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Abstract

Recently, human pose estimation has attracted more and
more attention due to its importance in many real applica-
tions. Although many efforts have been put on extracting 2D
poses from static images, there are still some severe prob-
lems to be solved. A critical one is occlusion, which is more
obvious in multi-person scenarios and makes it even more
difficult to recover the corresponding 3D poses. When we
consider a sequence of images, the temporal correlation
among the contexts can be utilized to help us ease the prob-
lem, but most of the current works only rely on discrete-time
models and estimate the joint locations of all people within a
whole sparse graph. In this paper, we propose a new frame-
work, Hierarchical Dynamic Graph Ordinary Differential
Equation (HDG-ODE), to tackle the 3D pose forecasting
task from 2D skeleton representations in videos. Our frame-
work adopts ODE, a continuous-time model, as the base
to predict the 3D joint positions at any time. Considering
the structural-property of the skeleton data in representing
human poses and the possible irregularity caused by occlu-
sion, we propose the use of dynamic graph convolution as
the basic operator. To reduce the computational complex-
ity introduced by the sparsity of the pose graph, our model
takes a hierarchical structure where the encoding process
at the observation timestamp is done in a cascade manner
while the propagation between observations is conducted
in parallel. The performance studies on several datasets
demonstrate that our model is effective and can out-perform
other methods with fewer parameters.

1. Introduction
With the progress in the computer vision field, human-

related contents have attracted more and more attention, as
they are very important in many real-world applications.
Some examples are autonomous driving, human-computer
interaction and anomaly detection. Among these contents,
human poses are the most basic and important ones since
their accurate and timely estimation or even forecasting usu-
ally serve as the first step for further analyzing complex

activities.

Human pose estimation is not a novel topic but has been
studied for many years. Its performance, however, is still
not satisfactory enough to meet the demands of many prac-
tical applications. Since A. Toshev and C. Szegedy pro-
posed DeepPose [69] to represent human poses by the lo-
cations of a set of joints from human skeletons and first
time utilized the regression method of deep learning to es-
timate the corresponding 2D coordinates, a lot of efforts
[78, 51, 87, 20, 86, 19, 79, 77, 54, 67, 95, 94, 3, 66, 74, 73]
have been made to get the accurate estimation in the pres-
ence of occlusion resulted from the perspective limitation of
images. These methods [14, 33, 55, 65, 34, 68, 38, 53, 16,
71, 58, 48, 99, 100, 84] are extended to multi-person scenar-
ios, where the occlusion problem is more severe. Although
some progress has been made, 2D locations cannot perfectly
restore the human poses, and are never our final goals for this
task. Recently, more and more works have been focusing
on 3D pose estimation with raw images [15, 24, 6, 91] or
extracted 2D poses [96, 21, 5, 18, 93, 39, 97, 83, 17, 43, 91]
as input. Besides the inherent occlusion problems, the lack
of depth in monocular images also limits the performance of
algorithms. Although some schemes relying on multi-view
images [50, 60, 94, 80, 72, 10, 70, 28, 40, 25, 11] or other
sensors [54, 31, 27, 94] can ease this problem to some de-
gree, we have to admit that paired images of different views
or complementary sensors are not always available in most
scenarios. The core problem is how to just utilize limited in-
formation in monocular images to extract the corresponding
3D poses of people. If a sequence of images (i.e. video) is
available, the temporal context carried can be also helpful for
the task [1, 81, 7, 47, 76]. They not only provide information
to make up the missing joints caused by the occlusion and
provide hints for joints’ locations in the future, but also help
group the detected joints belonging to a specific person in
multi-person scenarios. So in this paper, we mainly focus on
restoration from a sequence of monocular multi-person 2D
skeletons to predict the corresponding 3D poses at a future
time point.

Some related methods [64, 9, 75, 82, 41, 11, 98, 26, 13,
63, 36] usually applied graph neural networks to encode the
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2D human joints and propagated the information through
recurrent neural networks or directly used spatial-temporal
graph convolutional networks. However, almost all of them
only focused on single-person scenarios, while in most of
cases, the relations among people in the scene are also help-
ful for the forecasting. Also, there exist several limitations
in these works. Firstly, traditional recurrent neural networks,
such as GRU or LSTM, all use discrete-time sequential mod-
els, which have a fixed propagation step and are not flexible
enough to deal with different moving speeds of different
human joints. The performance of these models will be
compromised when the video frequency is not high or the
cameras need to scan around in a certain period instead of
shooting a fixed scene. For example, if the human pose is
recorded every second in the video, discrete-time models
cannot provide the forecasting result within 1 second. In-
stead, we propose to use neural ordinary differential equation
(NeuralODE), a continuous-time model, to propagate infor-
mation along the temporal axis in our framework. Secondly,
we notice that any joint of a person is only connected to its
nearest neighbors, which makes the adjacency matrix used
in the graph convolution very sparse, and leads to inefficient
calculations in turn. To reduce the meaningless calculations
and increase the efficiency of our model, we propose to
utilize a hierarchical structure to decompose a sparsely con-
nected graph into several dense graphs and encode them in a
cascade manner. By doing so, we can also deal with edges of
different types separately, such as the edges between people
and the edges connecting joints within each person. Lastly,
the whole and fixed binary adjacency matrix is used for the
graph convolution in the literature, although the actual con-
nections of joints only occupy a very small part of the graph
due to the occlusion. Instead, we propose to provide dynamic
topology information at each time stamp. Different from
works [21, 96, 84, 58, 42, 43] which learned another weight
matrix from fully observed input, we propose to learn the
weight matrix from partial input to more timely capture the
effect of every specific connection in the graph and multiply
it with the time-varying dynamic binary adjacency matrix to
form the final one used in graph convolutions.

