
Efficient Joint Optimization of Layer-Adaptive Weight Pruning
in Deep Neural Networks

Kaixin Xu1,2,∗ Zhe Wang1,2,∗ Xue Geng1 Min Wu1 Xiaoli Li1,2 Weisi Lin2

1Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR),
1 Fusionopolis Way, 138632, Singapore

2 Nanyang Technological University, Singapore
{xuk,wangz,geng xue,wumin,xlli}@i2r.a-star.edu.sg, wslin@ntu.edu.sg

Abstract

In this paper, we propose a novel layer-adaptive weight-
pruning approach for Deep Neural Networks (DNNs) that
addresses the challenge of optimizing the output distortion
minimization while adhering to a target pruning ratio con-
straint. Our approach takes into account the collective
influence of all layers to design a layer-adaptive pruning
scheme. We discover and utilize a very important additiv-
ity property of output distortion caused by pruning weights
on multiple layers. This property enables us to formulate
the pruning as a combinatorial optimization problem and
efficiently solve it through dynamic programming. By de-
composing the problem into sub-problems, we achieve lin-
ear time complexity, making our optimization algorithm
fast and feasible to run on CPUs. Our extensive experi-
ments demonstrate the superiority of our approach over ex-
isting methods on the ImageNet and CIFAR-10 datasets. On
CIFAR-10, our method achieves remarkable improvements,
outperforming others by up to 1.0% for ResNet-32, 0.5%
for VGG-16, and 0.7% for DenseNet-121 in terms of top-1
accuracy. On ImageNet, we achieve up to 4.7% and 4.6%
higher top-1 accuracy compared to other methods for VGG-
16 and ResNet-50, respectively. These results highlight the
effectiveness and practicality of our approach for enhanc-
ing DNN performance through layer-adaptive weight prun-
ing. Code will be available on https://github.com/
Akimoto-Cris/RD_VIT_PRUNE.

1. Introduction
Deep Neural Networks (DNNs) [22, 34, 35, 17, 19] play

a critical role in various computer vision tasks. However, to
achieve high accuracy, DNNs typically require large num-
ber of parameters, which makes it very energy-consuming
and is difficult to be deployed on resource-limited mobile

*These authors contributed equally to this work

devices [16, 15]. Pruning is one of the powerful ways to
reduce the complexity of DNNs. By removing the redun-
dant parameters, the operations can be significantly reduced
(e.g., FLOPs), which leads to faster speed and less energy-
consuming. Typically, pruning approaches can be divided
into two categories: structured pruning [14, 1, 9, 31, 18, 30]
and weight (unstructured) pruning [27, 32, 28, 39, 16, 15].
Structured pruning approaches consider a channel or a
kernel as a basic pruning unit, while weight pruning ap-
proaches consider a weight as a basic pruning unit. The
former is more hardware-friendly and the latter is able to
achieve higher pruning ratio.

In this paper, we focus on improving the weight prun-
ing and propose a novel jointly-optimized layer-adaptive
approach to achieve state-of-the-art results between FLOPs
and accuracy. Recent discoveries [10, 13, 25] demonstrate
that layer-adaptive sparsity is the superior pruning scheme.
However, one drawback in prior layer-adaptive approaches
is that they only consider the impact of a single layer when
deciding the pruning ratio of that layer. The mutual impact
between different layers is ignored. Moreover, another chal-
lenge is that the search space of the pruning ratio for each
layer increases exponentially as the number of layers. In a
deep neural network, the number of layers can be a hundred
or even a thousand, which makes it very difficult to find the
solution efficiently.

In our approach, we define a joint learning objective to
learn the layer-adaptive pruning scheme. We aim to min-
imize the output distortion of the network when pruning
weights on all layers under the constraint of target pruning
ratio. As the output distortion is highly related to accuracy,
our approach is able to maintain accuracy even at high prun-
ing ratios. We explore an important property of the output
distortion and find that the additivity property [42, 41, 38]
holds when we prune weights on multiple layers. In other
words, the output distortion caused by pruning all layers’
weights equals to the sum of the output distortion due to the
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(a) Sparsity=0.1. (b) Sparsity=0.2. (c) Sparsity=0.5. (d) Sparsity=0.8.

