with the standard deviation as std into original Truck
images (each RGB value lies in [0, 1]) and obtain the cor-
rupted version. We visualize the qualitative comparisons in
Figure 2. The experimental results in Figure 4 show that
multiplex training via S3IM can significantly improve the
robustness to image corruption.

Table 4. Quantitative results of NeRF methods on dynamic scenes,
Mutant and LEGO [23]. Model: D-NeRF.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Lego
Standard 21.29 0.821 0.0634
Multiplex 23.36 0.900 0.0482

Mutant
Standard 32.14 0.972 0.0181
Multiplex 32.76 0.976 0.0151

Dynamic scene synthesis. Rendering novel photo-
realistic views of dynamic scenes is a more difficult task
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Figure 2. Qualitative comparison of standard training and multiplex training for neural radiance field. Top Row: Sparse Inputs. Middle Row:
Corrupted Images. Bottom Row: Dynamic Scene.
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Figure 3. We plot the curves of PSNR, SSIM, and LPIPS with
respect to the training data size, namely the portion of training
samples kept from the original training dataset. The improvement
of multiplex training can be even more significant when the training
data size decreases. Model: DVGO. Dataset: T&T-Truck.
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Figure 4. We plot the curves of PSNR, SSIM, and LPIPS with
respect to the image noise scale std. The improvement of multi-
plex training can be even more significant when training image is
corrupted by random noise. Model: DVGO. Dataset: T&T-Truck.

than neural rendering of static scenes. A NeRF variant, D-
NeRF, has been specifically designed to render dynamic
scenes. We also study how multiplex training via S3IM im-

proves D-NeRF on two representative dynamic scenes, Lego
and Mutant [23]. We visualize the qualitative comparisons
in Figure 2. The results of Table 4 and Figure 2 both suggest
that multiplex training via S3IM also significantly improve
the performance of D-NeRF for dynamic scenes.

Regularization methods for monocular video. More-
over, we also show that S3IM can further improve other reg-
ularized methods specifically designed for monocular video,
such as Dynamic NeRF [7]. Monocular video only contains
sparse and continuous training views. We reproduce the
original Dynamic NeRF’s quantitative result on the monoc-
ular video (Balloon1) and compare it with S3IM-enhanced
results in Table 5.

Table 5. Quantitative results of Dynamic NeRF methods on monoc-
ular video [7]. Model: Dynamic NeRF.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Balloon1
Standard 19.80 0.693 0.210
Multiplex 22.55 0.767 0.108
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Table 6. Quantitative results of neural surface reconstruction on Replica Dataset [30]. Model: NeuS.
Scene Training PSNR(↑) SSIM(↑) LPIPS(↓) Chamfer-L1(↓) Accuracy(↓) Completeness(↓) Precision(↑) Recall(↑) F-score(↑) Normal C.(↑)

Scene 1
Standard 28.52 0.843 0.148 18.13 11.60 24.65 29.84 17.79 22.29 72.14
Multiplex 30.93 0.876 0.100 6.264 6.580 5.948 58.31 81.00 59.99 80.58

Scene 2
Standard 29.15 0.834 0.179 19.00 12.73 25.27 28.32 16.29 20.69 75.16
Multiplex 31.06 0.870 0.135 7.475 8.506 6.425 53.48 61.25 57.10 72.84

Scene 3
Standard 28.44 0.877 0.150 40.34 33.80 46.89 9.47 5.68 7.10 67.69
Multiplex 33.97 0.933 0.0372 6.188 6.462 5.914 57.66 59.95 58.72 75.96

Scene 4
Standard 31.84 0.874 0.152 18.90 13.61 24.19 22.25 12.52 16.02 71.89
Multiplex 37.28 0.940 0.0596 7.397 8.223 6.570 54.60 70.68 61.60 72.97

Scene 5
Standard 33.78 0.897 0.121 76.33 11.83 140.83 33.09 0.60 1.18 50.05
Multiplex 36.32 0.924 0.071 34.40 31.43 37.38 14.89 9.56 11.64 55.60