To summarize, the main contributions of this paper are
three folds:

• We propose a continuous-time framework which takes
the sequence of 2D skeletons extracted from a multi-
person video as the input to forecast the multi-person
3D poses in any future time.

• We design our model as a hierarchical structure to re-
duce the computational complexity for multi-person
scenarios, and also deal with different connection types
in the graph.

• We utilize dynamic graph convolutions to deal with the
irregular input caused by occlusions.

In the remaining of this paper, we will briefly introduce
the related works in Sec. 2 and give the details of our model
in Sec. 3. The performance of our model is demonstrated
through experiments in Sec. 4. Finally, we will conclude our
work in Sec. 5. The corresponding source code can be found
at https://github.com/SBU-YCX/HDG-ODE.

2. Related Works

2.1. 3D Pose Estimation, Tracking and Forecasting

Single-Person Pose Estimation: Most of the 3D Single-
Person Pose Estimation (SPPE) methods are proposed to
recover the 3D poses from 2D ones extracted by a pre-trained
2D pose extractor such as Stacked Hourglass Network [51]
or Convolutional Pose Machines [69]. Given 2D coordinates
as input, Zeng et al. [93] proposed to split the human joints
into local groups and estimate them separately. The same
idea was used by Chen et al. [15], although they directly
estimated 3D poses from raw images and applied different
architectures for different parts. In Li et al.’s work [39],
different subsets were exchanged to generate augment data
for better training. Choi et al. [18] and Azizi et al. [5] used
spectral graph convolutions to tackle the problem due to the
structure property of input skeletons. Since images captured
from monocular cameras have perspective limitations, Yu
et al. [91] proposed perspective crop layers to eliminate the
perspective effect, while Nie et al. [52] tried to use siamese
architectures to decouple the view-dependent representation
and pose-dependent representation. There are also some
other works solved the perspective problems with the help of
multi-view images, such as [50, 60, 80, 72, 94], by fusing the
2D poses from different views to get the original 3D results.
Besides, other wearable sensors were used to complement
the missing depth information in [94, 27], and Isogawa et al.
[31] proposed to utilize an optical non-line-of-sight imaging
system to obtain the 3D poses from photon images.

Multi-Person Pose Estimation: Inspired by 2D Multi-
Person Pose Estimation (MPPE) methods, the works for the
3D estimation task can also be divided into two groups. One
is top-down methods where a human detector is applied first
and estimation is made for each person separately. Yang
et al. [88] followed this line of work with graph convolu-
tional networks (GCNs) [32], T. Xu and W. Takano [83]
modified the stacked hourglass structure also with the graph
convolutions. Li et al.’s [37] proposed a hierarchical archi-
tecture, which is the one closest to our work, but their goal
was to augment the graph with additional labeled mesh data
and integrate more information, which is totally different
from our motivation. The other one is bottom-up approaches
where joint locations are directly estimated, then associated
and grouped into different people. In [24], Fabbri et al. pro-
posed to use distance-based heuristic for the associations
from the detected head joint with the highest confidence.
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Cheng et al. [17] proposed to integrate both top-down and
bottom-up branches to give better results. Besides, inspired
by YOLO [59], some works [97, 6, 35, 49] explored to ob-
tain the 3D poses in a single pass where a pivot joint was
detected as well as the offsets for all other joints. Similar
to single-person case, multi-view sources were also used in
[25, 10, 70, 40, 28].

Pose Tracking and Forecasting: Since Andriluka et al.
proposed PoseTrack [1] to first time introduce the Human
Pose Tracking (HPT) task, contextual information has begun
to be used for better estimating human poses in a sequence
of inputs. Similar to other 3D pose tasks, most of works
used extracted 2D pose sequence as the input and adopted
top-down pipeline to mainly focus on single-person’s pose
tracking. Cai et al. [9] integrated spatio-temporal GCN into
a stacked hourglass architecture to get the information of
different scales. The same idea was applied in Wang et
al.’s work [75], where the U-shaped GCN was used to ex-
tract multi-scale contexts. Liu et al. [41] proposed a graph
attention spatio-temporal network with dilated temporal con-
volutions to get both local and global information, and Sofi-
anos et al. [64] built a space-time-separable GCN for the 3D
pose forecasting. Encoder-decoder architecture was utilized
in [36, 63, 26] and Zheng et al. [98] solved the problem
with spatio-temporal transformer. Furthermore, Chen et al.
[11] proposed a fast method with multi-view inputs and
Yuan et al. [92] utilized physics simulators and the reinforce-
ment learning strategy in their work. Besides the skeleton
joint representations, bone lengths and directions were used
in [13, 82] and the extracted information was propagated
through an LSTM.