Figure 1: An example of additivity property collected on ResNet-32 on CIFAR-10. The vertical axis shows the output
distortion when pruning only two consecutive layers. The horizontal axis shows the sum of the output distortion due to the
pruning the involved two layers individually. Sub-figures display the situations when all layers in the model are assigned
with the corresponding sparsity.

pruning of each individual layer. We provide a mathemati-
cal derivation for the additivity property by using the Taylor
series expansion.

Moreover, utilizing the additivity property, we develop
a very fast method to solve the optimization via dynamic
programming, which has only linear time complexity. We
rewrite the objective function as a combinatorial optimiza-
tion problem. By defining the state function and the recur-
sive equation between different states, we can decompose
the whole problem into sub-problems and solve it via dy-
namic programming. In practice, our approach is able to
find the solution in a few minutes on CPUs for deep neural
networks. Note that different from other approximation al-
gorithms, dynamic programming is able to find the global
optimal solution, which means that our approach provides
optimal pruning scheme with minimal output distortion. We
summarize the main contributions of our paper as follows:

• We propose a novel layer-adaptive pruning scheme that
jointly minimizes the output distortion when pruning
the weights in all layers. As the output distortion
is highly related to the accuracy, our approach main-
tains high accuracy even when most of the weights are
pruned. We also explore an important additivity prop-
erty for the output distortion based on Taylor series ex-
pansion.

• We develop a fast algorithm to solve the optimiza-
tion via dynamic programming. The key idea is to
rewrite the objective function as a combinatorial op-
timization problem and then relax the whole problem
into tractable sub-problems. Our method can find the
solution of a deep neural network in a few minutes.

• Our approach improves state-of-the-arts on various
deep neural networks and datasets.

The rest of our paper is organized as follows. We discuss
the related works in section 2. In section 3, we develop our

approach in detail. We present the objective function, the
optimization method, and the time complexity analysis of
the algorithm. In the last section, we provide the compre-
hensive experimental results.

2. Related Works

Our focus of this work generally falls into the
magnitude-based pruning (MP) track within model com-
pression of neural networks, with early works such as
OBD [24]. MP is done by ranking or penalizing weights
according to some criterion (e.g. magnitude) and remov-
ing low-ranked weights. Many efforts have been made ever
since under the context of [24, 16], which can be roughly
divided into the following approaches depending on their
timing of pruning embedded in the network training.
Post-training Pruning. Post-training pruning scheme
prunes out network parameters after standard network train-
ing, i.e. prunes from a pretrained converged model. Under
this context, parameters can be pruned out at once to achieve
target sparsity constraint (ont-shot pruning), or pruned out
gradually during the sparse model fine-tuning (iterative
pruning). [16] proposed an iterative pruning scheme that
determines layerwise sparsity using layer statistics heuris-
tic. [45, 10] adopted a global pruning threshold through-
out all layers in the network to meet the model sparsity
constraint. [5] [33] pooled all layers together and deter-
mined pruning thresholds for different layers in an inte-
grated fashion. [12] proposed to rewind the weights from
previous iterative pruning phase based on the lottery ticket
hypothesis. LAMP[25] derived a closed-form layerwise
sparsity selection from a relaxed layerwise l2 distortion
minimization problem that is compatible with various post-
training pruning schemes including iterative and one-shot
pruning. PGMPF [4] adopted simple l2-based layerwise
pruning criterion and improved the weight masking and
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updating rules during finetuning. [6] adopted a one-shot
pruning method by leveraging zero-invariant groups. [23]
proposed to re-calibrate the biases and variances of model
weights and activations, similar to the widely adopted bias
correction in model quantization [11, 2]. [32] presented an
iterative-pruning method that leverage taylor expansion of
model loss and derived a gradient based pruning criteria.
Our method leverages taylor expansion on output distortion
parametrized by layer weights, which is fundamentally dif-
ferent from [32]. SuRP [20] recursively applies triangu-
lar inequality and assumes laplacian distribution to approx-
imate output distortion to achieve joint-optimzation similar
to us. However, our approximation is more straight-forward
and do not need any assumptions on the distribution.
Pruning at Initialization. In contrast to the previous
scheme, there is an emerging line of work that aims to re-
move connections or neurons from scratch at the initial-
ization of training, with the merit of avoiding pretraining
and complex pruning schedules. SNIP [26] prunes param-
eters only once at the initialization phase of training. The
normalized magnitudes of the derivatives of parameters are
defined as the pruning criterion. [7] presented a modi-
fied saliency metric based on SNIP [26], allowing for cal-
culating saliences of partially pruned networks. [36] en-
gineered the gradient flow when training sparse networks
from scratch to achieve better convergence. Since pruning
at initialization out of our research scope, one may refer to
related surveys [37] for more comprehensive introduction.
Other Pruning Schemes. [3] interleaves the pruning in be-
tween normal training course, gradually pruning out more
connections and neurons from the networks. This scheme
is similar to the previous iterative pruning, however, here
the model is trained from scratch. ProbMask [43] similarly
leverages projected gradient descent with progressive prun-
ing stretegy to directly train sparse networks. [40] integrates
supermask training with gradient-drive sparsity for training
sparse networks.

