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Abstract

Deep networks have achieved great success in image
rescaling (IR) task that seeks to learn the optimal down-
scaled representations, i.e., low-resolution (LR) images, to
reconstruct the original high-resolution (HR) images. Com-
pared with super-resolution methods that consider a fixed
downscaling scheme, e.g., bicubic, IR often achieves sig-
nificantly better reconstruction performance thanks to the
learned downscaled representations. This highlights the
importance of a good downscaled representation. Exist-
ing IR methods mainly learn the downscaled representation
by jointly optimizing the downscaling and upscaling mod-
els. Unlike them, we seek to improve the downscaled rep-
resentation through a different and more direct way – di-
rectly optimizing the downscaled image itself instead of the
down-/upscaling models. Consequently, we propose a Hi-
erarchical Collaborative Downscaling (HCD) method that
performs gradient descent w.r.t. the reconstruction loss in
both HR and LR domains to improve the downscaled rep-
resentations, so as to boost IR performance. Extensive ex-
periments show that our HCD significantly improves the re-
construction performance both quantitatively and qualita-
tively. Particularly, we improve over popular IR methods by
>0.57 dB PSNR on Set5. Moreover, we also highlight the
flexibility of our HCD since it can generalize well across
diverse image rescaling models. The code is available at
https://github.com/xubingna/HCD.

1. Introduction
Image rescaling seeks to downscale the high-resolution

(HR) images to visually valid low-resolution (LR) images

and then upscale them to recover the original HR images.

In practice, the downscaled images play an important role

in saving storage or bandwidth and fitting the screens with

*Authors contributed equally.
†Corresponding author.

Figure 1. Image rescaling pipeline and the comparisons of the

downscaled images along with the corresponding reconstructed

HR images (4×). Top: we show the entire process of image rescal-

ing. Middle: we visualize the downscaled representations used in

different methods. Bottom: we compare the reconstructed HR im-

ages. With the improved downscaled representation, our method

yields the best result both quantitatively and qualitatively.

different resolutions [43], such as image/video restoration

and communication [48, 40, 35]. A typical application

scenario of IR is to obtain HR images/videos (previously

stored in the server) on an edge device, e.g., mobile. To

save storage and reduce transmission latency, the original

HR images/videos are usually downscaled to LR and then

stored on the server. In some scenarios, these LR images

can be directly used by edge devices, such as when the de-

vice screen has a low resolution or only as a preview, at the

same time, they can also be upscaled to the original reso-
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Figure 2. Comparison between existing image rescaling methods

and the proposed HCD method. We additionally generate col-

laborative LR examples to improve the downscaled representation

while keeping the upscaling process unchanged.

lution when needed. Interestingly, unlike super-resolution

(SR) [38, 28, 3] methods that consider a fixed downscal-

ing kernel, e.g., bicubic, IR often yields significantly bet-

ter reconstruction performance [51, 4, 15] since IR essen-

tially learns a better downscaled representation method. As

shown in Figure 1, compared with a popular SR method

SwinIR [25], the rescaling method HCFlow [26] greatly im-

proves the PSNR score from 25.94 dB to 30.21 dB, which

highlights the importance of a good downscaled represen-
tation in image reconstruction tasks.

To boost IR performance, existing methods jointly learn

the downscaling and upscaling models by minimizing the

reconstruction loss [43, 26]. However, in a complete

pipeline, in addition to the trained neural network model,

the downscaled representation itself is also very important.

When diverse data are fed into a frozen model, we often ob-

tain significantly different results. For example, in Figure 3,

compared to the original LR images, the adversarial exam-

ples cause a 0.93 dB drop in PSNR of the reconstructed

HR images, and visually, the lines became blurry. In con-

trast, when facing collaborative LR images, i.e., opposite

to adversarial examples, not only improve the performance

by 1.29 dB but also produce clearer and smoother lines.

Inspired by this, in Figure 2, we propose a collaborative

downscaling scheme that focuses on getting a better down-
sampled representation (purple box) of images instead of

learning the model (blue box), making our approach essen-

tially different from existing IR approaches. Furthermore,

since LR images are obtained from the original HR image

via downscaling, we can also improve the downscaled rep-

resentation if we obtain a better representation in the HR

domain, i.e., generating collaborative HR examples.