2.2. Graph Neural Networks

Different from traditional convolutional neural networks
(CNNs), graph neural networks (GNNs) are mainly proposed
to deal with data having more general structures. GNNs can
be divided into two groups, spatial and spectral graph con-
volutions, as described in [8]. The former one considers the
graph as locally connected and the information is only shared
between each node and its nearest neighbors. J. Atwood and
D. Towsley [4] extended it to allow the communications
among nodes within k-hop (k >= 1) connections by using
the probabilistic transitions. The latter one converts the data
into spectral domain first, multiplies it with the Laplacian
of the topology matrix in the spectral domain to mimic the
convolutional operation in the spatial domain. Compared
with spatial graph convolutoins, spectral operations utilizes
the global graph structure each time. However, since the ker-
nel of the whole graph is large, to reduce the computational
complexity, Defferrard et al. [23] proposed to approximate it
with the kth order polynomials of the Laplacian with the help
of Chebyshev expansion to model the k-hop connections.
T. Kipf and M. Welling [32] proposed graph convolutional

networks (GCNs) to further simplify it with the 1st order
approximation of the covolution in ChebNet [23].

In the pose estimation tasks, GCNs were widely used in
[88, 83, 37, 9, 75, 41]. However, unlike CNNs, traditional
GCNs have shared weights for different neighbors. To tackle
this problems, another learnable weight matrix was trained
in [96, 21, 42]. But, in these works, the weight matrix were
learned with full joints and the final matrix used for con-
volution was the multiplication between the weight matrix
and the static skeleton matrix assuming all joints observable.
In our work, to deal with the missing case caused by occlu-
sion, we make the skeleton matrix dynamic according to the
current occlusion status so that the learnt weight matrix can
also be effective even though only partial joints given. Some
other works [43, 58, 84] proposed to add more semantic
connections to the graph, which increased the calculation
complexity of the models since the joints of all people could
not be fully-connected. In addition, the semantic graphs
were still globally sparse although locally dense. In this
work, we propose to decompose the whole graph in a hierar-
chical manner.

2.3. Neural Differential Equation

As mentioned earlier, almost all the existing pose track-
ing methods were built based on spatio-temporal graph con-
volutional networks (ST-GCNs) and recurrent neural net-
works (RNNs), which could only model the discrete-time
data where all human joints were assumed to be observable
although there existed missing and inaccurate inputs due to
occlusions. In order to better model the continuous-time
process of the irregular data, neural ordinary differential
equation (NeuralODE) was proposed by Chen et al. [12],
where deep neural networks were utilized to parameterize a
nonlinear ordinary differential equation (ODE). Rubanova
et al. [61] and Brouwer et al. [22] further extended it by
introducing a recurrent structure to efficiently encode the in-
put information into the underlying trajectories. Some other
works [44, 45, 46] also inserted Brownain terms into ODE to
make it a stochastic model that can capture the uncertainties
in the dynamics. In these works, pose estimation was also
mentioned as a part of experiment to prove their efficiency.
However, when they dealt with the human joint data, they
merely considered each joint sequence as an isolated trajec-
tory and ignored the relations among these joints. Graph
neural networks were introduced to parameterize the ODEs
in [56, 29, 57], but all of them utilized the whole graph,
which didn’t take the sparsity problem into consideration in
multi-person scenarios.

3. Hierarchical Dynamic-Graph Ordinary Dif-
ferential Equation Model

In this section, we will introduce the details of our hier-
archical ordinary differential equation model with dynamic
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graph convolutions, which we call as HDG-ODE. As shown
in Figure 1, the framework of our model follows a hierarchi-
cal structure, where each level is a sub-graph with the state
changes modeled through graph ordinary differential equa-
tion and parameterized with dynamic graph convolutions. In
the remaining of this section, we will describe the details of
each component as well as the advantages of such designs.

3.1. Problem Statement and Notations

Given a multi-person monocular video containing K
people, and the 2D joints sequence up to time t is X =
{X1,X2, ...,Xt}, where Xt ∈ R[K,Nj ,2] and Nj is the
number of joints within each person. These 2D representa-
tions can be obtained from any existing 2D pose estima-
tor. Our goal is to predict the corresponding 3D poses
Yτ ∈ R[K,Nj ,3] at a future time τ from Xt, where τ can be
any value within (t, t+ 1]. Like in many 2D estimators, the
missing or occluded joints are represented as some singular
values or estimated with a very low confidence, based on this,
we can directly obtain the corresponding occlusion mask Mt

along with Xt at each time t.