Since our main contribution is the improvement of the
pruning criteria, we mainly evaluate our method under post-
training unstructured pruning paradigms, such as iterative
pruning and one-shot pruning. Although our method may
have equal potential effectiveness on other sparsity struc-
tures and pruning schemes like Pruning at Initialization, we
leave such validations for future works.

3. Approach

In this section, we present our approach in detail. We
first give the formulation of our objective function and then
provide the optimization method. An additivity property
is derived based on Taylor series approximation. The im-
plementation details of the dynamic programming and the
analysis of the time complexity are also provided.

3.1. Objective Function

Following the notations in [25], let f denote a neural net-
work, define W (1:l) =

(
W (1), ...,W (l)

)
as all the parame-

ters of f , where l is the number of layers and W (i) is the
weights in layer i. When we prune part of the parameters
of f , we will receive a modified neural network with the
new parameter set W̃ (1:l). We view the impact of pruning
as the distance between the network outputs f(x;W (1:l))
and f(x; W̃ (1:l)). The learning objective is to minimize the
output distortion caused by pruning under the constraint of
the pruning ratio,

min ∥f(x;W (1:l))− f(x; W̃ (1:l))∥2 s.t.
∥W̃ (1:l)∥0
∥W (1:l)∥0

≤ R, (1)

where R denotes the pruning ratio for the entire network.
An important property we discover is that the expec-

tation of output distortion, caused by pruning all layers’
weights, equals the sum of expectation of output distortion
due to the pruning of each individual layer,

E
(
∥f(x;W (1:l))− f(x; W̃ (1:l))∥2

)
=

l∑
i=1

E(δi), (2)

where δi denotes the output distortion when only pruning
the weights in layer i.

3.2. Analysis

We provide a mathematical derivation for the additivity
property. We make the following two assumptions for the
proof of additivity property:

Assumption 1 Taylor first order expansion: The neural
network f parametrized by W (1:l) when given a small per-
turbation ∆W (1:l) resulting in W̃ (1:l) = W (1:l) +∆W (1:l)

can be expanded as the following:

f(x; W̃ (1:l)) = f(x;W (1:l)) +

l∑
i=1

∂f

∂W (i)
∆W (i). (3)

Assumption 2 I.d.d. weight perturbation across lay-
ers [44]: ∀0 < i ̸= j < L,E(∆W (i))E(∆W (j)) = 0.

According to Eq. (3), δ = ∥f(x;W (1:l)) − f(x; W̃ (1:l))∥2
can be written as

δ =
( l∑

i=1

∆W (i)⊤ ∂f

∂W (i)

⊤)( l∑
j=1

∂f

∂W (j)
∆W (j)

)
. (4)

When we take the expectation of Eq. (4) for both sides, the
right hand side can be opened up into additive terms (vector
transpose is agnostic inside expectation):

E(δ) =
∑

1≤i,j≤l

E

(
∆W (i) ∂f

∂W (i)

)
E

(
∆W (j) ∂f

∂W (j)

)
.

(5)
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Further, since the derivative ∂f
∂W (i) is a constant as we con-

sider trained fixed network weights, we can derive the fol-
lowing from Assumption 2:

E

(
∆W (i) ∂f

∂W (i)

)
E

(
∆W (j) ∂f

∂W (j)

)
= 0. (6)

Therfore, the cross terms (i ̸= j) in Eq. (5) disappear, ob-
taining:

E(δ) =

l∑
i=1

E

(
∥ ∂f

∂W (i)
∆W (i)∥2

)
. (7)

Eq. (7) is the result we want because, again, according
to Assumption 1,

∂f

∂W (i)
∆W (i) = f(x;W (1:i−1), W̃ (i),W (i+1,l))

− f(x;W (1;l)).

