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Abstract

Class prototype construction and matching are core as-
pects of few-shot action recognition. Previous methods
mainly focus on designing spatiotemporal relation model-
ing modules or complex temporal alignment algorithms.
Despite the promising results, they ignored the value of
class prototype construction and matching, leading to un-
satisfactory performance in recognizing similar categories
in every task. In this paper, we propose GgHM, a new
framework with Graph-guided Hybrid Matching. Con-
cretely, we learn task-oriented features by the guidance of
a graph neural network during class prototype construc-
tion, optimizing the intra- and inter-class feature correla-
tion explicitly. Next, we design a hybrid matching strategy,
combining frame-level and tuple-level matching to classify
videos with multivariate styles. We additionally propose
a learnable dense temporal modeling module to enhance
the video feature temporal representation to build a more
solid foundation for the matching process. GgHM shows
consistent improvements over other challenging baselines
on several few-shot datasets, demonstrating the effective-
ness of our method. The code will be publicly available at
https://github.com/jiazheng-xing/GgHM.

1. Introduction
Compared with general action recognition, few-shot ac-

tion recognition requires limited labeled samples to learn
new categories quickly. It can avoid the massive, time-
consuming, and labor-consuming data annotation com-
monly associated with supervised tasks, making it more
adaptable for industrial applications. According to this ad-
vantage, increasing attention has been directed toward the
field of few-shot action recognition [4, 27, 30, 35, 44, 14,
23, 38]. However, since few-shot action recognition has
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Figure 1. (a): Similarity visualization between query and sup-
port videos with different methods on the 5-way 1-shot task of
UCF101 [29]. A higher score indicates a greater degree of simi-
larity. TRX [27] misclassifies the drumming as the jumping jack,
and OTAM [4] misidentifies the high jump as the long jump.
Our method identifies all categories of videos accurately. (b):
Different types of class prototype construction. Previous works
did not do any information interaction among different videos.
HyRSM [35] operates an inter-relation function without leverag-
ing label-informed supervision. Our method utilizes the graph
network with label-informed supervision to learn the correlation
between different videos. (c): Different types of class prototype
matching. Frame-level matching [46, 4, 35] uses single individual
frames for matching, while tuple-level [30, 38, 27] matching com-
bines several frames into a tuple as the matching unit. Our method
combines both to complement each other’s shortcomings.
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limited learning material, learning well-generalized models
are challenging.

Current attempts to address the above problems [4, 46,
41, 27, 30, 38, 35] mainly adopt the metric-based frame-
work and episode training to solve the difficulty of model
migration on new categories. Empirically, we observed that
previous approaches failed to effectively address the prob-
lem of misclassification of videos from similar categories.
Taking the action of the high jump and long jump as an
instance, some methods (e.g., OTAM [4]) is easy to con-
fuse the two classes by assigning close prediction scores
due to their similarity in scenes and sub-actions, as shown
in Fig. 1(a). We have analyzed the main reasons from three
folds. (i) Class prototype construction: task-oriented class
features can optimize videos’ intra- and inter-class corre-
lation. As shown in Fig. 1(b), most previous work has
yet to use the whole task video features to extract rele-
vant discriminative patterns. Although HyRSM [35] ma-
nipulates interrelationship functions on different videos to
get task-specific embeddings, it does not explicitly optimize
intra- and inter-class correlations. (ii) Matching mecha-
nisms: proper matching mechanisms need to be established
to solve the confusion problem of similar videos. As shown
in Fig. 1(c), current work almost all use a simple class pro-
totype matching mechanism. Some methods use the frame-
level matching mechanism [46, 4, 35], which is suitable for
spatial-related datasets [16, 29, 5], and the others use the
tuple-level(multiple frames combined into a tuple) match-
ing mechanism [30, 38, 27] that is appropriate for temporal-
related datasets [13]. None of these previous methods can
cope with video tasks of variable types well. (iii) Feature
modeling: a powerful and highly discriminative feature is
first needed to distinguish similar classes. Most previous
works model the temporal feature through hand-designed
temporal alignment algorithms [46, 4] or simple temporal
attention operations [35, 38], leading to a simplistic explo-
ration of the temporal relationship without dissecting it into
more detailed patch and channel temporal relations to ana-
lyze.