3.2. Hierarchical Graph Structure

As explored in many other works, compared to the tra-
ditional use of CNN, graph convolution is more suitable
for human skeleton data due to the irregular connection of
joints. The feature matrices Z(l) and Z(l+1) of two adjacent
convolution layers are expressed as

Z(l+1) = σ(WZ(l)Ã), (1)

where W is a learnable parameter matrix, Ã is the normal-
ized form of the adjacency matrix A ∈ [0, 1]N×N and N is
the number of nodes in the graph. However, when model-
ing human skeletons, we notice that each joint node is only
connected to a few other joints, which will make the static
skeleton-based Ã very sparse and lead to plenty of meaning-
less calculations in (1). Although some recent works tried
to learn more semantic connections among different joints
besides static ones, the sparsity problem cannot be elimi-
nated. The semantic relationship among joints usually exists
within a limited number of hops instead of the whole graph.
Even after we add those semantic edges, we can separate all
joints into several groups such that the connections within
each group are dense but the ones among different groups
are still sparse. This inspires us to adopt a hierarchical struc-
ture instead of a flatten one to represent the graph of human
skeletons.

Besides, according to the physical property of human
motion, different joints change their positions at different
speeds over time. The location of the central joint usually
has a slow and smooth change while the extremity joints,
such as “wrist” and “ankle”, have drastic and unexpected

changes. Therefore, rather than allocating the same portion
of computational resource to all joints, we can focus more on
the latter ones. The cascade processing along the hierarchical
structure also allows us to utilize the relative-central ones’
locations to guide the estimation of positions of the relative-
extreme joints.

Another reason for which we adopt the hierarchical struc-
ture is its advantage of dealing with different types of edges
in the whole graph. For example, in the multi-person sce-
nario, previous works commonly used top-down methods
where each person in the scene would be processed individu-
ally, but actually, pose estimation and tracking can benefit
from taking the relation among people into consideration.
However, the edges describing the inter-person relations are
different from those representing the intra-person limbs, and
it will reduce the effect if we model them in one large graph.
Intuitively, separating them into different groups and forming
a graph at each level will be a better choice.

Specifically, as shown in Figure 2, for each frame of the
video at time t, we get a set of 2D skeleton coordinates of
all the people in the scene as input. To apply the hierarchical
pipeline, we choose the “pelvis” joint as the root node of
each person, whose coordinate can be also considered as
the location of the person. All these root nodes form the
1st-level graph and encoded by a graph encoder

Y(1)
τ = G1(X

(1)
t ,H(1)

<t , Ã
(1)
t ), (2)

where X(1)
t ∈ R[K,1,2] represents the 2D coordinates of all

root nodes of K people, Y(1)
τ ∈ R[K,1,3] is the correspond-

ing 3D one forecasted for the future time τ , H(1)
<t is the

historical feature, and Ã
(1)
t is the normalized adjacency ma-

trix with the edges calculated based on the distances among
connected roots, i.e. the relations among people. There is
an edge between two people if their root nodes’ distance is
smaller than a threshold (the average of the heights of joints
in 2D skeleton, i.e. distance from “head” to “ankle” joint
in our setting), which indicates they are related. Then, all
the limb-root joints, including “neck”, “left shoulder”, “right
shoulder”, “left hip” and “right hip”, as well as the root node
are grouped to form the 2nd-level graph within each person.
To utilize the result of the 1st-level graph, the output of this
level is designed as the spatial shifts of the limb-root joints’
locations from the root node. We can express the process as
below

D(2,i)
τ = G2(X(2,i)

t ,Y(1)
τ,i ,H(2,i)

<t , Ã
(2,i)
t ), i ∈ [1,K]

Y(2,i)
τ = D(2,i)

τ + Y(1)
τ,i , (3)

where X(2,i)
t ∈ R[1,6,2] is the 2D coordinates vector of all

limb-root nodes as well as root node of person i, Y(1)
τ,i is the

3D root node’s position of this person obtained by (2), D(2,i)
τ

and Y(2,i)
τ represent respectively the future 3D position shift

and final position predicted. Finally, we group each limb-
root joint to the corresponding limb-extreme joint to form
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Figure 1. The framework of HDG-ODE. Xtn are the 2D joints coordinates at time tn, Mtn is the occlusion mask obtained from Xtn . Yτ

are the predicted 3D coordinates at the future time τ .

the 3rd-level graph. Similarly, the encoding process within
each lamb group j of person i can be expressed as

D(3,i,j)
τ = G3(X(3,i,j)

t ,Y(2,i)
τ,j ,H(3,i,j)

<t , Ã
(3,i,j)
t ), j ∈ [1, 5]

Y(3,i,j)
τ = D(3,i,j)

τ + Y(2,i)
τ,j , (4)

where X(3,i,j)
t ∈ R[1,3,2] is the vector of the 2D coordinates

representing all nodes of person i within the limb group j,
Y(2,i)

τ,j is the 3D location of the lamb-root j calculated by (3),

H(3,i,j)
<t and Ã

(3,i,j)
t represent the corresponding part of the

historical feature and the adjacency matrix in this level. 3D
shift D(3,i,j)

τ is used to get the final 3D coordinates Y(3,i,j)
τ

at future time τ .

