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Abstract

Accurately estimating the 3D pose and shape is an es-
sential step towards understanding animal behavior, and
can potentially benefit many downstream applications, such
as wildlife conservation. However, research in this area
is held back by the lack of a comprehensive and diverse
dataset with high-quality 3D pose and shape annotations.
In this paper, we propose Animal3D, the first comprehen-
sive dataset for mammal animal 3D pose and shape esti-
mation. Animal3D consists of 3379 images collected from
40 mammal species, high-quality annotations of 26 key-
points, and importantly the pose and shape parameters of
the SMAL [50] model. All annotations were labeled and
checked manually in a multi-stage process to ensure highest
quality results. Based on the Animal3D dataset, we bench-
mark representative shape and pose estimation models at:
(1) supervised learning from only the Animal3D data, (2)
synthetic to real transfer from synthetically generated im-
ages, and (3) fine-tuning human pose and shape estimation
models. Our experimental results demonstrate that predict-
ing the 3D shape and pose of animals across species re-
mains a very challenging task, despite significant advances
in human pose estimation. Our results further demonstrate
that synthetic pre-training is a viable strategy to boost the
model performance. Overall, Animal3D opens new direc-
tions for facilitating future research in animal 3D pose and
shape estimation, and is publicly available.

1. Introduction

Accurately estimating the 3D pose and shape of animals
is a crucial step toward understanding their behavior and
has a wide range of applications in fields such as wildlife
conservation, animal ecology, and biomechanics. 3D ani-

mal pose and shape estimation involves the reconstruction
of the 3D structure of an animal from a single 2D image,
which is a challenging task due to the complex shapes and
poses of animals in the wild. Previous works in this area
have primarily focused on specific animals, such as humans
[16, 17] or dogs [37, 45], which limits the generalization
ability of the models to other animals. Therefore, there is
a need for a diverse dataset of animals to allow for more
generalizable and robust models to be developed.

In this paper, we propose Animal3D, the first benchmark
for mammal animal 3D pose and shape estimation. Ani-
mal3D is a comprehensive dataset consisting of 3379 high-
quality images collected from 40 mammal species. The im-
ages were carefully selected from existing datasets, in par-
ticular PartImageNet [11] and COCO [24], to ensure that
they represent a diverse range of animals, including pri-
mates, ungulates, carnivores, and rodents (Figure 1). The
diversity of animal species included in the dataset ensures
that the models are not limited to specific animals and can
be applied to a wide range of species. Each image was an-
notated with 26 keypoints, which were carefully labeled and
checked in a mutli-stage process to ensure high-quality an-
notations that can be used for further research. Based on the
keypoint annotation and the available segmentation masks
in PartImageNet and COCO, we annotate the 3D shape and
pose by fitting the SMAL [50] model to the data. SMAL
is a widely used model for 3D animal pose and shape es-
timation and similarly structured as the SMPL [26] model,
hence supporting wide applicability of our annotations.

Using the Animal3D dataset, we benchmark representa-
tive shape and pose estimation models at three levels: (1)
supervised learning for animal pose estimation, (2) syn-
thetic to real transfer from synthetically generated images,
and (3) fine-tuning human pose and shape estimation mod-
els. Based on our experimental results we provide an anal-
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Figure 1: Samples from the proposed Animal3D dataset. Our dataset contains a diverse range of animal species with high-
quality annotations of shape and pose parameters using the popular SMAL [50] model.

ysis of the strengths and limitations of each method, which
demonstrate the versatility of our benchmark, as well as
its challenging nature, since none of the representative ap-
proaches achieves a similarly good performance as on the
specialized benchmarks they were designed for.