Based on the above observations, we propose a novel
method for few-shot action recognition, dubbed GgHM, a
short for Graph-guided Hybrid Matching. Specifically, we
apply a graph neural network (GNN) for constructing task-
oriented features, as shown in Fig.1(b). It could interac-
tively transfer information between video features in a task
to enhance the prior knowledge of the unknown video. We
utilize the ground truth of the constructed graph edges to
explicitly learn the correlation of these video features to su-
pervise the similarity score learning between the query and
support videos. Second, as shown in Fig.1(c), we propose
a hybrid prototype matching strategy that combines frame-
level and tuple-level matching based on the bidirectional
Hausdorff Distance. Although the Hausdorff metric frame-

level matching can alleviate the strictly ordered constraints
of acquiring better query-support correspondences, it fails
to capture temporal order. As a result, it can be confused
for actions with similar action scenes strongly dependent on
temporal order, e.g., putting something in the box and tak-
ing something out of it. However, the construction of tuples
strictly follows a chronological order, which can compen-
sate for the frame-level matching problem. Fig.1(a) visu-
alizes the predicted similarities between query and support
videos with different methods on the 5-way 1-shot task of
UCF101 [29]. Our method achieves more discriminative re-
sults for similar videos in each task compared to OTAM [4]
and TRX [27]. Additionally, we design a learnable dense
temporal modeling module to consolidate the representation
foundation. It includes a temporal patch and temporal chan-
nel relation modeling block, and their combination allows
for dense temporal modeling in both spatial and channel do-
mains. Finally, extensive experiments on four widely-used
datasets demonstrate the effectiveness of our method.

In summary, we make the following contributions:

• We apply a graph neural network to guide the task-
oriented features learning during the class prototype
construction, explicitly optimizing the intra- and inter-
class correlation within video features.

• We propose a hybrid class prototype matching strategy
based on the frame- and tuple-level prototype match-
ing, giving rise to effectively coping with video tasks
of multivariate styles.

• We design a learnable dense temporal modeling mod-
ule consisting of a temporal patch and temporal chan-
nel relation modeling block for dense temporal model-
ing in both spatial and channel domains.

2. Related Works
2.1. Few-shot Image Classification

Few-shot image classification uses the episodic training
paradigm, using a handful of labeled training samples from
similar tasks to represent a large amount of labeled train-
ing samples. Recent years, research on few-shot image
classification can be mainly classified into two categories:
adaptation-based and metric-based methods. The adaption-
based approaches aim to find a network initialization that
can be fine-tuned for unknown tasks using a small amount
of labeled data, called gradient by gradient. The classical
adaptation-based approaches are MAML [10], Reptile [25],
and related deeper researches include [21, 32]. The metric-
based approaches aim to learn a feature space and compare
task features through different matching strategies, called
learning to compare. The representative methods are Proto-
typical Networks [28], Matching Networks [31]. And there
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are many methods [40, 39, 8, 18] that aim to improve upon
these approaches. Our method is inspired by them and be-
longs to the metric-based category.

2.2. Few-shot Video Action Recognition

The core idea of few-shot action recognition is similar to
that of few-shot image classification, but the former task is
more complex than the latter owning to an additional tem-
poral dimension. Due to high computational resources and
long experimental time, adaptation-based methods( MetaU-
VFS [26]) have received little attention in few-shot action
recognition. The existing research mainly applies metric-
based learning, but with different focuses. Some meth-
ods focus on feature representation enhancement. For ex-
ample, STRM [30] employs local and global enrichment
modules for spatiotemporal modeling, HyRSM [35] uses
the hybrid relation modeling to learn task-specific embed-
dings, and SloshNet [38] utilizes a feature fusion architec-
ture search module to exploit the low-level spatial features
and a long-term and short-term temporal modeling module
to encode complementary global and local temporal repre-
sentations. Other methods focus on class prototype match-
ing strategies. For example, OTAM [4] proposes a tem-
poral alignment module to calculate the distance value be-
tween the query video and the support set videos, TRX [27]
matches each query sub-sequence with all sub-sequences
in the support set, HyRSM [35] designs a bidirectional
Mean Hausdorff metric to more flexibly find the correspon-
dences between different videos. Additionally, TRPN [34],
MORN [24] focus on combining visual and semantic fea-
tures, and AMeFu-Net [11] centers on using depth informa-
tion to assist learning. Unlike these previous methods, our
method focuses on distinguishing videos from similar cate-
gories by optimizing intra- and inter-class class correlation
within video features during the prototype construction and
building a hybrid prototype matching strategy to effectively
handle video tasks of multivariate styles.

3. Method
3.1. Problem Formulation

Few-shot learning is based on using a small number of
labeled training samples from similar tasks as a proxy for
many labeled training samples. For few-shot action recog-
nition, it aims to classify an unlabeled query video into one
of the N action categories in the support set with limited
K samples per action class, which can be considered an N -
way K-shot task. Like most previous studies, we adopt an
episode training paradigm followed by [4, 35, 14, 17, 38],
where episodes are randomly selected from extensive data
collection. In each episode, we suppose that the set S con-
sists of N× K samples from N different action classes, and
Sn
k = {snk1, snk2, · · · , snkT } represents the k-th video in class

n ∈ {1, · · · , N} randomly sampled T frames. The query
video denotes Q = {q1, q2, · · · , qT } sampled T frames.