(8)

Therefore, the left hand side of Eq. (7) becomes the real
output distortion δ when all layers are pruned, and the right
hand side becomes the sum of the output distortion due to
the individual pruning of each single layer’s weights, which
can be used to approximate the output distortion.

We have done an empirical examination of our theorec-
tically proposed additivity property on real network. As
shown in Fig. 1, when we examine the cases where only
pruning two adjacent layers each time in a pretrained model,
contributing to the right hand side addable distortion terms
while other layers contributing zero to the approximation,
we observe that the additivity holds quite well with marginal
residuals, where almost all observation points sit close to
the identity line.

3.3. Optimization via Dynamic Programming

By utilizing the additivity property, we can rewrite the
objective function as a combinatorial optimization problem
and solve it efficiently using dynamic programming. The
objective function is re-written as,

min δ1 + δ2 + ...+ δl s.t. t1 + t2 + ...+ tl = T, (9)

where T denotes the total number of weights to prune and ti
denotes the number of weights to prune in layer i. We solve
(9) by decomposing the whole problem into sub-problems.
The basic idea is that we define a state function and find
the recursive equation between the states. The problem is
solved based on the recursive equation.

Specifically, define g as the state function, in which
gji means the minimal distortion caused when pruning j
weights at the first i layers. Our goal is to calculate gTl .
For initialization, we have,

gj1 = δ1(j), for 1 ≤ j ≤ T, (10)

Algorithm 1 Optimization via dynamic programming.

Input: Output distortion δi(j) when pruning j weights in
single layer i, for 1 ≤ i ≤ l and 1 ≤ j ≤ T .

Output: The number of weights pi pruned in layer i.
Initialize minimal output distortion gji = 0 when pruning
j weights in the first i layers.
Initialize state function sji = −1 where sji denotes the
number of weights pruned in layer i when pruning j
weights in the first i layers.
for i from 1 to l do

for j from 0 to T do
If i = 1: gj1 = δ1(j), s

j
1 = j.

Else: gji = min{gj−k
i−1 +δi(k)}, sji = argmink{g

j
i }.

end for
end for
The number of weights pruned in layer l is pl = sTl .
Update T = T − sTl .
for i from l − 1 to 1 do

The number of weights pruned in layer i is pi = sTi .
Update T = T − sTi .

end for

where δi(j) denotes the distortion caused when pruning j
weights at layer i. Then we have the recursive equation
between the states gi and gi−1, which is,

gji = min{gj−k
i−1 + δi(k)}, where 1 ≤ k ≤ j. (11)

The state functions are calculated based on equation (11)
in a bottom-up manner from g1 to gl. In practice, we need
another variable s to store the decision of each state to know
the number of weights pruned in each layer. s is defined as

sji = argmin
k

{gji = gj−k
i−1 + δi(k)}. (12)

Algorithm 1 shows the pseudo-codes to calculate the state
function and find the pruning solution.

3.4. Time complexity analysis

The time complexity of the optimization algorithm using
dynamic programming is O(l × T 2), as we have l × T dif-
ferent states, and each state needs to enumerate the number
of weights pruned in a layer. In practice, this algorithm is
very fast which costs just a few seconds on CPUs for deep
neural networks. We show the detailed results of the speed
in the experimental section.

4. Experiment Results
Implementation Details. As our contribution to the exist-
ing pruning schemes is on the layer-wise sparsity selection,
we evaluate our rate-distortion-based pruning method un-
der different experimental settings, including iterative prun-
ing and one-shot pruning, as well as on multiple network
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Dataset Arch Method
Sparsity

(%)
Remaining
FLOPs (%) Top-1 (%) ↑ Top-1

drop (%) ↓

CIFAR-10

ResNet-32
(Dense: 93.99)