Animal3D is a significant step towards facilitating fu-
ture research in animal 3D pose and shape estimation. The
dataset will allow researchers to advance the understanding
of animal behavior and ecology through 3D pose and shape
estimation. Additionally, the dataset has the potential to
benefit many downstream applications. The models devel-
oped using the Animal3D dataset can be applied to a wide
range of animals, potentially leading to new discoveries and
insights into animal behavior and ecology. Access the data
via: https://xujiacong.github.io/Animal3D

In summary, our main contributions are:

• We present Animal3D, the first benchmark for mam-
mal animal 3D pose and shape estimation, with a di-
verse set of 40 mammal species, and high-quality an-
notations of 2D keypoints as well as 3D shape and pose
parameters of the SMAL [50] model.

• We set up a set of baselines on Animal3D in various
settings using state-of-the-art methods which demon-
strates the versatility of the dataset.

• Our experimental results and in-depth analysis of the
strengths and limitations of representative methods
demonstrate the challenging nature of our benchmark.

2. Related Work

Existing animal datasets and the development and chal-
lenges of pose estimation methods for both human and ani-
mals will be discussed in this section.

2.1. Animal Pose Estimation

Datasets. Existing animal datasets provide 2D annota-
tions, such as keypoints, bounding box, or segmentation,
on single or multiple species. AP-10K [46] is the largest
public dataset that contains over 10k images for 54 ani-
mal species and 17 keypoints are defined for each animal.
Horse-30 [27] comprises 8k frames for 30 different horses
and 22 keypoints are annotated for each image. AcinoSet
[15] records 119k multi-view frames for Cheetahs and an-
notates 20 keypoints on 7.6k frames. StanfordExtra [2] ex-
tracts 8.1k images from Stanford dogs and annotates 20 key-
points and segmentation on many dog breeds. Animal Pose
Dataset [6] extends the Poselets dataset by annotating more
images from Animal-10 and recently serves as the standard
benchmark for 2D animal pose estimation due to its large
scale and rich species. Unlike human pose datasets, there
is no widely accepted annotation standard for animals since
the biological diversity between different animal species is
much more significant than among humans. For example,
the keypoints of knee in Animal Pose Dataset are defined as
middle points on the leg in StanfordExtra, and thereby their
positions are slightly different. Nevertheless, 2D keypoint
detection is not enough to derive the full geometry infor-
mation of the objects and there is no known dataset that
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Figure 2: Data annotation pipeline for Animal3D. The process consists of three stages: Image Filtering, Semi-Interactive
Annotation, and Data Integration. The data is sourced and filtered to obtain an initial set of images. During the Semi-
Interactive Annotation, annotators submitted their annotation to the server to fit the SMAL model and render the results on
the images. Then a set of inspectors examined the fitting results and send the bad-fitting images back to the annotator for
revision. This process is repeated multiple times. Images that constantly lead to bad-fitting results are removed.

contains 3D annotation for animals.

Methods. Large amount of data is required for better
performance of deep models, but the collection and anno-
tation processes of animal images are much more complex
compared with humans. To deal with the data scarcity of
animals, researchers came up with many efficient and ef-
fective ways. For instance, Cao et al. [6] feed the models
with animal and human data together and employ domain
adaptation to align the feature projection space. Mu et al.
[30] construct a synthetic animal dataset with different tex-
tures and poses and utilize the unlabeled images with gener-
ated high-score pseudo labels to train the model. To further
reduce the domain gap between synthetic and real data, Li
and Lee [23] feed the multi-scale information to the domain
classifier with gradient reverse layer [8]. These models fo-
cus on the 2D keypoint detection task of animals, where
benchmarks are available for a fair comparison.

Nevertheless, the research on 3D pose estimation of ani-
mals is proceeding slowly due to the vacancy of available
dataset. By mapping the pixels to vertices on template
model (CSM), Kulkarni et al. [21] introduce an learning-
based approach to optimize the articulation of the template.
LASSIE [45] is the first work to recover the shape of ar-
ticulated object without any template or prior models. The
Skinned Multi-Animal Linear (SMAL) model proposed by
Zuffi et al. [51] built a parametric way to represent the ani-
mal shape and pose based on strong prior and its modeling

performance are much better than non-parametric methods.
Biggs et al. [4] replace the manual labeling process for

keypoints and silhouettes in SMAL by the prediction of
pre-trained deep CNNs. By joint optimization on multiple
images for the same animal, SMALR [49] recovers more
shape and texture details. SMALST [48] directly regresses
the shape and pose parameters of SMAL and textures for
Zebras, and utilizes the difference between rendered and
original images to optimize the neural features. WLDO [2]
and BARC [37] are built based on an adapted version of
SMAL for dogs and achieve satisfactory 3D recovery per-
formance on various dogs. Since there is no dataset with 3D
annotation, aforementioned works can only be evaluated us-
ing 2D measures, like 2D keypoints or masks.