Figure 2. Illustration of the hierarchical graph structure: (a) the
skeleton representations of a multi-person scerario; (b) the corre-
sponding 3-level hierarchical structure.

3.3. Time-Varying Dynamic Graph Convolution

A most important impact factor to the performance of
human pose estimation is the occlusion, no matter the occlu-
sion is caused by other objects or the self-occlusion happens

within a person. To get the 2D skeleton inputs with some 2D
pose estimation methods, the visible joints can be directly
extracted from the raw images while the occluded ones are
missing. Even though the missing joints can be estimated by
some intuition, they are less accurate due to the uncertainties.
When we use such 2D poses as inputs to recover the corre-
sponding 3D poses, called the lifting process, the inaccuracy
will accumulates and compromises data processing during
the information communication within the graph convolu-
tion operation. Therefore, we hope our graph encoder can be
reasonably adaptive to deal with the missing and inaccurate
cases.

In the literature work that apply the traditional graph
convolution for this task, the adjacency matrix A and its
normalized form Ã in (1) usually keep constant to represent
the static connections within the graph, i.e. all the joints are
assumed to be fully available, no matter they are observable
or occluded. However, as we described, only those visible
ones are accurate and worth being integrated to guide the
forecasting. So we propose to use the time-varying dynamic
graph convolution to only encode visible joints input at each
timestamp. Inspired by some literature work [96], the learn-
ing of a hybrid adjacency-weight matrix may be written as

Z
(l+1)
t = σ(WZ

(l)
t ρ(WÃ ⊙ Ã)), (5)

where WÃ is a learnable weight matrix applied to assign the
information along different edges with different weights to
solve the weight-sharing problem [21, 42] and ρ(·) is a non-
linear function. However, we notice that in (5), WÃ is learnt
based on the fully-observable data and the Ã is the static
one without taking the occlusion cases into consideration. In
other words, although the learnt weights work well when all
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joints are available, they may not be effective if partial of
joints are occluded and missing. Based on this, we make a
further step and propose to also take the occlusion status into
consideration when obtaining the dynamic weight matrix.
Specifically, at each timestamp t, we will drop the occluded
joints in the original static adjacency matrix A to form a time-
varying adjacency matrix At, and this dynamic adjacency
matrix will be used in both training and testing, i.e. (5) can
be rewritten as

Z
(l+1)
t = σ(WZ

(l)
t ρ(WÃ ⊙ Ãt)), (6)

where Ãt is the normalized form of the real adjacency matrix
at time t. By doing so, the learning of the weight matrix WÃ

will only focus on the observable joints to make sure it can
also be effective when only partial joints are available. In
the testing phase, the hybrid-matrix WÃ ⊙ Ãt can ignore
the missing joints and adaptively adjust the weights along
existing edges for information integration among joints.

3.4. Parallel Ordinary Differential Equation

Besides the partial occlusion, which leads to incomplete
graph input at each frame and can be regarded as spatial
missing, there are also many cases where a person is totally
occluded, and causes the temporal missing within a sequence.
Previous works almost rely on the discrete-time sequential
models , which are not flexible enough since the missing in
real world can vary from several frames to dozens of frames.

To make the model more robust, we adopt ordinary dif-
ferential equation (ODE), a continuous-time model in this
paper, which can be expressed as

dHt

dt
= F (Ht),

Ht =Htn−1
+

∫ t

tn−1

F (Hτ )dτ. (7)

Compared with traditional recurrent networks, it can be used
to predict the values over the interval of any length. Specially,
in our model, we use time-varying dynamic graph convolu-
tion mentioned in Sec. 3.3 to parameterize the derivatives
F (·). For efficiency, we compute the integration in (7) by
Euler Method and we can rewrite it as

Ht,F = Ht−∆t,F + F (Ht−∆t,F , Ã)∆t, (8)

where Ht,F is the hidden feature, Ã is the normalized adja-
cency matrix assuming all joints observable, and ∆t is the
step-size. At an observation time tn, the features of observ-
able joints are updated through the same graph convolution
encoder as described in Sec. 3.2, i.e.