Scene 6
Standard 27.82 0.882 0.141 15.63 11.71 19.54 30.74 21.53 25.32 69.33
Multiplex 31.18 0.914 0.0995 6.980 7.211 6.748 60.08 59.88 59.98 73.62

Scene 7
Standard 28.80 0.898 0.114 11.45 8.88 14.02 43.23 33.39 37.68 78.53
Multiplex 30.99 0.917 0.0837 7.824 7.845 7.803 51.38 51.23 51.31 78.30

Scene 8
Standard 28.29 0.908 0.130 30.82 25.71 35.92 15.34 8.73 11.13 68.86
Multiplex 34.89 0.954 0.0539 6.136 5.839 6.434 61.62 62.56 62.08 79.68

Mean (8 scenes)
Standard 29.58 0.877 0.142 28.83 16.23 41.41 26.54 14.57 17.68 69.21
Multiplex 33.33 0.916 0.0799 10.33 10.26 10.40 51.50 57.01 52.80 73.69

Table 7. Quantitative results of NeuS on T&T.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 20.73 0.636 0.393
Multiplex 22.01 0.681 0.311

Scene 2
Standard 21.26 0.739 0.434
Multiplex 23.23 0.812 0.270

Scene 3
Standard 17.58 0.551 0.428
Multiplex 19.07 0.609 0.344

Scene 4
Standard 20.32 0.554 0.398
Multiplex 22.90 0.660 0.301

Mean
Standard 19.97 0.620 0.413
Multiplex 21.55 0.691 0.307

5.2. Surface Reconstruction Experiments

Reconstructing surfaces from images is also a fundamen-
tal problem in computer vision. Recent neural surface recon-
struction methods [42, 41, 19, 32] belong to another kind
of neural field method orthogonal to NeRF. To evaluate the
universal effectiveness of the proposed method, we empiri-
cally study S3IM for a classical neural surface reconstruction
method, called NeuS, which can render both RGB images
and surface information. NeuS employs the same training
data as NeRF without ground-truth surface information.

We use Replica Dataset and T&T Advanced as two bench-
mark datasets for surface reconstruction. Replica Dataset has
the ground-truth surface information in test data, Advanced
Scenes of T&T Dataset has no available ground-truth surface
information. We add a group quality metrics which can mea-
sure rendering quality of surface information and geometric
information when ground-truth surface and geometric infor-
mation is available. These surface quality metrics, especially

such as Chamfer L1 Distance and F-score, are widely used
for evaluating surface reconstruction.

Our qualitative results in Figure 5 show that S3IM im-
prove both RGB rendering and depth rendering. Our quanti-
tative results in Tables 6 and 7 suggest that multiplex training
via S3IM can significantly improve neural surface reconstruc-
tion methods in terms of all three image quality metrics and
all seven surface quality metrics. For example, in terms if
two very popular surface quality metrics, we obtain a 64%
Chamfer L1 distance reduction and a 198% F-score gain
over eight surface reconstruction tasks. Most surface
quality metrics have been improved by more than 10 points.
This again demonstrate the unreasonable effectiveness and
universality of S3IM in neural field methods.

Ground Truth Standard Multiplex(Ours)

R
G

B
D

ep
th

Figure 5. RGB rendering and depth rendering of standard training
and multiplex training via S3IM for neural surface representation.
Model: NeuS. Dataset: Replica Scene 1 (Room 0).
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Figure 6. We plot the curves of PSNR, SSIM, and LPIPS with
respect to the hyperparameter λ. S3IM is robust to a wide range of
λ. Model: DVGO. Dataset: Replica Scene 4.

5.3. Discussion

S3IM hyperparameters {λ,M,K}. We plot the curves
of PSNR, SSIM, and LPIPS with respect to the hyperpa-
rameter λ in Figure 6. The improvement of S3IM is robust
to a wide range of λ choices. We also study how the im-
provement depends on the hyperparameter M and report that
M = 1 can also make significant improvements, while the
default value is M = 10, shown in Table 8.