2.2. Human Pose Estimation

In contrast to animal pose estimation, human pose has
been studied extensively in the computer vision literature.
Regression-based methods [10, 16, 32, 35, 39, 40] di-
rectly estimate 3D human pose from RGB image using
a deep network. Different 3D human pose representa-
tions are adopted such as 3D joint locations [28, 36], 3D
heatmaps [34, 38, 47] and parameters of a parametric hu-
man body [16, 35, 18]. To model pose ambiguities, e.g. for
truncated human images, [3, 20] predict multiple possible
poses that have correct 2D projections. Optimization-based
methods [33, 19, 5, 42, 44] involve parametric human mod-
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els like SMPL [33, 1, 26], and produce both the 3D human
pose and human shape. The representative method is SM-
PLify [5], which fits the SMPL model to 2D keypoint detec-
tions with strong priors. Exploiting more information into
the fitting procedure has been investigated, including sil-
houettes [22], multi-view [12], more expressive shape mod-
els [14]. [42] propose to fit 3D part affinity maps to over-
come 2D-3D ambiguity.

While there has been a lot of progress in human pose es-
timation, most methods require large-scale annotated train-
ing data and therefore it remains unclear if these approaches
can generalize to other animal species.

3. Animal3D Dataset

In this section, we introduce the Animal3D benchmark
and discuss the data collection and annotation processes.

Existing annotation methods for 3D human pose estima-
tion datasets [13, 29, 41], which utilize wearable devices,
laser body scanner, multi-camera studio to capture the ac-
curate motion and shape of the humans, cannot be gener-
alized to animals since animals are not as controllable as
humans and some are even dangerous. To still enable 3D
pose and shape annotation of animals, we follow the inter-
active keypoint annotation idea used in PASCAL3D+ [43]
for 3D pose annotation of rigid objects. In particular, we im-
plement a web-based annotation tool that enables fast and
accurate keypoint annotations. We extend it to articulated
animals by using the SMAL [51] to fit the 3D animal model
to annotated keypoints and segmentation masks. Overall,
we manually collect and annotate images first, and subse-
quently conduct three rounds of quality checking and revi-
sion process, as illustrated in Figure 2. Compared to other
animal datasets, Animal3D is the first dataset that provides
3D annotation of animals (Table 1).

Animal3D
(Ours)

Animal
Pose[6]

Stanford
Extra[2]

AP-10K
[46]

Segmentation ✓ ✗ ✓ ✗

3D Anno. ✓ ✗ ✗ ✗

#Species 40 5 Dogs 54
#Keypoints 26 20 20 17

#Images 3.4K 4K 8.1K 10K

Table 1: Comparison of Animal3D with other animal
datasets. Animal3D contains class labels of 40 species,
26 keypoints, and 3D pose and shape parameters from the
SMAL model. Totally, there are 5.1k images are carefully
annotated in Animal3D, but only 3.4k images are selected
after 3-round inspection. The unselected images and anno-
tations will also be published together with Animal3D.

3.1. Data Collection

Source. Our aim is to obtain shape and pose parame-
ters by fitting SMAL to images using keypoints and silhou-
ette (foreground segmentation) annotations as described in
Section 3.3. To simplify the annotation process, we source
the animal images and segmentation masks from existing
datasets. After investigation of the existing segmentation
datasets, we choose PartImageNet [11] and COCO [25] as
our source datasets since they provide accurate segmenta-
tion masks of a diverse set of animals.