3.2. Architecture Overview

Our overall architecture is illustrated in Fig.2. For
the frame-selecting strategy, we follow previous work
TSN [33], where the input video sequence is divided into
T segments, and snippets are extracted from each segment.
For simplicity and convenience, we discuss the process of
the 5-way 1-shot problem and consider that the query set
Q contains a single video. In this way, the query video
Q = {q1, q2, · · · , qT } and the class support set videos
Sn = {sn1 , sn2 , · · · , snT } (Sn ∈ S =

{
S1, S2, · · · , S5

}
)

pass through the feature extractor to obtain the query fea-
ture FQ and the support features FSn (FSn ∈ FS ) in each
episode. Next, we input FS and FQ to the proposed learn-
able dense temporal modeling module to obtain enhanced
temporal features F̃S and F̃Q. We apply to mean pooling
operation on F̃S and F̃Q in the temporal dimension to obtain
the relation node features F̃avg

S and F̃avg
Q for the following

graph network. Then, the relation node features are taken
into the graph network with initial edge features for rela-
tion propagation. The updated edge features with enhanced
temporal features generate task-oriented features Ftask

S and
Ftask
Q and obtain the loss Lgraph through a graph metric. Fi-

nally, the task-oriented features are fed into the hybrid class
prototype matching metric to get the class prediction ŷQ and
loss Lmatch.

For better clarity and consistency with the algorithm pro-
cedure, we will first introduce our learnable dense tempo-
ral modeling module, followed by the graph-guided proto-
type construction, and finally the hybrid prototype matching
strategy. Details are shown in the subsequent subsections.

3.3. Learnable Dense Temporal Modeling Module
(LDTM)

The action classification process relies heavily on tempo-
ral context information. Inspired by some temporal model-
ing methods based on attention mechanism [1, 43, 9, 37, 2],
we design a learnable dense temporal modeling module,
which consists of a temporal patch relation modeling block
and a temporal channel relation modeling block, as shown
in Fig.3. The two blocks are complementary, and their com-
bination allows for dense temporal modeling in both the
spatial and channel domains. Compared to PST [37], which
uses a fixed patch shift strategy and a channel shift strategy,
our learnable patch and channel temporal relation modeling
enables the extraction of richer features.

Patch Temporal Relation Modeling (PTRM). Given
a video feature map output by the feature extractor
F∈ RN×T×C×H×W , we first reshape it to a sequence as
Fseq1∈ RN×HW×C×T and then fed it into the temporal
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MLP to get hidden temporal feature HT :

HT = relu (Wt1Fseq1)Wt2 + Fseq1 (1)

where Wt1 and Wt2∈ RT×T are the learnable weights for
temporal information interaction of different video frames.
Then, HT with rich video spatiotemporal information are
inserted into the original features Fseq1, making the single-
frame video feature contain semantic information for all
video frames. The temporal patch relation modeling feature

Ftp is obtained by:

Ftp [ :, n, : , :] =

{
Fseq1 [ :, n, : , :] if n%gap = 0
HT [ :, n, : , :] if n%gap ̸= 0

(2)
where n is the patch index and gap is a positive inte-
ger to control the frequency of the patch shift. After the
learnable patch shift operation, the feature Ftp is reshaped
as F∗

tp∈ RNT×HW×C and do spatial self attention. This
way collects the temporal information of the different video
frames sparsely within the frame but sacrifices the origi-
nal spatial information within every frame. To alleviate this
problem, we do the weighted summation between spatial-
only and spatiotemporal attention results, given by:

Ftp = γSAspa

(
F∗
tp

)
+ (1 − γ)SAspa (F∗) (3)

where SAspa stands for the spatial attention operation,
F∗∈ RNT×HW×C is reshaped from F and γ ∈ [0, 1] is a
hyperparameter.

Channel Temporal Relation Modeling (CTRM). We
first reshape F as Fseq2∈ RNHW×C×T . Then it is fed it
into a learnable channel shift operation to obtain the tempo-
ral channel relation modeling feature Ftc. Concretely, the
learnable channel shift operation is a 1D channel-wise tem-
poral convolution adopted to learn independent kernels for
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each channel. Formally, the learnable channel shift opera-
tion can be formulated as:

Ft,c
tc =

∑
i

Kc,iFc,t+i
seq2 (4)

where t and c denote the temporal and channel dimensions
of the feature map, respectively. Kc,i indicates the tempo-
ral kernel weights of the c-th channel, Fc,t+i

seq2 ∈ Fseq2 is
the input c-th channel feature and Ft,c

tc ∈ Ftc is the output
c-th channel feature. After that, the final temporal channel
relation modeling feature Ftc is obtained through a spatial
attention and we do the weight summation between Ftp and
Ftc to obtain the final enhanced temporal features F̃ as fol-
lows:

F̃ = βFtp + (1 − β)Ftc (5)

where β ∈ [0, 1] is a hyperparameter.
In summary, PTRM aggregates temporal information for

parts of patches while CTRM learns the temporal shift of
channels. As a result, our LDTM could achieve sufficient
temporal relation modeling in both the spatial and channel
dimensions in a dense and learnable way.