LAMP [25] 79.03 36.02 92.58± 0.25 1.41
Ours 58.65 34.5 93.62± 0.23 0.37

LAMP [25] 89.3 21.66 91.94± 0.24 2.05
Ours 73.76 22.21 93.34± 0.10 0.65

LAMP [25] 95.5 11 90.04± 0.13 3.95
Ours 86.57 11.25 92.56± 0.20 1.43

LAMP [25] 98.85 3.29 83.66± 0.29 10.33
Ours 95.5 3.59 90.83± 0.24 3.16

VGG-16
(Dense: 91.71)

E-R ker. [10] 95.6 / 91.99± 0.14 −0.79
DPF [29] 95 / 93.87± 0.15 −0.13

LAMP [25] 95.6 15.34 92.06± 0.21 −0.86
SuRP [20] 95.6 / 92.13 −0.93

Ours 95.6 6.83 92.59± 0.17 −0.88
Global [33] 98.85 / 81.56± 3.73 9.64

Uniform [45] 98.85 / 55.68± 12.20 35.52
Uniform+ [13] 98.85 / 87.85± 0.26 3.35
E-R ker. [10] 98.85 / 90.55± 0.19 0.65
LAMP [25] 98.85 6.65 91.07± 0.4 0.13
SuRP [20] 98.84 / 91.21 −0.01

Ours 98.85 3.43 92.14± 0.18 −0.43
PGMPF [4] / 33 93.6 0.08
LAMP [25] 86.58 33.53 92.22± 0.05 −0.51

Ours 67.21 35.49 92.76± 0.18 −1.05

DenseNet-121
(Dense: 91.14)

LAMP [25] 95.5 6.45 90.11± 0.13 1.03
SuRP [20] 95.5 / 90.75 0.39

Ours 95.5 6.72 91.49± 0.21 −0.35
Global [33] 98.85 / 45.30± 27.75 45.84

Uniform [45] 98.85 / 66.46± 18.72 24.68
Uniform+ [13] 98.85 / 69.25± 19.28 21.89
E-R ker. [10] 98.85 / 59.06± 25.61 32.08
LAMP [25] 98.85 1.71 85.13± 0.31 6.01
SuRP [20] 98.56 / 86.71 4.43

Ours 98.85 2.02 87.7± 0.24 3.44

ImageNet

VGG-16-BN
(Dense: 73.37)

LAMP [25] 95.5 37.16 64.63 8.73
Ours 95.5 9.12 66.9 6.47
Ours 73.54 34.95 69.35 4.02

LAMP [25] 98.85 16.73 51.59 21.78
Ours 89.3 17.71 68.88 4.49
Ours 98.85 3.51 59.41 13.96

ResNet-50
(Dense: 76.14)

PGMPF [4] / 53.5 75.11 0.52
Ours 41 53.5 75.90 0.24

LAMP [25] 89.3 26.1 72.56 3.58
Ours 67.22 28.52 73.47 2.67

LAMP [25] 95.5 15.47 66.04 10.1
Ours 95.5 2.85 66.06 10.08
Ours 79.01 16.58 72.26 3.88

LAMP [25] 98.85 6.15 42.54 33.61
Ours 91.41 6.07 67.91 8.23

Table 1: Iterative Pruning results. Bold denotes the highest Top-1 accuracy or lowest accuracy drop among the results with
about the same remaining FLOPs; Red denotes the highest Top-1 among that with about the same sparsity. Dense denotes
the Top-1 accuracy of the unpruned model.
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(a) ResNet-32 on CIFAR-10. (b) DenseNet-121 on CIFAR-10.

(c) VGG-16 on ImageNet. (d) ResNet-50 on ImageNet.
Figure 2: Iterative pruning process of various classification models and datasets.

architectures and image classification datasets. We con-
sider 3 models on CIFAR-10 dataset [21], i.e., VGG-16 fol-
lowing the adapted architectures in [25], ResNet-32 [17],
DenseNet-121 [19], while on ImageNet dataset [8], we eval-
uate VGG-16 with BatchNorm [34] and ResNet-50 [17].
On CIFAR-10, following the baseline method [25], we per-
form five independent trials for each method, and we report
the averages and standard deviations among the trials. On
the much larger scaled ImageNet, we only perform one trial
for each method. For other implementation details, please
refer to the supplementary material.