Filtering. Due to the limitation of the PCA shape space
of SMAL, some of the animals cannot be represented prop-
erly by the SMAL model, such as the elephants and giraffes.
Therefore, we remove images belonging to these categories.
Additionally, there are a large number of images in which
the animals are highly occluded or truncated. This some-
times makes it even challenging for humans to guess the in-
visible animals’ pose or parts correctly. Therefore,we also
removed these images from the data. Finally, we selected a
total of 5.1k images of 40 mammal species. Details on the
exact animal classes and and image statistics can be found
in the supplementary material.

Animal class labels. Unlike PartImageNet where all the
images are grouped into ImageNet [7] categories, COCO
does not provide fine-grained class labelling. To preserve
a detailed category-level annotation, we manually classified
the images from COCO into ImageNet categories.

3.2. Data Annotation

Since the pose and shape deformation of the SMAL
model is highly dependent on the 2D keypoint annotation,
we annotate 26 keypoints per animal based on the origi-
nal keypoint definition of SMAL model (Figure 3). For the
keypoint annotation, an interactive is important to guaran-
tee the consistency of the keypoint locations across different
images for different animal species, and to make the SMAL
fitting results as precise as possible. However, the fitting
and rendering of the SMAL model cannot be implemented
in real-time therefore a fully interactive annotation was not
possible. Instead, we designed an semi-interactive pipeline
to make the annotation process as interactive as possible, as
described in the following.

Annotators. Each keypoint annotator were assigned ap-
proximately 300 images belonging to 3-5 similar animal
species. They were suggested to start with a few simple
cases, where the entire body of the animal is able to be seen
clearly, to become familiar with the corresponding animals.
For invisible keypoints caused by occlusion, the annotators
were asked to guess the positions of the keypoints based on
their annotation experience and mark them as invisible.

Inspectors. The annotation inspectors examine the
SMAL fitting results based on the initial annotation to en-
sure a high annotation quality. They also conduct extra ac-
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Figure 3: Visualization of the 26 keypoints that are anno-
tated in the Animal3D model. Other popular 2D datasets
only annotate the visible keypoints, while we ask the anno-
tators to guess the location of occluded or truncated body
parts based on their annotation experience, which signifi-
cantly improves the fitting performance of SMAL model.

tions to further improve the fitting results. For example,
they compare the results with and w/o invisible keypoints,
or change hyper-parameters of the SMAL fitting process.

Annotation Pipeline. During the annotation process,
the annotators send their annotations to the servers to fit
the SMAL model and render the results. Subsequently,
the inspectors assess the annotation quality, filtering out
the good-fitting examples and from the bad-fittings. If the
bad fitting is caused by the keypoint annotation, the inspec-
tors send the images back to the annotators for revision,
and provide feedback on where the annotation can be im-
roved. If the bad fitting is caused by a broken segmenta-
tion mask from slightly occluded or truncated objects, the
inspectors gradually decrease the weights of silhouette er-
ror in the objective function to reduce the effect of mask,
which in these cases typically improves the fitting results
significantly. This annotate-then-examine process will pro-
ceed for three rounds. After the final round, the remaining
bad-fitting images were discarded.

3.3. Fitting Animals to Images

The SMAL model M(β, α, t) is a function of shape β,
pose α, and translation t. We fit the model to images by op-
timizing the model parameters guided by a combination of
2D keypoints and 2D silhouettes, as proposed in [50], with
minor modifications. In the following, we provide a concise
description of the fitting process, more details can be found
in the original work. We denote P (vi) as the perspective
projection of the the i’th mesh vertex into the image plane.
Moreover, P (M) = S is the projected mesh silhouette. To
fit SMAL to an image, we optimize the model parameters
Π = {β, α, t} over a joint loss function that is composed of
the reprojection error of the keypoint, the silhouette repro-

jection error, and a shape prior

Ltotal(Π,M) = Lkp(Π,M) + Lsilh(Π,M) + Lshape(β).
(1)

The losses are weighted to be approx. in the same range.
Keypoint loss. Each keypoint on the SMAL model cor-

responds to a subset of the mesh vertices. We denote this
set of keypoint vertices as vij ∈ Vi, and optimize their pro-
jection to match the corresponding annotated keypoint ti:

Lkp(Π,M) =

26∑
i=1

ρ(||
Ni∑
j=1

P (vij)/N
i − ti||2), (2)

where ρ is the Geman-McClure robust error function [9] to
reduce the negative effects of difficult to fit annotations.