Motivated by this, we propose a Hierarchical Collabo-
rative Downscaling (HCD) scheme that optimizes the rep-

resentations in both HR and LR domains to obtain a bet-

ter downscaled example. Specifically, we first generate a

collaborative example in the HR domain and downscaled

it to obtain an LR image. Taking the downscaled image

as an initialization point, we then generate the collabora-

tive LR example to further improve the downscaled rep-

resentation. Due to the dependence between HR and LR

image (based on the downscaling process), the hierarchical

collaborative learning scheme can be formulated by a bi-

level optimization problem. More critically, although our

method increases the cost of generating downscaled im-

ages, we highlight that the increased cost only exists in
the downscaling stage on server (can be processed offline),

with no effect on the real-time rescaling on edge devices and

making our method applicable to real-world scenarios. As

shown in Figure 6, our HCD consistently improves PSNR

while maintaining the same upscaling latency across diverse

methods. Experiments show that our method significantly

boosts the reconstruction performance with the help of col-

laborative downscaled examples.

Our contributions are summarized as follows:

• We propose a novel collaborative image downscaling

method that improves the image rescaling performance

from a new perspective – learning a better downscaled

representation. We highlight that, in the community

of image reconstruction, it is the first attempt to di-

rectly optimize the downscaled representation instead

of learning the downscaling or upscaling models to

boost the performance of image rescaling.

• Since the low-resolution (LR) images strongly depend

on the corresponding high-resolution (HR) images,

we propose a Hierarchical Collaborative Downscaling

(HCD) that optimizes the representations in both HR

and LR domains to learn a better downscaled represen-

tation. We formulate the learning process as a bi-level

optimization problem and solve it by alternatively gen-

erating collaborative HR and LR examples.

• Experiments on multiple benchmark datasets show

that, on top of state-of-the-art image rescaling models,

our HCD yields significantly better results both quan-

titatively and qualitatively. For example, based on a

strong baseline HCFlow [26], we obtain a large PSNR

improvement of 0.7 dB on Set5 for 4× rescaling.

2. Related Work
2.1. Image Rescaling

Image rescaling (IR) and image super-resolution

(SR) [41, 46, 47, 5, 10, 14] are distinct tasks. IR consists of

image downscaling and image upscaling. SR corresponds

to the latter process, which lacks a ground-truth HR image

or any other prior information, and the reconstruction pro-

cess is entirely based on the LR image. In contrast, we are

given a ground-truth HR image in the IR task, but we use
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its downscaled version for storage and transmission and re-

cover the original HR image when necessary. Image down-

scaling is the inverse of SR which generates the LR version

of an HR image. The most common downscaling method

is bicubic interpolation [32], which may not be suitable for

the upscaling tasks. However, it will cause over-smoothed

issues since the high-frequency details are suppressed.

Recently, an increasing amount of work has been de-

voted to modeling image downscaling and upscaling as a

unified task [9, 34, 23, 16, 50, 42]. Sun et al. [40] pro-

pose a content-adaptive resampler to achieve image down-

scaling and improves the upscaling model. Xiao et al. [43]

propose a bidirectional image rescaling method based on

invertible neural networks, which decomposes the image

into low-frequency and high-frequency information through

wavelet transformation, as the input of the model. Pan

et al. [35] achieve bidirectional rescaling of arbitrary im-

ages by joint optimization. Recently, Zhong et al. [50]

presents a generative prior reciprocated invertible rescaling

network for the image rescaling task with an extreme up-

scaling factor(64×), which embeds the high-resolution in-

formation into the invertible low-resolution image to gener-

ative prior to the process of downscaling.

The above methods elaborately design the model archi-

tectures to reconstruct better images. Our method differs

from theirs by directly optimizing the primeval input of the

IR task under the supervision of the ground-truth HR image.