Details when generating rate-distortion curves. In
the experimentations, we need to generate rate-distortion
curves for every layer to enable sparsity optimization,
where points on the curves are a pair of sparsity level and
the model output distortion when certain layer is pruned
to that sparsity. For non-data-free scheme, the curves are
sampled on a randomly selected calibration set from train-
ing dataset, while it is also possible to make it data-free by
leveraging synthesized data sampled from certain distribu-
tion, e.g. standard normal distribution. The size of cali-

bration set is set to 1024 samples for CIFAR-10 and 256
for ImageNet respectively. However, rate-distortion curves
obtained by the above process may be interfered by real-
world factors resulting in noisy curves. Therefore we de-
signed various strategies to refine the raw rate-distortion
curves and better aid the optimization thereafter. Specifi-
cally, (1) Worst case sampling: inspired by LAMP [25],
we calculate the distortion as the maximum squared norm
error among all calibration samples instead of calculating
the MSE for the whole calibration set; (2) Outliers filter-
ing: treat the local maxima points on the curves that break
monotonicity as outlier noises and remove them in order
to facilitate Algorithm 1, especially to effectively perform
Eq. (12). We provide ablation studies in the later Sec. 4.4 to
discuss the individual effects of these strategies.

4.1. Iterative Pruning Results

In the iterative pruning scheme, one starts with a pre-
trained full-capacity model. During the finetuning process
of the pretrained model, we gradually prune out parameters
from the model by a certain amount at each iterative stage.
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Under different stages of iterative pruning, we get a set of
sparse models with gradually increasing sparsity and de-
creasing computation complexity (FLOPs). Following the
iterative pruning settings in LAMP [25], we prune out 20%
of the remaining parameters from the model each time after
a round of finetuning. The hyper-parameters setup of the
finetuning is detailed in the supplementary material. Tab. 1
compares the results of model accuracies produced during
the iterative pruning process by our method and other prun-
ing method counterpart.

Given non-standardized adoption of CNN models for
experimentations in post-training pruning works, we ex-
amined as most models as appeared in various literature
and add those as baselines in our comparison, including
Global [33], Uniform [45], Uniform+ [13], LAMP [25], E-
R ker. [10], which is an extended Erdős-Rényi method for
CNNs pruning, where layer-wise sparsity is selected by a
closed-form criterion dependent on merely the layer archi-
tecture (e.g., the numbers of input and output channels, the
convolutional kernel sizes). Fig. 2 further demonstrates the
detailed iterative pruning procedures of different methods,
where the remaining FLOPs (X-axis) gradually decreases in
the course of finetuning.
Results on CIFAR. From Tab. 1, we observe that our
method consistently produces pruned models with higher
test performance and less test accuracy drop for the same
computational complexity (FLOPs) compared to other
methods. Fig. 2 further verifies that this observation holds
throughout the pruning procedure. For example for ResNet-
32 on CIFAR-10, our method obtains Top-1 accuracy at
92.56 on average with 11.25% remaining FLOPs, while
baseline result [25] is only 90.04 at 11% FLOPs; When
remaining FLOPs is around 3%, we even improve the ac-
curacy by 7.17, i.e. only 3.16 accuracy drop with only
4.4% survived parameters. For VGG-16 on CIFAR-10, we
also observe similar results, where our method achieves the
least accuracy drop among various counterparts, e.g., when
FLOPs are within the range of 33 ± 2%, without the ad-
vance design of soft gradient masking and weight updat-
ing strategies adopted in [4], ours achieves −1.05% drop
of Top-1 at 35.49% FLOPs, which means that the pruned
network performs better by 1.05% than the unpruned one.
PGMPF [4] achieves a higher accuracy score than us on
VGG-16 model with 33% remaining FLOPs, which was
obtained from a higher performance unpruned model, but
still underperforms us regarding the accuracy drop (Top-1
dropped by 0.08%).
Results on ImageNet. On the larger scale dataset Im-
ageNet, we also observe similar behaviors from our ap-
proach. For VGG16-BN, we outperform others on both
35±2% and 16±2 FLOPs groups. Noticeably, when model
sparsity is as high as 98.85%, i.e. only 1.15% surviving
parameters, our method still has 59.41% accuracy, while

LAMP already drops to around 52. This is also observed
on ResNet-50, where we outperform LAMP by a large mar-
gin at 6% FLOPs group. From Fig. 2c, there is a minor
observation that although consistently higher test accuracy
with < 50% FLOPs, VGG-16-BN performs slightly lower
within the 30 50% FLOPs range before going up again in
the following finetuning iterations. It is speculated that
VGG-16-BN is more sensitive to large structural changes
for post-train pruning.