Silhouette loss. The silhouette is optimized using a bi-
directional distance:

Lsilh(Π,M) =
∑
x∈S

DS̄(x) +
∑
x∈S

ρ(min
x̂∈S

||x− x̂||2), (3)

where S̄ is the ground truth silhouette and DS̄ is its dis-
tance transform. The weight for the first term are manually
adjusted to reduce the effect of occlusion and truncation.
Shape prior. We regularize the shape parameters β using a
shape loss Lshape(β) using the PCA prior distribution. In
paricular, the loss is defined to be the squared Mahalanobis
distance defined using the PCA eigenvalues.

3.4. Data Summary

Building on previous datasets and our additional anno-
tation, the Animal3D dataset presents a comprehensive set
of annotations for each image, including detailed Imagenet
class labels, segmentation masks, 26 keypoints, and SMAL
parameters for shape, pose and translation. Therefore, An-
imal3D can serve as a benchmark for a number of tasks as
well as multi-tasking, 3D reconstruction or synthetic to real
domain adaptation. We believe that our dataset will enable
significant advances in all of these research areas, due to its
high-quality annotation and scale.

4. Experiments
In this section, we benchmark representative shape and

pose estimation models on Animal3D in three settings: (1)
supervised learning (Section 4.1), (2) synthetic to real trans-
fer from synthetically generated images (Section 4.2), and
(3) fine-tuning pre-trained human pose and shape estima-
tion models (Section 4.3).

Baselines. As we present the first comprehensive dataset
of 3D shape and pose annotations for animals, there are no
baselines that were explicitly designed for animal pose es-
timation in such a diverse setting. Nevertheless, strong rep-
resentative baselines exist for human pose estimation and
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Method Supervised Synthetic to Real Human pre-trained

PA-MPJPE↓ S-MPJPE↓ PCK↑ PA-MPJPE↓ S-MPJPE↓ PCK↑ PA-MPJPE↓ S-MPJPE↓ PCK↑
HMR [16] 140.7 496.2 59.3 124.8 497.7 63.1 132.2 488.0 60.6
PARE [17] 134.8 443.9 79.1 127.2 392.3 83.7 130.7 374.9 85.6
WLDO [2] 128.8 502.1 60.1 123.9 484.0 65.1 - - -

Table 2: 3D pose and shape estimation results on the Animal3D dataset. We evaluate three representative baseline models,
HMR, PARE and WLDO, in three settings: (1) Supervised on Animal3D data only, (2) Pre-training on synthetic data and
fine-tuning on Animal3D, and (3) Pre-training on Human Pose Estimation datasets and fine-tuning on Animal3D. While
pre-training improves results for all models, the final results are lower compared to object specific benchmarks for humans
and dogs, hence indicating the difficulty of estimating 3D animal pose across species.

for 3D pose estimation of specific animal classes, which
we adapt to the Animal3D dataset. We chose HMR [16]
and PARE [17] as competitive and robust baselines for hu-
man pose estimation. Moreover, we selected WLDO [2]
as a baseline that was specifically designed for animals, al-
though only for dogs.

Evaluation metrics. We report scale-aligned mean
per joint position error (S-MPJPE) and Procrustes-aligned
mean per joint position error (PA-MPJPE) in mm as the
main evaluation metrics, where the latter is the former plus
rotational alignment. We do not use the popular per joint
position error (MPJPE) in 3D human pose estimation since
the scale of animals can vary a lot. We also report the 2D
Percentage of Correct Keypoints (PCK) with threshold de-
fined by half of the head-to-tail length to measure how well
the prediction aligns with the 2D image.