Moreover, we also empirically verify that choosing a
relatively small kernel size for S3IM provide robust statistics
as we discuss. We empirically evaluated S3IM with the
kernel size K and stride size S as 4, 16, and 64, respectively.
Note that the computational complexity is approximately
invariant to the kernel size, when we choose K = S. The
setting K = S can provide fair comparisons. In Table 9, we
clearly observe that increasing the size K can significantly
degrade the performance.

Table 8. Quantitative results and the training time (A100 GPU
hours) with respect to the hyperparameter M . Dataset: Replica

Scene Model M Training PSNR(↑) SSIM(↑) LPIPS(↓) Training Time

Room 0 TensoRF
0 Standard 12.03 0.464 0.773 0.369
1 Multiplex 36.65 0.954 0.0387 0.374

10 Multiplex 37.15 0.958 0.0335 0.432

Office 0 NeuS
0 Standard 31.84 0.874 0.152 2.95
1 Multiplex 37.02 0.937 0.0666 2.95

10 Multiplex 37.28 0.940 0.0596 2.98

Table 9. Quantitative results of S3IM with various kernel sizes.
Model: TensoRF. Dataset: Replica Scene 1 (Room 0).

Kernel Size Training PSNR(↑) SSIM(↑) LPIPS(↓)
- Standard 12.13 0.468 0.7786
4 Multiplex 37.15 0.958 0.0335
16 Multiplex 36.79 0.954 0.0375
64 Multiplex 12.10 0.4989 0.8124

Computational costs. We also present the training time
(GPU hours) of standard training and multiplex training with
respect to M in Table 8. The results show that the extra
computational cost of S3IM is very limited compared with
the significant quality improvement. For example, the extra
computational costs are only 8% for TensoRF and 1% for

NeuS with M = 10; only 1% for TensoRF and nearly free
for NeuS with M = 1.

Table 10. Ablation study of nonlocal S3IM and local SSIM.

Scene Model Training PSNR(↑) SSIM(↑) LPIPS(↓)

Truck DVGO
MSE 22.01 0.704 0.386

MSE + SSIM 15.90 0.569 0.566
MSE + S3IM (Ours) 22.44 0.730 0.338

S3IM verus SSIM. We conduct ablation study on the
proposed S3IM over stochastic patches and the conventional
image quality metric SSIM over local patches. The patch
sizes of S3IM and SSIM are both 64 × 64, while the ker-
nel/stride sizes are both 4.. We present the ablation study
of stochastic-patch S3IM and local-patch SSIM in Table 10.
The results suggest that S3IM with the non-local and stochas-
tic structural information is very helpful, while SSIM with
the local structural information is marginal and sometimes
even harmful due to lack of stochasticity. The ablation study
again verifies the novel contribution of our method.

Future Work There are at least three promising future
research directions. First, we may directly introduce S3IM
into non-RGB losses, such as depth losses. Second, we
can develop better multiplex losses than S3IM for other
machine learning tasks, including Graph Neural Networks
and Physics-Informed Neural Network [24], as long as the
point-wise losses are optimized in these tasks. Third, it
will be very valuable to theoretically understand minima’s
flatness [44, 40] and generalization learned by S3IM.

6. Conclusion
Recently neural fields have achieved great empirical suc-

cess and are receiving considerable attention in computer
vision and computer graphics. However, the current training
paradigm usually uses only point-wise supervision informa-
tion and overlooks the rich structural information contained
in the group of pixels. In this work, we proposed S3IM to
extend the performance limit of neural fields by exploiting
the nonlocal structural information of groups of pixels. We
have demonstrated the unreasonable and robust effectiveness
of S3IM for all employed models and scenes in terms of 10
quality metrics, while the extra costs are nearly free. Our
extensive experiments strongly support important values of
S3IM and nonlocal information. We believe that S3IM will
serve as a default method for training neural fields in future.
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