3.4. Graph-guided Prototype Construction(GgPC)

We design a graph-guided prototype construction mod-
ule to enhance the priori knowledge of the unknown video
and explicitly optimize the intra- and inter-class correlation
within video features. We draw inspiration from few-shot
image classification methods based on graph neural net-
works [12, 15, 22, 6], which utilize graph networks to op-
timize intra-cluster similarity and inter-cluster dissimilarity
and transform the image classification problems into node
or edge classification problems. Different from this, directly
feeding the video features (usually after the temporal pool-
ing operation) into the graph network can lead to unsatisfac-
tory results due to the loss of temporal information. There-
fore, we only use graph networks as guidance to optimize
features’ intra- and inter-class correlation.

The overall framework of the proposed graph-guided
prototype construction module is shown in Fig.4, and the
overall algorithm is summarized in Algorithm.1. For sim-
plicity and convenience, we discuss the process of the NS-
way 1-shot problem and consider that the query set Q con-
tains NQ videos. This process can be divided into two
stages: Graph neural network (GNN) propagation and task-
oriented features obtaining. For GNN propagation, the tem-
porally enhanced features F̃ after doing the Mean Pooling
operation in the temporal dimension F̃avg are used as node
features V for graph network initialization. Edge features
A represent the relationship between two nodes, i.e., the
strength of intra- and inter-class relationships, and their ini-
tialization depends on the labels. The propagation includes
the node aggregation and edge aggregation process. After
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Figure 4. The overall framework of the proposed graph-guided
prototype construction model. Consider that the query set Q con-
tains one video for simplicity and convenience.

completing the graph propagation, we use a Select oper-
ation to extract the similarity score from the updated edge
features in the last layer. Select means that the edge fea-
tures related to each query video feature are selected from
the output entire edge features, and a total of NQ new edge
features are formed further. For task-oriented features ob-
taining, the details are shown in Algorithm.1 where fFNN

is a feed-forward network, femb and ffuse are MLPs, and ⊗
indicates the matrix multiplication. Meanwhile, the Select
process is summarized in Algorithm.2. For K-shot (K > 1)
tasks, when constructing node features, we perform mean
pooling on the features of support videos of the same cate-
gory in the feature dimension, while keeping other aspects
consistent with the 1-shot task.

To sum up, the task-oriented features Ftask are ob-
tained by fusing enhanced temporal features F̃ with features
Fgraph guided by graph networks to preserve the temporal-
ity of features. Through the guidance of GNN, every query
video feature has its special support features, and the class
correlation within video features is optimized explicitly.

3.5. Hybrid Prototype Matching Strategy (HPM)

Frame-level matching uses single individual frames,
while tuple-level matching combines several frames into a
tuple as the matching unit. HyRSM [35] applies the Haus-
dorff Distance metric as the prototype matching method,
which can alleviate the strictly ordered constraints of ac-
quiring better query-support correspondences, but it fails to
capture temporal order. This matching metric is easily con-
fused for actions with similar action scenes but strongly de-
pends on temporal order,e.g., pick up a glass of water
and put down a glass of water. To solve this prob-
lem, we design a hybrid prototype matching strategy that
combines frame-level and tuple-level matching based on
the bidirectional Hausdorff Distance. This approach effec-
tively copes with video tasks of diverse styles. Given the
task-oriented features Ftask

S , Ftask
Q , the m-th support video
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Algorithm 1: The process of graph-guided proto-
type construction(GgPC)

1 Us indicates the unsqueeze operation, R indicates
the repeat operation.

2 Input: F̃S∈ RNS×T×C , F̃Q∈ RNQ×T×C ,
F̃ = F̃S

⋃
F̃Q = F̃∈ R(NS+NQ)×T×C

3 Output:
Ftask
Q ∈ RNQ×T×C ,Ftask

S ∈ RNQ×NS×T×C

4 Initialize: F̃avg = Mean pool(F̃, dim = 1)
/* GNN Propagation */

5 Graph: G = (V,A;S
⋃
Q) , v0

i = F̃avg
i , a0ij ,

∀i, j ∈ S
⋃
Q

6 for l = 1, · · · , L do
7 for i = 1, · · · , |V| do
8 vl

i = NodeAggregation(vl−1
j ,al−1

ij )

9 end
10 for (i, j) = 1, · · · , |A| do
11 alij = EdgeAggregation(vl

j ,a
l−1
ij )

12 end
13 end
14 Similarity Score:

Msiam = Select(aLij [0])∈ RNQ×(NS+1)×(NS+1)

/* Get Task-Oriented Features */
15 Optimized Features:

Fnode
S = F̃avg

S .Us(0).R(NQ, 1, 1)

Fnode = Cat([Fnode
S , F̃avg

Q .Us(1)], dim = 1)