Model & Data Preparation. We split the Animal3D
dataset into 3059 training and 320 test images, by randomly
sampling from the full dataset.

For training HMR [16], we remove its discrimination
loss and keep only the 2D and 3D supervision, since there
is no fake and real pose parameter available. PARE [17]
requires the part grouping of the model vertices to ren-
der the ground-truth of 2D part segmentation. To obtain
these labels, we manually segment all the vertices on SMAL
into the 7 object parts defined in PartImageNet [11]: Head,
Torso, Tail, and the four legs. To train WLDO [2], we re-
move the EM process that was designed to deal with differ-
ent dog families, and we supply WLDO with direct supervi-
sion of shape and pose parameters for fair comparison with
the human models.

Training setup. To be consistent with existing training
pipelines for human pose estimation models, the animals
are cropped from the image based on their bounding box
and resized to 224× 224. Random rotation and flipping are
implemented for data augmentation. The batch size for all
the experiments are set to be 128 and we trained the models
on 2 RTX3090 GPUs using synchronized batch normaliza-
tion. For experiments with synthetic data, we pre-train the

models for 100 epochs. For training on real data, all the
models are trained for 1000 epochs (around 24k iterations).

4.1. Supervised Animal Shape and Pose Regression

The left part of Table 2 shows the results of training
HMR, PARE and WLDO in a supervised manner only
from images of the Animal3D dataset. The ranking among
the methods is as expected. HMR, which is an older
method, performs worse compared to recently developed
PARE model. Although the performance gap in PA-MPJPE
is smaller compared to the respective results on human pose
estimation datasets. WLDO performs best in terms of PA-
MPJPE, hence suggesting that it predicts the articulation of
the animals most accurately. However it does not perform
particularly well at predicting the rigid 3D body pose, hence
it achieves the worst results in terms of S-MPJPE. Notably,
we observe that the prediction accuracy of all baseline mod-
els is significantly lower compared to their performance on
the original domains that they were initially designed for.
Hence, pointing out that the 3D animal pose estimation
problem remains an important open research problem.
We believe that this is performance gap is caused mainly
by two main factors. The lack of large-scale annotated
datasets, and the architectural design of the baseline meth-
ods for a particular object class, i.e. humans and dogs. In,
the following we aim to address the data problem using syn-
thetic data and pre-training on large scale human data.

4.2. From Synthetic to Real

For human pose estimation, a larger amount of high-
quality data usually will lead to better regression perfor-
mance. Nevertheless, the annotation process for Animal3D
is too complex to make it a larger dataset, so we are seeking
more convenient way to generate more usable data. Inspired
by [31], which utilize rendered images from CAD model of
animals to boost the model performance on 2D tasks, we
synthesize 45k images using SMALR [49] and select 40k
for training and 5k for testing models, respectively, before
fine-tuning them on Animal3D.
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Figure 4: Example images from our synthetic dataset that is used for pre-training the animal pose estimation baselines. We
simulate all species from the Animal3D dataset using the SMALR model in varying poses, shapes, and background images.

For each class in our dataset, several unoccluded and
non-truncated images are selected to fit the SMALR model
for the basic shape and texture. Then, we calculate the mean
and covariance of the shape and pose parameters in the
training set and sample the parameters from multi-variate
Gaussian to mimic the realistic shape and pose for corre-
sponding animal category. The background images are ran-
domly selected from ImageNet [7] and consist of indoor and
outdoor scenarios. Here are some examples for the syn-
thetic data in Figure 4. Note that, the generation process
of the synthetic data is based on the prior information ob-
tained from Animal3D dataset, so its searching space can
be enlarged by moderate the covariance. The center part of
Table 2 shows that all methods benefit from synthetic pre-
training. PARE benefits the most on average across met-
rics, outperforms HMR and WLDO significantly in terms
of S-MPJPE and PCK. and thereby shows the potential of
synthetic pre-training for animal pose estimation.