2.2. Image Super-Resolution

Image super-resolution (SR) is a widely-used image up-

scaling method that refers to recovering HR images from

existing LR images. It is widely used in many applications,

such as object detection [7], face recognition [33], medical

imaging [18], and surveillance security [37]. Existing SR

methods can be divided into three categories: interpolation-

based, reconstruction-based, and learning-based methods.

With the help of deep learning techniques, some SR meth-

ods achieve advanced effects on learning powerful prior in-

formation [6, 48, 49, 20, 24]. Ledig et al. [20] first propose

SRGAN using Generative Adversarial Nets (GAN) [8, 11]

to solve the over-smoothed problem of the SR task. Zhang

et al. [48] combine the channel attention mechanism with

SR to improve the representation ability of the model. Li et

al. [24] propose SRFBN to refine low-level information us-

ing high-level ones through feedback connections and learn

better representations. Sun et al. [39] propose HPUN to

enhance the high-level representations with low-frequency

features. Specifically, HPUN employs a lightweight pixel-

unshuffled downsampler on the input LR images to obtain

downsampling features with minimal information loss. Dif-

ferent from HPUN, Our proposed HCD is a test-time opti-
mization method to improve inference performance without

model modification or training. Indeed, HCD focuses on the

Figure 3. Comparison of adversarial examples and collaborative

examples when producing downscaled representations. We ascend

the gradient w.r.t the reconstruction loss to generate the adversarial

examples. Based on the pretrained HCFlow model [26], the adver-

sarial LR example yields lower PSNR along with distorted visual

content in the reconstructed HR image. By contrast, we generate

the collaborative LR example by descending the gradient and ob-

tain significantly higher PSNR as well as better visual quality.

direct optimization of downscaled representations yielded

by the model. HCD generalizes well to diverse models and

consistently improves results (Table 1).

2.3. Collaborative Example

Generating collaborative examples [22] and adversarial

examples [29, 12] are a set of opposite processes. The ad-

versarial attack refers to the process of generating an adver-

sarial example by applying a minor perturbation to the orig-

inal input and causing the model to make an incorrect infer-

ence. The gradient-based attack method increases the pre-

diction loss by updating the example along the positive di-

rection of the gradient. In contrast to the adversarial exam-

ple, the collaborative example aims to improve the robust-

ness [22, 13] of the model by updating the example along

the negative direction of the gradient, which ultimately de-

creases the prediction loss of the model. Inspired by the

collaborative example, we propose a hierarchical collabora-

tive example generation algorithm to generate downscaled

representation optimal for the upscaling model under the

supervision of the HR image.

3. Collaborative Image Downscaling

In this paper, we seek to directly learn a better down-

scaled representation rather than the down-/upscaling mod-

els to improve the performance of reconstructed images. In

Section 3.1, we first discuss the importance of downscaled

representation in image reconstruction tasks. Besides learn-
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Figure 4. The proposed Hierarchical Collaborative Downscaling (HCD) scheme consists of two processes, including the collaborative HR

example generation (marked as black lines) and the collaborative LR example generation (marked as red lines). We first iteratively optimize

the perturbation on the original HR image to generate collaborative HR examples. Then, we obtain the downscaled image and generate

collaborative LR examples for it. In the end, we can get a better high-resolution image from the better downscaled representation.

ing a good model, directly optimizing the downscaled rep-

resentation (purple box in Figure 2) is an effective way to

improve performance. In Section 3.2, we further extend this

idea and propose a Hierarchical Collaborative Downscaling

(HCD) method that optimizes the representations in both

high-resolution (HR) and low-resolution (LR) domains to

obtain a better downscaled representation. The overview of

our HCD method is shown in Figure 4.

3.1. Downscaled Representation Matters

Existing image rescaling (IR) methods [43, 40, 35] es-

sentially learn the optimal downscaled representation by

jointly training the downscaling and upscaling models to

reconstruct the original HR images. Compared with super-

resolution methods that consider a fixed downscaling ker-

nel, e.g., bicubic, IR methods often yield significantly bet-

ter results thanks to the improved downscaled representa-

tion. For example, as shown in Figure 1, a recent rescaling

method HCFlow [26] outperforms a strong baseline by a

large margin of 5.27 dB. Such a large performance gap in-

dicates the importance of a good downscaled representation

in image reconstruction tasks.