Fgraph = fFFN (Msiam ⊗ femb(Fnode))
FS

graph = Fgraph[:, : NS , :].Us(1).R(1, T, 1, 1)
FQ

graph = Fgraph[:, NS :, :].Us(1).R(1, T, 1)
16 Task-oriented Features:

Fhid
S = F̃S .Us(0).R(NQ, 1, 1, 1)

FS
task = ffuse(Cat([Fhid

S ,Fgraph
S ], dim = 2))

FQ
task = ffuse(Cat([F̃Q,Fgraph

Q , dim = 2]))

feature in the k class and the p-th query video feature in-
dicates skm∈ RT×C , qp∈ RT×C , respectively. For single-
frame matching, we apply a bidirectional Mean Hausdorff
metric as follow:

Dframe =
1

T

[ ∑
skm,i∈skm

(
min

qp,j∈qp

∥∥skm,i − qp,j

∥∥)

+
∑

qp,j∈qp

(
min

skm,i∈skm

∥∥qp,j − skm,i

∥∥)] (6)

where skm,i represents the i-th frame feature of skm, qp,j in-
dicates the j-th frame feature of qp, and they have a total
T frames. For tuple-level prototype matching, we combine
two frames into one tuple and iterate through all combina-

Algorithm 2: The process of Select operation

1 Input: aL
ij [0]∈ R(NS+NQ)×(NS+NQ)

2 Output: Msiam∈ RNQ×(NS+1)×(NS+1)

3 Similarity Score: Msiam = List()
4 for nQ = 1, · · · , NQ do
5 msiam = Zeros((NS + 1)× (NS + 1))

6 msiam[: NS , : NS ] = aLij [0][: NS , : NS ]

7 msiam[: NS ,−1] = aLij [0][: NS , NS + nQ]

8 msiam[−1, : NS ] = aLij [0][NS + nQ, : NS ]

9 msiam[−1,−1] = aLij [0][NS + nQ, NS + nQ]

10 Msiam.Append(msiam)

11 end
12 Msiam = Stack(Msiam)

tions to get L = 1
2 (T − 1)T tuples for T frames, given by:

tskm,i =
[
skm,i1 + PE(i1), skm,i2 + PE(i2)

]
1 ⩽ i1 ⩽ i2 ⩽ T

tqp,j =
[
qp,j1

+ PE(j1),qp,j2
+ PE(j2)

]
1 ⩽ j1 ⩽ j2 ⩽ T

(7)

where tskm,i, tqp,j∈ R2C , and each tuple follows the tempo-
ral information of the original frame. To this end, the Mean
Hausdorff metric based on tuples can be formulated as:

Dtuple =
1

L

[ ∑
tskm,i∈tskm

(
min

tqp,j∈tqp

∥∥tskm,i − tqp,j

∥∥)

+
∑

tqp,j∈tqp

(
min

tskm,i∈tskm

∥∥tqp,j − tskm,i

∥∥)] (8)

Finally, the hybrid matching metric can be formulated as:

Dhybrid = αDtuple + (1 − α)Dframe (9)

where α ∈ [0, 1] is a hyperparameter.
In a word, our proposed hybrid prototype matching strat-

egy combines the advantages of both frame- and tuple-level
matching to cope with video tasks of multivariate styles
well.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of our
method on four few-shot datasets, including Kinetics [5],
HMDB51 [16], UCF101 [29], and SSv2 [13]. For Kinet-
ics and SSv2, we use the splits provided by [4] and [47],
where 100 classes were selected and divided into 64/12/24
action classes as the meta-training/meta-validation/meta-
testing set. Additionally, for UCF101 and HMDB51, we
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HMDB51 UCF101 SSv2 KineticsMethods Reference Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MatchingNet [31] NeurIPS(16) ResNet-50 - - 31.3 45.5 - - 53.3 74.6

MAML [10] ICML(17) ResNet-50 - - 30.9 41.9 - - 54.2 75.3
ProtoNet [28] NeurIPS(17) C3D 54.2 68.4 74.0 89.6 33.6 43.0 64.5 77.9
TRN++ [45] ECCV(18) ResNet-50 - - - - 38.6 48.9 68.4 82.0
CMN++ [46] ECCV(18) ResNet-50 - - - 34.4 43.8 - 57.3 76.0

TARN [3] BMVC(19) C3D - - - - - - 64.8 78.5
ARN [41] ECCV(20) C3D 45.5 60.6 66.3 83.1 - - 63.7 82.4
OTAM [4] CVPR(20) ResNet-50 54.5 68.0 79.9 88.9 42.8 52.3 73.0 85.8
TTAN [19] ArXiv(21) ResNet-50 57.1 74.0 80.9 93.2 46.3 60.4 - -
ITANet [42] IJCAI(21) ResNet-50 - - - - 49.2 62.3 73.6 84.3