Htn,G = G(Xtn ,Ytn ,H<tn , Ãtn), (9)

where G = {G1, G2, G3} represents the cascade process in
(2)-(4) parameterized by our time-varying dynamic graph

convolution networks, Xtn and Ytn are the 2D and 3D joint
locations, H<tn = Htn−∆t,F is the feature from the ODE
model and Ãtn is the normalized adjacency matrix of the
graph formed by observable joints. After the update, the new
feature at the time instant tn becomes

Htn = Mtn ⊙ Htn,F + (1 −Mtn)⊙ Htn,G, (10)

where Mtn is the occlusion mask of the input described in
Sec. 3.1. Here, we want to emphasize that Ãtn in (9) and
Ã in (8) may not be the same according to the observation
states of input. As we described in last section, the input may
contain missing values, but all the missing values have been
completed by the encoder in the encoding process and we
can assume the graph is fully observable in the propagation
process.

Figure 3. Illustration of the parallel ODE pipeline.

Here, we can further demonstrate the advantages of hier-
archical structure. For efficiency, we adopt Euler method to
approximately calculate the integration, but as we know, it
will predict the curve as a straight line if we make the prop-
agation step ∆t too large and equal to the interval between
two observations as tn − tn−1. To make the model more
expressive, we usually make ∆t smaller, i.e.

∆t =
1

k
(tn − tn−1). (11)

However, as we discussed in Sec. 3.2, different joints of
human body have different rates of location changes, we
don’t need to set k to the same value at different levels in our
model. Instead, we can adopt a parallel pipeline and make
it small in shallow levels while enlarge it as the level goes
deeper as shown in Figure 3.

4. Experiments
4.1. Experimental Setups

4.1.1 Datasets

MuPoTS-3D[49]: This multi-person dataset contains se-
quences captured in 20 real scenes. Each sequence has up
to three subjects, as well as provides raw images, 2D pose
annotations and the corresponding 3D ones. The lengths of
data vary from 125 frames to 800 frames, and we split them
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into segments with the length of 50 frames. We divide all
the data into training, validation and testing sets with the
ratio of 0.8: 0.1: 0.1. The real occlusion mask are given
as well, and the final data are obtained by the element-wise
multiplication between the full data and the occlusion masks.
Before being fed into the models, data from each sequence
are first normalized.
Human3.6M[30]: This dataset consists of 3.6 million of
single-person frames. 11 subjects conducting 15 activities
are captured by cameras. Both 2D and 3D annotations are
provided where 2D ones come from cameras while 3D ones
are obtained using a motion capture system. Different from
commonly used training methods, we only use data from
one camera to train the model. We performed the same data
partition and normalization as above.

4.1.2 Evaluation Metrics

Mean Per Joint Position Error (MPJPE): This metric
measures the average position error over all joints and frames
in the sequence, which can be expressed as

MPJPE =
1

Nf

∑
f

1

N
(f)
j

∑
j

||P (f)
pred(j)− P

(f)
gt (j)||2, (12)

where Nf is the total number of frames, N (f)
j is the total

number of joints in the frame f , P (f)
gt (j) and P

(f)
pred(j) are

the ground-truth and the predicted 3D position of the joint j
in the frame f .
Percentage of Correct Keypoints (PCK): PCK calculates
the percentage of correctly predicted key-points, where a
key-point j in the frame f is considered to be correct if
the distance d

(f)
p (j) between the 3D ground-truth P

(f)
p,gt(j)

and the predicted 3D position P
(f)
p,pred(j) are smaller than a

person-specific threshold Sf
p , i.e.

PCK =

∑
f

∑
p

∑
j δ(d

(f)
p (j) < S

(f)
p )∑

f

∑
p

∑
j 1

, (13)

Here we adopt the setting in MPII dataset[2] where the
threshold is the ratio of head link’s length h

(f)
p of the person

p, i.e. the distance between “head” joint and “upper neck”,
and the PCK can be represented as

PCKh@α =

∑
f

∑
p

∑
j δ(

d
(f)
p (j)

h
(f)
p

< α)∑
f

∑
p

∑
j 1

, (14)

where α is the ratio parameter.

4.1.3 Implementation Details

As introduced in Sec. 3.2, the hierarchical graph has 3 levels,
containing K, 6 and 3 nodes each, and our HDG-ODE model
has a hierarchical structure of 3 levels, with an encoder and

an ODE at each level. For each encoder, we use a single-
layer graph-GRU, using our time-varying dynamic graph
convolutions with the feature size of 6. ODE models are
parameterized with graph neural networks of 1, 2 and 3
convolutional layers at the three levels respectively, with
the hidden feature size of 16. The propagation steps for
the three levels are respectively [1/30s, 1/60s, 1/120s], and
the data sampling interval is 1/30s. The experiments are
conducted on single NVIDIA 1080 Ti GPU. During the
training, we use the Adam() optimizer with the learning
rates of [0.01, 0.001, 0.0001] to minimize the mean squared
error (MSE) between the predicted 3D positions and the
ground-truth of the visible joints, and 100 epochs are run at
each learning rate. To speed up the training, it will be early-
stopped if there is no further loss decrease in 20 epochs.