In order to improve the downscaled representation, all

the existing rescaling methods learn a downscaling method

to produce the LR images. Besides training the model, one

can also directly optimize the downscaled representation it-

self. From this perspective, a popular approach is adversar-

ial attack [36] that learns the optimal perturbations on data

without changing the model parameters. As shown by the

red box in Figure 3, the adversarial attacks against image

rescaling models greatly hamper the reconstruction perfor-

mance in terms of both PSNR and visual quality. Never-

theless, we seek to improve the performance instead of de-

grading it. To address this issue, a simple and intuitive way

is to generate collaborative examples by considering an op-

posite training objective to an adversarial attack. Specifi-

cally, we seek to generate collaborative examples in the LR

domain by minimizing the reconstruction loss. As shown

by the blue box, we can simultaneously improve PSNR and

obtain visually plausible details in the reconstructed HR im-

age. We highlight that the PSNR improvement of 0.93 dB

is significant in image reconstruction tasks and generating

collaborative examples provides us with new insights.

3.2. Hierarchical Collaborative Downscaling

In this part, we further extend the above idea and propose

a novel Hierarchical Collaborative Downscaling (HCD)

scheme to improve the downscaled representation, as shown

in Figure 4. It is worth noting that, in theory, only opti-

mizing LR images is possible to obtain the optimal recon-

structed images (i.e., identical/close to HR images). But,

in practice, we have to consider a limited number of gra-

dient descent iterations to update LR images and constrain

the perturbation δ with a ε-ball. Given limited optimization

budgets, the optimization results would heavily rely on the

initial position of LR image x on the manifold. Thus, it is
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possible to obtain a better optimized LR based on a better

initialization of x. To obtain better initialization, one can

first optimize HR images. In this way, it becomes possible

to obtain a better downscaled representation by generating

collaborative examples in both the LR and HR domains. Es-

sentially, jointly learning both collaborative examples can

be regarded as a bi-level optimization problem. Algorithm 1

describes the pipeline.

To improve the reconstruction performance, we fix the

model parameters and directly learn the optimal perturba-

tion δy and δx to improve the downscaled representation x
sequentially. Let L be the reconstruction loss, f(·), and g(·)
denote the upscaling and downscaling model, respectively.

Following [29], we constrain the perturbation within a p-

norm epsilon ball to avoid significantly changing the visual

content, via Clip{δ, ε} := {δ | ‖δ‖p ≤ ε}. Without Clip, δ
can be arbitrarily large and make the optimization very un-

stable. Formally, the perturbation in the LR domain for the

bi-level optimization problem can be obtained by minimiz-

ing L:

δx = argmin
‖δx‖p≤ε

L(f(g(y + δy) + δx), y),

s.t. δy = argmin
‖δy‖p≤ε

L(f(g(y + δy)), y). (1)

As shown in Algorithm 1, we first generate collabora-

tive HR examples and downscale them to obtain a better

initialization of LR images x. Then, we further generate

collaborative examples w.r.t. the latest LR images to obtain

the resultant downscaled representation. Finally, the final

LR images are fed into the upscaling model to produce the

reconstructed images. In this way, we optimize the pertur-

bations δx and δy in an iterative manner. For simplicity,

we force both collaborative example generation processes

to share the same number of iterations to perform gradient

descent Nx = Ny . In this paper, we consider �2-norm to

build the epsilon ball, i.e., p = 2. Particularly, since we

optimize the pipeline of IR tasks, the proposed HCD can

be plug-and-play to be used on any advanced IR models to

make performance better.

4. Experiments

In the experiments, we evaluate the effectiveness of HCD

based on three popular image rescaling methods, including

IRN [43], HCFlow [26] and GRAIN [50]. We first describe

the implementation details in Section 4.1. Then, we com-

pare our method with current advanced methods in Sec-

tion 4.2 on informative quantitative and qualitative analy-

ses. Finally, we conduct abundant ablation studies and raise

further discussions in Section 4.3. Both our source code and

all the collaborative examples along with the corresponding

reconstruction images will be released soon.