TRX [27] CVPR(21) ResNet-50 54.9* 75.6 81.0* 96.1 42.0 64.6 65.1* 85.9
TA2N [20] AAAI(22) ResNet-50 59.7 73.9 81.9 95.1 47.6 61.0 72.8 85.8
STRM [30] CVPR(22) ResNet-50 57.6* 77.3 82.7* 96.9 43.5* 66.0* 65.1* 86.7

MTFAN [36] CVPR(22) ResNet-50 59.0 74.6 84.8 95.1 45.7 60.4 74.6 87.4
HyRSM [35] CVPR(22) ResNet-50 60.3 76.0 83.9 94.7 51.5* 67.5* 73.7 86.1

HCL [44] ECCV(22) ResNet-50 59.1 76.3 82.5 93.9 47.3 64.9 73.7 85.8
Huang etal. [14] ECCV(22) ResNet-50 60.1 77.0 71.4 91.0 49.3 66.7 73.3 86.4
Nguyen etal. [23] ECCV(22) ResNet-50 59.6 76.9 84.9 95.9 43.8 61.7 74.3 87.4

SloshNet [38] AAAI(23) ResNet-50 59.4 77.5 86.0 97.1 46.5 68.3 70.4 87.0
GgHM - ResNet-50 61.2 76.9 85.2 96.3 54.5 69.2 74.9 87.4

Table 1. State-of-the-art comparison on the 5-way k-shot benchmarks of HMDB51, UCF101, SSv2, Kinetics. The boldfacen and
underline font indicate the highest and the second highest results. Note: * means our implementation.

evaluate our method on the splits provided by [41]. Net-
work Architectures. We utilize the ResNet-50 as the fea-
ture extractor with ImageNet pre-trained weights [7]. For
LDTM, Wt1,Wt2 are two one-layer MLPs, and gap is
set to 2. For GgPC, we apply one-layer GNN to obtain
task-oriented features. More implementation details can be
found in the appendix.

Training and Inference. Followed by TSN [33], we
uniformly sample 8 frames (T=8) of a video as the input
augmented with some basic methods, e.g. random horizon-
tal flipping, cropping, and color jit in training, while multi-
crops and multi-views in inference. For training, SSv2 were
randomly sampled 100,000 training episodes, and the other
datasets were randomly sampled 10,000 training episodes.
Moreover, we used the Adam optimizer with the multi-step
scheduler for our framework. For inference, we reported the
average results over 10,000 tasks randomly selected from
the test sets in all datasets.

4.2. Results

As shown in Tab.1, our method GgHM achieves im-
pressive results against the state-of-the-art methods in all
datasets and few-shot settings. Our method especially
achieves new state-of-the-art performance on Kinetics and
SSv2 in all few-shot settings and HMDB in the 5-way
1-shot task, respectively. In other tasks, our method ei-
ther achieves the second-highest result or achieves re-
sults that are very close to the SOTA. Our method per-

forms impressively without any preference for datasets or
the few-shot settings. In contrast, some methods per-
form unsatisfactorily in the 1-shot task (e.g., TRX [27],
STRM [30], SloshNet [38]) or particular datasets (e.g.,
Nguyen etal. [23] on SSv2, MTFAN [36] on SSv2, Huang
etal. [14] on UCF101). In addition, compared to our base-
line HyRSM [35], which also utilizes the Hausdorff Dis-
tance metric as the class prototype matching strategy and
focuses on building the task-oriented feature, the effect of
our method is significantly improved. Specifically, com-
pared to HyRSM, our method brings 0.9%, 1.3%, 3.0%,
and 0.3% performance improvements in the 1-shot task
of HMDB51, UCF101, SSv2, and Kinetics, respectively.
In the 5-shot task, our method outperforms HyRSM sig-
nificantly, bringing 0.3%, 1.6%, 2.7%, and 0.7% gain on
HMDB51, UCF101, SSv2, and Kinetics, respectively.

4.3. Ablation Study

Impact of the proposed components. To validate the
contributions of each module (i.e. LDTM, GgPC, HPM) in
our method, we experiment under 5-way 1-shot and 5-way
5-shot settings on the SSv2 dataset. Our baseline method
only utilizes the frame-level bidirectional Mean Hausdorff
metric as the prototype matching strategy without any extra
modules. As shown in Tab. 2, we observe that each com-
ponent is effective. Specifically, compared to the baseline,
the HPM module can bring 0.6% and 0.7% accuracy im-
provement on 1-shot and 5-shot tasks, the GgPC module
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LDTM GgPC HPM 1-shot 5-shot
44.6 56.0
45.2 56.7
49.0 61.5
51.8 64.9
50.1 63.4
52.2 65.8
53.9 68.7
54.5 69.2

Table 2. The impact of proposed modules on SSv2 in the 5-way
1-shot and 5-way 5-shot settings.

can bring 4.4% and 5.5% performance improvement on two
tasks, and the LDTM module can bring 7.2% and 8.9% per-
formance gain on two tasks. Additionally, stacking mod-
ules can enhance performance, indicating the complemen-
tarity between components. Combining all modules can get
the best results, bringing 9.9% and 13.2% performance im-
provement on 1-shot and 5-shot tasks over the baseline.