4.3. From Human to Animal

A common approach to training deep networks in a data
efficient manner, is to initialize with models that are pre-
trained on large datasets in related tasks. We study the
effect of using pre-trained human pose estimation models
as initialization to train an animal pose estimator. Both
HMR and PARE have been trained on large-scale human
data including Human3.6M [13], MPI-INF-3DHP [28],
and COCO [25] datasets, and we use the publicly available
models to fine-tune them on Animal3D.

The right part of Table 2 shows that both models outper-
form their non-pre-trained counterparts. Interestingly, the
performance gap between HMR and PARE model in terms
of S-MPJPE and PCK increases due to human pre-training.
However, compared to the pre-training on synthetic data,
which is much more easy to achieve, pre-training on real
human data does not show a benefit.

4.4. Qualitative Results

Figure 5 illustrates qualitative regression results of sev-
eral models that we have tested in Table 2. We observe that
human-pretrained models always fail to recover the shape
information of the animals and generate some unrealistic
shapes. On the contrary, the models pretrained by synthetic
data regress the shape parameters better. We argue that the
model is able to learn strong shape prior from synthetic data,
while it will focus more on the pose information for human
data since the shape diversity between humans are much
smaller than among animals. Also, the domain gap between
human and animals and different feature projection space of
SMPL [26] and SMAL will hinder the generalization of the
models. Even so, in most cases the shape parameters are ap-
proximately correctly estimated, i.e. often the correct ani-
mal species is predicted. However, the alignment of the legs
and the gaze direction are often incorrect. Overall, PARE
demonstrates also qualitatively that its predicitons have the
best quality, mostly because they align better to the image,
which can also be observed from its high PCK.

4.5. Discussion

Based on our results, we observe that PARE is a promis-
ing model for 3D animal pose estimation, as it achieves the
best performance among the representative baselines. Its
high performance is very likely caused by its advanced ar-
chitecture that uses additional supervision in terms of part
segmentations. In terms of scaling deep learning to ani-
mal 3D pose estimation, our results show that pre-training
on large-scale synthetic data is a promising direction for-
ward. Nevertheless, we observe that none of the baselines
achieves a satisfying performance compared to the results
obtained on the specific domains that the baselines were
originally designed for. Hence, our experimental results
demonstrate that predicting the 3D shape and pose of ani-
mals across species remains a very challenging task, despite
significant advances in human pose estimation and animal
pose estimation for specific species.
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Figure 5: Visualization of regression performance of human and animal pose estimation models. The columns from left to
right refer to the input image, the groundtruth from Animal3D, regression results for HMR, HMR pretrained by synthetic and
human data, PARE and WLDO pretrained by synthetic data, respectively.

5. Conclusion

Animal3D is unique and diverse in that it includes 3D an-
notations for a large number of animal species, making it the
first benchmark for mammal animal 3D pose and shape es-
timation. The comprehensive nature of Animal3D, in terms
of diversity of animals and annotations for multiple vision
tasks (keypoints, 3D SMAL parameters, segmentation) pro-
vides a foundation for the development of more robust and
generalizable models for animal 3D pose and shape estima-
tion. Animal3D and the implementation of the baselines
will be publicly available, and we encourage researchers to
use it for further research or applications.

The results of our experiments demonstrate that Ani-
mal3D is a valuable resource for improving animal pose
and shape estimation models. We show that our dataset
can be used to benchmark supervised learning for animal

pose estimation, synthetic to real transfer, and fine-tuning
human pose and shape estimation models. We observe that
existing methods for human pose estimation, achieve com-
petitive results at animal pose estimation, when pretrained
on synthetic data. However, the prediction performance is
significantly lower compared to their accuracy on human-
specific benchmarks. These results highlight that the 3D
animal pose estimation task remains an important open re-
search problem. These experiments will provide a strong
foundation for future research in this area, which will bene-
fit both scientific understanding and conservation efforts.
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