Algorithm 1 Learning scheme of Hierarchical Collabora-
tive Downscaling (HCD). We present a hierarchical learn-

ing scheme that sequentially generates the collaborative HR

examples and collaborative LR examples.

Input: HR image y, the downscaling model g(·), the up-

scaling model f(·), number of iterations Ny and Nx,

perturbation budget ε, step size α, the clipping function

to constrain the input within feasible range Clip{·}.
Output: Reconstructed high-resolution image y′.

1: Initialize the perturbations δy and δx
2: // Generate collaborative HR examples
3: for t = 1 to Ny do
4: Compute gradient via g = ∇δyL(f(g(y + δy)), y)
5: Update δy via δy ← Clip{δy − α ∗ g

‖g‖p
, ε}

6: end for
7: Obtain the collaborative HR example: y = y + δy
8: Compute low resolution images: x = g(y)
9: // Generate collaborative LR examples

10: for t = 1 to Nx do
11: Obtain gradient via g = ∇δxL(f(x+ δx), y)
12: Update δx via δx ← Clip{δx − α ∗ g

‖g‖p
, ε}

13: end for
14: Obtain the collaborative LR example: x = x+ δx
15: Obtain the reconstructed image: y′ = f(x)

4.1. Implementation Details

We evaluate the proposed HCD on the validation

set of DIV2K [1] and five standard datasets, i.e.,

Set5 [2], Set14 [45], BSD100 [30], Urban100 [17] and

Manga109 [31]. We compare HCD with several state-

of-the-art IR methods and SR methods. IR meth-

ods include TAD & TAU [19], CAR & EDSR [40],

IRN [43], HCFlow [26] and an ultra-high rescaling method

GRAIN [50]. However, SR with bicubic is also a possi-

ble solution to image rescaling and widely compared in IR

papers [43, 26, 50, 15], so we also compared with the SR

method SwinIR [25] and LTE-SwinIR [21].

Following [27], with regard to images represented in the

YCbCr (Y, Cb, Cr) color space, we quantitatively evaluate

the PSNR and SSIM [44] on the Y channel of them and test

in 2× and 4× scale downscaling and reconstruction. The

perturbation budget ε is set to 0.3 and the inner step size α
is set to 20/255 for all experiments. By default, the iteration

numbers for constructing collaborative LR images Nx and

HR images Ny are set to the same i.e. Nx = Ny = 15.

4.2. Comparisons with State-of-the-arts

This section reports the performance of image recon-

struction results on PSNR and SSIM. We consider two kinds

of reconstruction methods as our baselines: IR methods

and SR methods and experiment on the best-performing IR
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Method Scale
Set5 Set14 BSD100 Urban100 DIV2K Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic & Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 31.01 0.9393 30.82 0.9349

Bicubic & SwinIR[25] 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 – – 39.12 0.9783

TAD & TAU[19] 38.46 – 35.52 – 36.68 – 35.03 – 39.01 – – –

CAR & EDSR [40] 38.94 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 38.26 0.9599 – –

LTE[21] 38.32 0.9618 34.24 0.9235 32.43 0.9026 33.50 0.9406 36.74 0.9499 – –

LTE + HCD (ours) 39.14 0.9649 35.45 0.9342 33.18 0.9094 34.46 0.9412 37.09 0.9521 – –

IRN[43] 43.99 0.9870 40.79 0.9777 41.32 0.9876 39.92 0.9865 44.32 0.9908 43.68 0.9926

IRN + HCD (ours)

2×

44.67 0.9886 41.31 0.9791 41.82 0.9884 40.11 0.9868 44.75 0.9915 43.91 0.9928
Bicubic & Bicubic 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 26.66 0.8521 24.90 0.7876

Bicubic & SwinIR[25] 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 – – 30.92 0.9151