In all, for both datasets, we observe that our method gen-
erates higher accuracy sparse models given either the same
FLOPs or sparsity constraint.

4.2. One-shot Pruning Results

Method
Sparsity

(%)
Remaining
FLOPs (%)

Top-1
(%)

Top-1
drop(%)

Unpruned 0 100 76.14 -

LAMP [25] 64.5 55 75.43 0.71
OTO [6] 64.5 34.5 75.1 1.04

Ours 58 34.5 75.59 0.55

Table 2: One-shot pruning results of ResNet-50 on Ima-
geNet.

In one-shot pruning scheme, we directly prune the model
to the target computation or parameter constraint, followed
by a one-time finetuning. Tab. 2 summarizes the one-shot
pruning results using various unstructured pruning algo-
rithms. We carry out comparison on ResNet-50 on Ima-
geNet. The result verifies that our method still fits in the
one-shot pruning scheme, with higher accuracy at 34.5%
FLOPs than both baselines [25, 6].

4.3. Zero-data Pruning

Method
Sparsity

(%)
Remaining
FLOPs (%)

Top-1
(%)

Top-1
drop(%)

Unpruned 0 100 76.14 -

[23] 50 / 73.89 2.16
LAMP [25] 50 67.05 74.9 1.24

Ours* 50 42.48 75.13 1.01

Table 3: Zero-data one-shot pruning results of ResNet-50
on ImageNet dataset. Ours* denotes the zero-data alterna-
tive of our method by using white noise data to generate
rate-distortion curves.

To evaluate whether our method is compatible with zero-
data pruning scheme, which is promising to achieve bet-
ter generalizability than standard pruning schemes that are
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usually data dependant, we attempt to adopt our method to
zero-data pruning, by replacing the calibration images set
that is sampled from real test set with white noise (pixels
in each color channel are independently generated by the
same distribution required by the classification model, e.g.,
standard normalized distribution N (0, 1)).

Tab. 3 summarizes the results of zero-data variant of
our approach compared to the baseline [23] result with the
same data synthesize strategy (white-noise). We also in-
clude LAMP [25] in the comparison since it happens to re-
quire no calibration set to obtain layerwise pruning thresh-
olds for good. Our approach still achieves superior results
under zero-data scenario, with only 1.01% performance
drop. This is within our expectation since our rate-distortion
theory-based algorithm does not depend on any specific in-
put data distribution.

4.4. Ablation Studies

Arch Method
Sparsity

(%)
Top-1
(%)

Top-1
drop(%)

ResNet-50 Ours 58 75.59 0.55
Ours* 60 74.89 1.45

VGG-16-BN Ours 60 69.01 4.36
Ours* 59 62.50 10.87

Table 4: Comparison of joint-optimization objective and
vanilla (single-layer) optimization (denoted by Ours*).

WCS OF Sparsity (%)
Top-1
(%)

Top-1
drop(%)

Unpruned 0 93.99 -

89.3 91.15 2.84
√

89.2 91.31 2.68
√

89 91.51 2.58
√ √

89.3 92.3 1.69

Table 5: Different post-processing strategies of RD curves
on ResNet-32 on CIFAR-10 with iterative pruning scheme.
WCS: Worst case sampling, OF: Outlier filtering.

Since our major contribution is the joint-optimization
strategy, we first conducted a comparison with the case not
using joint-optimization where we directly solve layer-wise
sparsity on the output features of each layer, resulting in
the performance shown in Tab. 4. As indicated in the table,
we observe deteriorated performances for such single-layer
optimization on both tested models, showing that our joint-
optimization strategy is optimal.

We also evaluate the individual effectiveness of the
aforementioned rate-distortion curves refining strategies.

WCS OF Sparsity (%)
Top-1
(%)

Top-1
drop(%)

Unpruned 0 76.14 -

60 31.22 44.92
√

60 31.22 44.92
√

60 38.12 38.02
√ √

60 38.12 38.02

Table 6: Different post-processing strategies of RD curves
on ResNet-50 on ImageNet with one-shot pruning scheme.
Test accuracy of the model before finetuning is reported.