4.2. Experiment Results

4.2.1 Overall Performance

We conduct experiments over MuPoTS-3D dataset to eval-
uate the performance of our proposed model on the multi-
person 3D pose tracking task. For comparison, we choose
some representative methods, including discrete-time re-
current models and continuous-time ones, as the baselines.
Specifically we take the following methods into considera-
tion:

• STGCN: This discrete-time model consists of several
concatenated spatio-temporal convolutional blocks (ST-
Conv blocks), which is a common structure that is
widely used for action recognition [85], pose forecast-
ing [75] and other prediction tasks [89]. In our experi-
ments, STGCN has 2 ST-Conv blocks, and recurrently
processes each clip within the whole 2D pose sequence
and give the 3D predictions. The output dimension of
each layer in the blocks is 32.

• Graph-GRU: It is a variant of conventional Gated Re-
current Unit (GRU), where the linear operation in the
conventional GRU is replaced by graph convolution. It
works as the backbone in [90]. We construct the base-
line with 2 Graph-GRU layer and a linear decoder. The
output dimension of each layer in the blocks is 32.

• SemGCGRU: It is an improved version of traditional
Graph-GRU, where the fixed binary adjacency matrix
is replaced by a learnable weight matrix to capture the
relations among nodes [96]. In our implementation, the
structure and the feature size are the same as Graph-
GRU.

• ODE-RNN: In this model [62], the deep learning mod-
ules, specifically dense neural networks, are incorpo-
rated to parameterize a non-linear ordinary differential
equation (ODE) to model the continuous-time process
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of data sequence. In our experiments, the dense network
contains 2 linear layers and the dimension of hidden
features is 32.

• Graph-ODE: It is a GNN variant of ODE-RNN, with
a GCN to learn the derivative of ODE and a GRU to
integrate the information of observations. In our model
comparison, the GCN has 2 hidden layers with ReLU
activation functions and the output dimension of each
hidden layer is 32. The output dimension of GRU is
32 as well. In other words, to compare with discrete
models, we just replace the GRU module in Graph-
GRU with an ODE module.

Although continuous-time models can provide predictions at
any time, even smaller than the data sampling rate, we set
the step of them to be equal to the original data interval used
in discrete-time models for fair comparison. From the results
in Table 1, we can see that our HDG-ODE can achieve the
best result with the smallest mean prediction error and the
highest percentage of corrected prediction.

MPJPE(↓) PCKh@α (↑)

α=0.1 α=0.5 α=1.0

Discrete

STGCN [89, 75] 0.6004 13.03% 60.35% 77.76%
Graph-GRU [90] 0.5573 14.86% 62.39% 80.04%
SemGCGRU [96] 0.4375 17.09% 69.61% 85.96%

Continuous

ODE-RNN [61] 0.4396 20.21% 71.78% 85.45%
Graph-ODE [56] 0.4066 19.80% 71.57% 87.00%

Ours
HDG-ODE 0.3038 29.72% 78.67% 92.18%

Table 1. Testing Performance of different models on MuPoTS-3D.

4.2.2 Ablation Study

In this part, we will separately demonstrate the effectiveness
of each designing component in our proposed model by
some experiment results, including the continuous ODE
model, the pipeline taking all people into consideration,
the new time-varying dynamic graph convolution and the
proposed hierarchical structure. The evaluation is sequential
by adding the components one by one, and each time we only
choose the current best model to conduct the experiment for
the next component.

Discrete-Time Model vs. Continuous-Time Model:
From Table 1, compared to traditional discrete-time models,
no matter our HDG-ODE or other continuous-time models
have a better performance. Different from discrete models
which only execute one propagation between two observa-
tions, the continuous-time ones conduct multiple-step propa-
gation so that the information on each joint will be affected

and corrected by its neighbors several times before getting
the final prediction. Also, due to the property of ODE, the
continuous-time model can provide predictions at any time
in the interval between two observations, instead of just ob-
taining predictions at the observation instants as done by
discrete-time ones.

Isolated Top-Down Pipeline vs. Relational Top-Down
Pipeline: As we described previously, most of existing multi-
person pose tracking works adopt the top-down processing
pipeline, where each person in the scenario is tracked sep-
arately as an isolated trajectory. nstead, we take into con-
sideration the relation among people to infer their relative
movements, which in turn affects the future positions of spe-
cific joints. In Table 2, by comparing the models in isolated
top-down pipeline with the ones in our relational pipeline,
we can observe the improvement.

Isolated Pipeline Relational Pipeline

MPJPE PCKh@1.0 MPJPE PCKh@1.0

STGCN 0.6104 77.72% 0.6004 77.76%
Graph-GRU 0.5738 78.46% 0.5573 80.04%
Graph-ODE 0.4203 86.89% 0.4066 87.00%

Table 2. Comparison between the isolated top-down pipeline and
our relational top-down pipeline on MuPoTS-3D.