CAR & EDSR[40] 33.88 0.9174 30.31 0.8382 29.15 0.8001 29.28 0.8711 32.82 0.8837 – –

TAD & TAU[19] 31.81 – 28.63 – 28.51 – 26.63 – 31.16 – – –

LTE[21] 32.81 0.9025 29.05 0.7928 27.86 0.7466 27.24 0.8195 30.98 0.8498 – –

LTE + HCD (ours) 34.06 0.9155 30.33 0.7997 28.76 0.7689 27.98 0.8234 31.28 0.8525 – –

IRN[43] 36.19 0.9451 32.67 0.9015 31.64 0.8826 31.41 0.9157 35.07 0.9318 35.94 0.9616

IRN + HCD (ours) 36.63 0.9488 33.21 0.9076 32.03 0.8894 31.76 0.9180 35.34 0.9351 36.44 0.9628

HCFlow [26] 36.29 0.9468 33.02 0.9065 31.74 0.8864 31.62 0.9206 35.32 0.9346 36.51 0.9641

HCFlow + HCD

4×

36.99 0.9506 33.56 0.9116 32.22 0.8919 32.00 0.9231 35.48 0.9361 36.95 0.9651
GRAIN [50] 22.33 0.7718 19.96 0.6055 21.56 0.6128 16.77 0.3886 19.03 0.4901 16.30 0.4993

GRAIN + HCD (ours)
64× 23.81 0.7981 21.09 0.6321 22.81 0.6448 17.45 0.4099 19.88 0.5109 16.96 0.5190

Table 1. Quantitative evaluation results (PSNR / SSIM) of image reconstruction on benchmark datasets. LTE denotes LTE-SwinIR in the

paper. The black values indicate the best result. The gray rows indicate the results of our backbone-based HCD, while the previous line

of which indicates the results of the backbone methods. When the number of iterations N=15, the backbone methods with HCD improve

PSNR and SSIM metrics on each benchmark dataset.

models with few iterations. It is worth mentioning that our

HCD performs in the inference stage and the model param-

eters will not be changed during the iteration. We report

the quantitative evaluation result of 4×, 2×, and 64× scale.

Our HCD significantly outperforms the baseline.

Method IRN IRN+HCD HCFlow HCFlow+HCD
FID↓ 42.14 39.18 (-2.96) 36.10 33.42 (-2.68)

LPIPS↓ 0.1685 0.1578 (-0.0107) 0.1716 0.1613 (-0.0103)

Table 2. Quantitative evaluation results (FID / LPIPS) of image

reconstruction on BSD100 for 4× scale. The black values indicate

the best result. The results show our HCD can improve the visual

quality with a lower FID and LPIPS.

Quantitative results. We summarize the quantitative

comparison results of HCD and other advanced methods in

Table 1. On all datasets, Our HCD significantly achieves

better performance than previous state-of-the-art methods

on PSNR and SSIM. Compared with the original model,

HCD significantly improves the reconstruction of HR im-

ages with 15 iterations. For the 2× scale reconstructed im-

ages, Our HCD improves by 0.19-0.68 dB compared with

IRN method. However, since the HCFLow model does not

provide a pre-trained model for the 2× scale, we do not re-

port the HCFlow-based HCD experimental results. For the

4× scale reconstructed images, our HCD improves by 0.16-

0.7 dB compared with HCFlow and improves by 0.27-0.44

dB on IRN method. Similarly, even on ultra-high rescal-

ing tasks, our HCD still can improve by 0.66-1.48 dB on

the latest IR method GRAIN which more strongly demon-

strates the robustness of our method. Besides, based on the

state-of-the-art super-resolution method LTE-SwinIR, we

also obtain significant improvements. In practice, when the

proposed HCD is applied to large-resolution images e.g. the

DIV2K dataset, we follow the “tile by tile” method in the

test code of SwinIR [25], which divides images into patches

to upscale. We can still get comparable results, PSNR im-

proved by 0.43 dB at 2× scale in IRN. In addition to the pre-

vious comparisons, we also evaluated our proposed method

HCD on the BSD100 for 4× scale in terms of the percep-

tual scores FID and LPIPS. The comparison with original

approaches in Table 2 shows that our HCD improves the

overall image quality as measured by FID and LPIPS. In

general, our HCD significantly outperforms the baseline for

PSNR and SSIM, and the perceptual scores such as LPIPS

and FID, respectively, which shows excellent performance.