Impact of temporal modeling integration. To explore
the impact of each temporal modeling module in LDTM
and demonstrate their effectiveness, we experiment on the
5-way 1-shot and 5-way 5-shot tasks of SSV2 to ablate our
proposed temporal relation modeling blocks. The PTRM
block includes spatial attention, which indicates doing Self-
Attention only on the spatial dimension. As shown in Tab.3,
the CTRM block brings about a 1.0% and 1.9% accuracy
improvement on the 1-shot and 5-shot tasks over the base-
line. Moreover, the PTRM block obtains 1.5% and 2.3%
gain on the 1-shot and 5-shot tasks over the baseline. The
integration of these two blocks results in 2.9% and 3.7%
gain on two tasks, respectively.

Analysis of building the task-oriented features. To
demonstrate the necessity of constructing task-specific fea-
tures and compare the efficacy of various methods for con-
structing them, we conduct experiments on the 5-way 1-shot
task of Kinetics and SSv2. Building task-oriented features
can be divided into two categories: unsupervised and su-
pervised. The critical difference between them is whether
label information is used directly to constrain the construc-
tion of features. The Self-Attention method(HyRSM [35])
means that the task features (the set of support and query
video features) do self-attention without using the label in-
formation to supervise. In contrast, our GNN method di-
rectly applies label information to do supervision, which

Spatial Attention PTRM CTRM 1-shot 5-shot
51.6 65.5
52.6 67.4
53.1 67.8
54.5 69.2

Table 3. The impact of temporal modeling blocks integration on
SSv2 in the 5-way 1-shot and 5-way 5-shot settings.

Method Type Kinetics SSv2
None - 72.9 52.2

Self-Attention unsupervised 74.1 53.7
GNN supervised 74.6 54.0

GNN(Transduction) supervised 74.9 54.5
Table 4. Analysis of building the task-oriented features on Kinetics
and SSv2 in the 5-way 1-shot setting.

Metric Kinetics SSv2
Frame-level matching 74.3 53.9
Tuple-level matching 74.1 54.2

Hybrid matching 74.9 54.5
Table 5. Comparisons of different prototype matching strategies
on Kinetics and SSv2 in the 5-way 1-shot setting.

Param α 0 0.2 0.4 0.6 0.8 1.0
Kinetics 74.3 74.6 74.9 74.5 74.3 74.1

SSv2 53.9 54.1 54.2 54.5 54.3 54.2
Table 6. The impact of the varying fusion parameter α of hybrid
prototype matching on Kinetics and SSv2 in the 5-way 1-shot set-
ting.

can explicitly optimize the video features’ intra- and inter-
class correlation. As shown in Tab.4, the Self-Attention
method can bring 1.2% and 1.5% gain on Kinetics and SSv2
over the baseline each, which can demonstrate the neces-
sity of building task-oriented features. Moreover, our GNN
method(each query feature owns a graph) can bring 1.7%
and 1.8% gain over the baseline on two datasets, respec-
tively, showing the advantage of the supervised method.
Moreover, our GNN method with transduction(all query
features in the same graph) brings a 2.0% and 2.3% accu-
racy improvement on two datasets.

Comparisons of different prototype matching strate-
gies. To analyze different prototype matching strategies, we
experiment on the 5-way 1-shot task of Kinetics and SSv2
with different prototype matching methods to evaluate the
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Figure 5. Visualization of the updated edge features output by the
GNN. GT stands for the ground truth and ACA represents the ac-
curacy calculation area. A higher score indicates a greater degree
of similarity. We can use the features in the accuracy calculation
area directly to obtain task recognition results.