We first perform ablation on CIFAR-10 dataset. From
Tab. 5, we observe that at the same model sparsity 89%,
which is relatively high for one-shot pruning scheme, both
strategies are shown to work positively for our approach.
Therefore, we included both strategies to conduct experi-
ments of main results. We also observe the same on Im-
ageNet dataset, as shown in Tab. 6. Particularly, Out-
lier filtering strategy brings slightly more improvement on
both CIFAR-10 and ImageNet, where Worst case sampling
makes no difference at this particular sparsity target.

4.5. Other discussions

There is also an interesting observation from Tab. 1 that
with the same model sparsity, our method constantly re-
duces more FLOPs from the model. To better analyze this
phenomenon, we take a closer look into the layerwise spar-
sity solution given by different approaches. As shown in
Fig. 3, our method prunes out more parameters from deeper
layers than LAMP [25]. Since activations in deeper lay-
ers in CNNs usually have more channels and features than
shallow layers, pruning out more parameters from deep lay-
ers will reduce more operations, resulting in less remain-
ing FLOPs. From Fig. 3, another observation is that both
methods prune out more parameters from the last layer
of ResNet-32 which is the fully-connected layer, implying
that parameters of the last layer contain large redundancy.
Meanwhile, we observe that DenseNet-121 on CIFAR-10
does not display the above phenomenon, where our method
reduces the same level of FLOPs compared with LAMP un-
der the same sparsity. We elaborate this in the supplemen-
tary material.

4.6. Time Complexity

We provide the empirical optimization time complexity
analysis in Tab. 7. In practice, we use ternary search algo-
rithm to search the solution of sji in Eq. (12), which has
logarithmic time complexity given the search range. On
small datasets like CIFAR-10, with 35 layers, our method
takes less than a second to calculate the layerwise sparsity,

17454



(a) LAMP. (b) Ours.

Figure 3: Layer-wise sparsity statistics of ResNet-32 on CIFAR-10 of different methods during iterative pruning. Height of
bars denotes the pruning rate with {0.36, 0.74, 0.89, 0.96, 0.98} model sparsities.

Configuration
No.

layers
Sparsity

(%) Time (s)

ResNet-32@CIFAR-10 35 20 0.46± 0.09
ResNet-50@ImageNet 54 50 2.08± 0.21

Table 7: Time spent on layerwise sparsity optimization of
our method.

while on larger ImageNet, our method still only takes a few
seconds.

Configuration
Curve

Generation (s) Optimize (s)

ResNet-18@CIFAR-10 1052.64 0.84
VGG-16@CIFAR-10 664.19 2.20

Table 8: Comparison of time cost of RD curve generations
and optimization.

We also analyze the curve generation costs. For each
layer, we traverse all calibration set samples to calculate
output distortion at all sparsity levels to generate a rate-
distoriton curve. Therefore, the cost of generating rate-
distortion curves becomes O(lSN), where l is the number
of layers, S is the number of sparsity levels (we set S = 100
in practice), and N is the size of calibration set. We provide
the actual time costs for two CIFAR-10 models in Tab. 8.
In practice, we used optimized dataloader and parallelized
curve generation of different layers to cut down the infer-
ence time per sample.

4.7. Analysis of Approximation Error

Given the locality nature of taylor expansion, we expect
an increasing discrepancy of the taylor approximation under
large distortion. We analyze the empirical approximation
error in Fig. 4. The left figure visualizes the relations be-
tween the taylor-based approximated output distortion (X-

axis) and the real output distortion (Y-axis), we notice that
the data points in the figure are very close to the diagonal.
The right figure plots the approximation error at different
sparsity levels. The approximation error inflates at large
sparsities, e.g. > 50%.

Figure 4: Empirical Approximation Error Analysis.

5. Conclusions

We have presented a new rate-distortion based unstruc-
tured pruning criterion. We revealed the output distortion
additivity of CNN models unstructured pruning, supported
by theory and experiments. We exploited this property to
simplify the NP-hard layerwise sparsity optimization prob-
lem into a fast pruning criterion with only O(l × T 2) com-
plexity. Benefiting from the direct optimization on the out-
put distortion, our proposed criterion shows superiority over
existing methods in various post-training pruning schemes.
Our criterion prefer to prune deep and large layers, leading
to significant model size and FLOPs reductions.
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