Qualitative results. We qualitatively evaluate our HCD

by demonstrating details of the upscaled images. As shown

in Figure 5, the results of HCD based on HCFlow achieve

exhibit superior details and attractive visual quality. In the

last set of Figure 5, our HCD alleviates unnatural colors in

images from IRN and HCFlow. And it produces neater lines

without bothersome horizontal lines compared with IRN.

This demonstrates that our HCD significantly outperforms

HCFlow and IRN visually. We leave more qualitative re-

sults in the appendix for spacing reasons.
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Figure 5. Qualitative results of upscaling the 4× downscaled images. Our HCD with HCFlow is able to produce more realistic and sharper

HR images compared with the baseline methods. See the appendix for more results.

4.3. Ablations and Further Discussions

In this section, we present the results of the various iter-

ation schemes and iteration numbers, as well as the effects

of inner step size α and perturbation budget ε. In addition to

the reconstruction loss used in experiments, perceptual loss

is also an important loss function in image tasks. Therefore,

we also explore the influence of different loss functions on

the proposed HCD. Besides, we discuss the impact of down-

scaling and upscaling latency. We also conduct ablations on

HCD to justify each component. Unless otherwise speci-

fied, all ablation experiments are conducted on Set5 for 2×
scale based on IRN.

Effect of the collaborative iteration number N . In Ta-

ble 3, we choose IRN as our backbone method and study

the effect of different values of collaborative iteration num-

ber N on building our collaborative example. In the default

setting, we suggest Nx = Ny = N . We can find that the

performance of IRN+HCD improves as the number of iter-

ations increases, and only a few iterations are required to

achieve a stable and satisfactory reconstruction effect.

Effect of downscaling and upscaling latency. Since the

increased latency of our HCD only exists in the downscal-

ing stage on the server, our HCD improves the performance

of the backbone model without increasing the upscaling la-

tency, as shown in Figure 6. There is no effect on the real-

time upscaling on edge devices. In other words, we improve

# Iterations N PSNR SSIM

1 44.10 0.9872

5 44.52 0.9882

10 44.61 0.9884

15 44.67 0.9886
20 44.66 0.9872

Table 3. Effect of the number of iterations for generating collab-

orative examples (Nx = Ny = N ) on the reconstruction perfor-

mance. We report results on Set5 for 2× rescaling based on IRN.

Our HCD method gradually improves the reconstruction perfor-

mance when we increase the collaborative iterations from 1 to 15.

Nevertheless, the performance improvement becomes negligible if

the iterations are increased to N = 20.

performance without increasing latency in reconstructing

high-resolution images.

Effect of hierarchical collaborative learning. Table 4

reports the performance of different iteration combinations

(Nx, Ny) based on the backbone method IRN. When the it-

eration number degrades to zero, we skip the collaborative

example generation step for the HR or LR images. When

only collaborative LR examples or HR examples are used,

the reconstructed image is improved by 0.47 dB and 0.42 dB

after 15 iterations compared to IRN. When we leverage both

examples, we can improve the performance by 0.21-0.26 dB

over the best results achieved by these two examples alone.
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Figure 6. Comparison of upscaling latency and PSNR among dif-

ferent methods on Set5 for 4×. Just as the red line(our method) is

always above the blue line(other IR methods), our HCD improves

the performance of the backbone model without increasing the up-

scaling latency, which makes it applicable to real-world scenarios.

These results demonstrate the effectiveness of the proposed

hierarchical learning scheme, showing that the collabora-

tive HR examples can be combined with the collaborative

LR examples to boost image reconstruction performance.

# Iterations Nx # Iterations Ny PSNR SSIM

0 0 43.99 0.9870

30 0 44.46 0.9880

0 30 44.41 0.9880

15 15 44.67 0.9886

Table 4. The quantitative evaluation results (PSNR / SSIM) of dif-

ferent iteration schemes on Set5 at 2× scale based on IRN. Com-

pared with optimizing LR or HR images separately(the second and

third rows), the scheme of sequentially optimizing HR and LR im-

ages(the fourth row) increases PSNR by 0.21-0.26 dB.