1747



0.08 0.08

0.21 0 0

0 0

0 0

0.04 0.06

0.57

0.22

0

0.91

0.04

0.37 0.16 0.15

0.11 0.13 0.13

0.11 0.10

0.09 0.11

0.05 0.10 0.13

0.17

0.11

0.09

0.10

0.04 0.11 0.04

0.10 0.01 0

0 0

0 0.01

0.02 0 0.05

0.79

0

0

0

Acc = 80% Acc = 80% Acc = 100%

OTAM TRX Ours

0.21

0.77

0

0

0.02

0.07

0.52

0.15

0.12

0.20

0.11

0.02

0

0.12

0.04

0.14

0.12 0.11 0.11

0.19 0.15

0.07 0.06

0.04 0.29 0.04

0.14

0.11

0.16

0.73

0.46

0.05 0.21

0 0 0.02

0.04 0.01

0.02 0

0.06 0.18 0.03 0.07

0.12

0.08

0

0.86

0.04 0.08

0 0.01 0

0.06 0

0.03 0

0.02 0.17 0.02 0.07

0.13

0.01

0

0.68

Acc = 60% Acc = 80% Acc = 80%

OTAM TRX Ours

0.30

0.54

0.17

0.07

0.04

0.14 0.03

0.23

0.01

0.66

0.01

0.27

0

0.72

0.16 0.37

0.12 0.13

0.17 0.16

0.12 0.11 0.11

0.10 0.10

0.15

0.10

0.19

0.10

0.13

0.07 0.10 0.20

0.06 0.10

0.13 0.11

0.27 0.03 0.11

0.06 0.08 0.11

0.51

0.22

0.05

0.09

0 0 0

0 0.03

0 0

0 0 0

0 0 0

0.97

0

0.13

0

Acc = 60% Acc = 80% Acc = 100%

OTAM TRX Ours

0.18

0.11

0.25

0.57

0.10

0.15

0

0.12

0.37

0.50

0.10

0.03

0.16

1.00

0

0

0.16 0.16

0.05 0.15 0.14

0.22 0.15 0.15

0.15 0.16 0.15

0.05 0.06

0.30

0.57

0.17

0.10 0

0.05 0.07 0.11

0.05 0.05 0.03

0.09 0.03 0

0.05 0.10 0

0.05

0.67

0 0

0 0.01 0

0 0 0

0 0 0

0 0.05 0

0

0.86

Acc = 80% Acc = 100% Acc = 100%

OTAM TRX Ours

0.17

0.09

0.05

0.16

0.22

0.22

0.12

0.07

0.12

0.08

0.03

0

0

0

0

0.13

Examples from Kinetics Examples from SSv2

Examples from HMDB51 Examples from UCF101

1.0

0.84

0.09

0.57

0.50

0.61

1.0

0.87

0.89

0.89

0.79 0.29

0.06

0.59

0.90

0.72

0.11

0.74

0.98

0.67

0.29

0.54

0.71

0.97

1.000.65

0.62

0.340.24

0.57

0.75

0.80

0.82

0.78

1.00

0.95

1.00

0.48

0.43

0.50

0.33

1.00

Figure 6. Similarity visualization between query and support videos with different methods on the 5-way 1-shot task of Kinetics, SSv2,
HMDB51, and UCF101. A higher score indicates a greater degree of similarity.

effectiveness of our hybrid matching strategy. All the meth-
ods are based on the bidirectional Mean Hausdorff metric
and the experiment results are shown in Tab.5. Our hy-
brid matching strategy brings a 0.6% and 0.6% accuracy
improvement on two datasets over the frame-level match-
ing strategy. Meanwhile, it obtains 0.8% and 0.3% gain on
two datasets over the tuple-level matching strategy, respec-
tively.

Impact of the varying fusion parameter of hybrid
prototype matching. Tab.6 shows the impact of the vary-
ing fusion parameter α in hybrid prototype matching. As
part of our experiments, we perform the 5-way 1-shot task
on Kinetics and SSV2. The parameter α denotes the weight
assigned to the frame- and tuple-level matching in the final
fusion. From the results, the optimal values of parameter α
are 0.4 for Kinetics and 0.6 for SSv2.

Visualization of the update edge features output by
GNN. As shown in Fig.5, we visualize two examples of the
updated edge features output by the GNN and the ground
truth on Kinetics and SSv2 in the 5-way 1-shot setting. The
edge features’ value can be seen as the similarity score be-
tween two video features. From the visualization, GNN as
guidance can well optimize video features’ inter- and intra-
class correlation, in which updated edge features are very
close to the similarity matrix corresponding to the ground
truth. Meanwhile, the intermediate output recognition re-
sults of GNN obtained by the edge features in the accuracy
calculation area can also achieve high accuracy.

Similarity visualization. Fig.6 visualizes the predicted
similarities between query and support videos with differ-
ent methods on the 5-way 1-shot task of Kinetics, SSv2,

HMDB51, and UCF101. Our method achieves more dis-
criminative results for similar videos in each task compared
to OTAM [4] and TRX [27]. The results presented here
demonstrate the effectiveness of our method in distinguish-
ing videos from similar categories, as it has significantly
improved both the prediction accuracy and intra-/inter-class
correlation within video features.

5. Conclusion

In this work, we have presented a novel few-shot ac-
tion recognition framework, GgHM, leading to impressive
performance in recognizing similar categories in every task
without any datasets or task preference. Concretely, we
learn task-oriented features by the guidance of a graph neu-
ral network during class prototype construction, optimizing
the intra- and inter-class feature correlation explicitly. Next,
we propose a hybrid class prototype matching strategy that
leverages both frame- and tuple-level prototype matching to
effectively handle video tasks with diverse styles. Besides,
we propose a dense temporal modeling module consisting
of a temporal patch and temporal channel relation model-
ing block to enhance the video feature temporal represen-
tation, which helps to build a more solid foundation for
the matching process. GgHM shows consistent improve-
ments over other challenging baselines on several few-shot
datasets, demonstrating the effectiveness of our method.
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