Static Graph Convolution vs. Time-Varying Dynamic
Graph Convolution: In the real cases, occlusion is in-
evitable. To better tackle the problem caused by the input
data with missing or inaccurate values due to occlusions, we
propose to replace the static graph convolution used in most
of works with our time-varying dynamic graph convolution
in the HDG-ODE model. As shown in Table 3, the dynamic
graph convolution helps eliminate the negative influence of
inaccurate inputs as well as adjust the integration weights of
edges to the most suitable ones according to occlusion states,
so the models can have a better performance than before.

Original Graph Conv Our Graph Conv

MPJPE PCKh@1.0 MPJPE PCKh@1.0

Graph-GRU 0.5573 80.04% 0.3844 86.45%
Graph-ODE 0.4066 87.00% 0.3706 88.74%

Table 3. Comparison between original static graph convolu-
tions (GC) and our time-varying dynamic convolutions (DG) on
MuPoTS-3D.

Flatten Structure vs. Hierarchical Structure: To solve
the sparsity problem explained in Sec. 3, our HDG-ODE
adopts a hierarchical structure. In Table 4, compared to
models in the flatten structure with a large sparse graph, the
corresponding hierarchical ones perform better for models
with graph convolutions. The reasons leading to the improve-
ment lie in two aspects: On one hand, by decomposing the
whole sparse graph into a set of relatively dense ones, the
parameters to learn are reduced, as shown in Table 5. This
helps save a significant amount of computational resource,
and the released resource can be reallocated to the joints
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with more complicated movements, e.g. making the corre-
sponding network deeper or reducing the propagation step
of ODE. On the other hand, the cascade processing along
the hierarchical structure can provide the guidance among
the levels. As for the ODE-RNN, the hierarchical one has
a worse result because the structure is mainly proposed to
deal with the graph sparsity problem. However, ODE-RNN
doesn’t utilize the graph information and only cares about
isolated joint trajectories, so the hierarchical structure will
make the model more complex and reduce the performance.

Flatten Structure Hierarchical Structure

MPJPE PCKh@1.0 MPJPE PCKh@1.0

ODE-RNN 0.4396 85.45% 0.4938 82.40%
GC-ODE 0.4066 87.00% 0.3451 90.51%
DG-ODE 0.3706 88.74% 0.3038 92.18%

Table 4. Performance Comparison between the flatten structure and
the hierarchical structure on MuPoTS-3D.

#Params (↓) Memory (↓)

DG-ODE 10649 0.76M
HDG-ODE 2643 0.66M

Table 5. Complexity Comparison between the flatten Dynamic-
Graph ODE (DG-ODE) and our hierarchical one (HDG-ODE).

4.2.3 Robustness Analysis

Besides the multi-person scenarios, we also conduct exper-
iments of single-person scenarios on Human3.6M dataset.
Different from MuPoTS-3D, no occlusion information is
provided within the data, so we make occlusion masks by
ourselves and test the robustness of our model under dif-
ferent observable ratios. Specifically, for a sequence, we
assume only pt of the frames are observable while in the
remaining ones, the input skeletons are totally missing due
to the occlusion by buildings or other large objects. For each
observable frame, we assume there exist self-occlusions such
that only ps of the joints are available. To make the corre-
sponding mask, both pt of the frames and ps of the joints
on each frame are randomly chosen and the total observable
ratio can be expressed as pt × ps. The results are shown
in Table 6. When the observable ratio decreases as a result
of occlusions, the performance gets worse for all models.
However, our HDG-ODE always performs the best among
all models studied under all circumstances.

5. Conclusion
In this paper, we propose a new continuous-time model

called HDG-ODE to forecast the future 3D human pose
representations in multi-person videos given the 2D pose
sequence as input. By using ordinary differential equations
and dynamic graph convolutions, we alleviate the occlusion
problem brought by perspective effects of monocular images.

pt = 0.8, ps = 0.5 pt = 0.6, ps = 0.4

MPJPE PCKh@1.0 MPJPE PCKh@1.0

STGCN 0.3966 80.19% 0.4376 75.82%
Graph-GRU 0.3723 83.34% 0.4188 77.39%
ODE-RNN 0.3527 84.33% 0.3826 80.66%
Graph-ODE 0.3473 83.98% 0.4019 78.54%

HDG-ODE 0.3052 88.29% 0.3543 82.36%
Table 6. Performance of different models on Human3.6M with
different observable ratios.

Besides, with the help of hierarchical structure, we reduce
the computational complexity of our model and are able to
allocate more resources to the human joints which have more
complicated movement. Our experiments demonstrate that
our model can well recover the corresponding 3D poses from
the single-view 2D poses and outperform literature works on
the human pose forecasting task. Currently, the maximum
number of people in the scenes of the video is limited. In the
future, we will make our model more adaptive and test it in
more crowded scenarios.
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Horst Bischof. 3d human pose estimation using möbius
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