Effect of the step size α. In order to explore the effect of

different inner step size α, we keep the perturbation bud-

get ε fixed at 0.3 and change the α in a range on IRN. The

inference results are shown in Figure 7. Similar to the learn-

ing rate, a too-low α can slow down the inference process.

However, since we randomly initialize the perturbations, a

too-high α can also produce unreliable results. Experimen-

tal results show that our HCD performs well by varying α
from 0.04 to 0.08.

Effect of the perturbation budget ε. As shown in Fig-

ure 8, we indicate the effect of changing the perturbation

budget on inference results. The maximum change in the

image over the course of one iteration is related to the per-

turbation budget. As the figure illustrates, due to the limit

of the change, a low perturbation budget can not produce

a very good performance. The high perturbation budget

allows for a wide range of pixel variations, resulting dra-

matically image changes, so it causes subpar performance.

0.02 0.04 0.06 0.08 0.1
Inner Step Size 

43.8

44.0

44.2

44.4

44.6

44.8

45.0

PS
N

R 

IRN
IRN+HCD

Figure 7. Experiment on choosing the different inner step sizes α
on Set5 at 2× scale at the 15th iteration based on IRN. Our HCD

performs well by varying the inner step size from 0.04 to 0.08.

0 0.1 0.2 0.3 0.4 0.5 0.6
Perturbation Budget 

43.8
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44.2

44.4

44.6

44.8

45.0

PS
N

R 

IRN
IRN+HCD

Figure 8. Experiment on choosing the different perturbation bud-

get ε on Set5 at 2× scale at the 15th iteration based on IRN. The

perturbation budget ε is expected to be as small as possible to bring

less perturbation to make images visually imperceptible to change

while maintaining performance. A moderate value of ε = 0.3
brings a significant improvement.

We aim to achieve excellent performance improvement with

minimal changes to the original images.

Method MSE Loss Perceptual Loss PSNR↑ FID↓
HCFlow × × 36.29 32.15√ × 36.99 27.16

× √
36.41 22.78HCFlow+HCD √ √
36.75 24.57

Table 5. Quantitative results for different loss function on Set5 at

4× scale. Compared to MSE loss, the perceptual loss slightly re-

duces PSNR but greatly improves the visual quality(lower FID).

Effect of the loss function L. In order to demonstrate the

effect of the loss on HCD, experiments analyze the compo-

nents in Eq. (1). As shown in Table 5, when only the MSE

loss is used, the PSNR metric obtains the best results. While

the perceptual loss will slightly reduce PSNR but greatly

improves the visual quality of reconstructed images with a

lower FID. These results indicate the flexibility of our HCD

when combined with diverse losses.
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Figure 9. Visualization of the generated collaborative LR examples (top) and the corresponding perturbations δx (bottom). The perturba-

tions added to the LR image are mainly distributed on the contours and corners of the image. These visualization results indicate that the

generated collaborative examples are able to provide more information for those high-frequency regions, which, however, are often hard to

be reconstructed in the upscaling process.

Visualization of generated perturbations on LR images.
In Figure 9, we explicitly visualize the generated perturba-

tions on the downscaled representation, i.e., δx in Eq. (1).

The perturbations are mainly distributed on the contour and

corner, such as the flower silhouette. Interestingly, these re-

gions often contain high-frequency information that is hard

to capture in the image upscaling process. We highlight that

the performance improvement of our HCD method mainly

stems from these collaborative perturbations.

5. Conclusion

In this paper, we propose a Hierarchical Collaborative

Downscaling (HCD) method for the image rescaling task.

In the first step, we generate collaborative samples for the

input HR image of the downscaling model, so that it can be

downscaled into a better LR representation. Then, we gen-

erate collaborative samples for the optimized LR to further

improve its reconstruction performance. Extensive experi-

ments show, both quantitatively and qualitatively, that our

HCD significantly improves the performance on top of di-

verse image rescaling models.
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