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Abstract

Despite the fact that transformer-based models have
yielded great success in computer vision tasks, they suffer
from the challenge of high computational costs that limits
their use on resource-constrained devices. One major rea-
son is that vision transformers have redundant calculations
since the self-attention operation generates patches with
high similarity at a later stage in the network. Hierarchical
architectures have been proposed for vision transformers to
alleviate this challenge. However, by shrinking the spatial
dimensions to half of the originals with downsampling lay-
ers, the challenge is actually overcompensated, as too much
information is lost. In this paper, we propose FDViT to im-
prove the hierarchical architecture of the vision transformer
by using a flexible downsampling layer that is not limited
to integer stride to smoothly reduce the sizes of the middle
feature maps. Furthermore, a masked auto-encoder archi-
tecture is used to facilitate the training of the proposed flex-
ible downsampling layer and produces informative outputs.
Experimental results on benchmark datasets demonstrate
that the proposed method can reduce computational costs
while increasing classification performance and achieving
state-of-the-art results. For example, the proposed FDViT-
S model achieves a top-1 accuracy of 81.5%, which is 1.7
percent points higher than the ViT-S model and reduces 39%
FLOPs.

1. Introduction
Convolutional neural networks (CNNs) have been the

first choice on computer vision (CV) tasks [25, 54, 56, 55,
19] in the past decade. Transformers with self-attention
mechanisms are another kind of neural networks that are
widely used in neural language processing (NLP) tasks and
have a great success (e.g., BERT [13], GPT-3 [2] and Chat-
GPT [1]). In order to utilize the power of transformers for
computer vision tasks, many researchers attempt to use the
self-attention mechanism. For example, DETR [3] applies
the transformer encoder-decoder architecture to object de-
tection task, and iGPT [7] trains a sequence transformer for
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Figure 1. Cosine similarities between different patches in each
layer of ViT models and FDViT models. Patch similarities are
reduced in FDViTs.

image recognition task with a pre-training stage and fine-
tuning stage.

Recently, ViT [15] mitigates the performance gap be-
tween transformer models and CNN models and achieves
a remarkable performance on the ImageNet dataset with-
out using convolutional operation. Different from CNNs,
ViT divides the input image into 16× 16 patches and treats
the patches as sequence input to the consequent transformer
blocks. After that DeiT [44] proposes a data-efficient im-
age transformer with a distillation training method and fur-
ther improves the performance of ViT by a large margin.
Since then, research into vision transformers has exploded
and several CV tasks such as image recognition [15, 44], ob-
ject detection [16], image segmentation [42] and low-level
vision [6] have been studied.

Despite the success of the aforementioned vision trans-
formers, they mostly share the network architecture of ViT
and have the same disadvantage that the models are cumber-
some and have high computational costs. This is mainly be-
cause there are many redundant calculations in the trans-
former network and the similarity between patches becomes
higher as the network goes deeper [43, 39]. Because of this,
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vision transformer models are hard to apply to resource-
constrained devices such as smartphones, digital cameras,
smart wristbands, etc. Therefore, many works attempt to
deal with this challenge by reducing the number of patches
using hierarchical architectures as CNN models do [53].
With several downsampling layers added to the vision trans-
former, the redundant information in different patches can
be effectively reduced and a portable model is produced
without too much loss of performance.

However, the aforementioned challenge is overcompen-
sated by introducing the traditional downsampling lay-
ers such as max-pooling and convolutional operation with
stride of two into vision transformers. The former shrinks
the original spatial dimensions in half (from HW to H

2
W
2 )

and discards 75% of the data, and the latter discards 50%
since the number of channels is always doubled at the same
time (see the data loss ratio Eq. 3). Nevertheless, the sim-
ilarity between patches is not that high at the early stage of
the ViT networks (dashed lines in Fig. 1), and ignoring too
much information hurts the final performance of the model.

In this paper, we propose a novel architecture called
FDViT to improve the hierarchical architecture of vision
transformer by introducing a flexible downsampling layer
(FD layer) that is not limited to integer stride and can pro-
duce output feature map with any preset dimension. By
doing this, the spatial dimension of the feature maps can
be smoothly reduced to avoid too much information loss
at the early stage of the network. We also introduce a
masked auto-encoder architecture to facilitate the training
of the proposed FD layer and generate informative outputs
by treating the FD layer as the encoder, and use a decoder to
recover the original input. As shown in Fig. 1, we can effec-
tively reduce the similarity between patches and express the
same amount of information with fewer FLOPs and param-
eters. We conduct a series of experiments on the ImageNet
dataset and show that the proposed method can reduce the
computational cost while at the same time increase the clas-
sification performance, which shows the superiority of our
method. For example, the proposed model reaches 81.5%
top-1 accuracy which is 1.7% higher than ViT-S model and
reduces 39% FLOPs. We also verify the effectiveness of
FDViT as a backbone for object detection on MSCOCO
2017 dataset and semantic segmentation task on ADE20K
dataset, and the result shows a better performance compared
to existing architectures.

2. Related Works
Dosovitskiy et al. [15] proposed Vision Transformer

(ViT), which is the first work to use a pure transformer
for image classification and archives state-of-the-art result.
Each input image is sliced into a sequenced set with a con-
stant size and then passes into multiple head self-attention
layers to classify it.

However, ViT is resource-hungry and compute-
intensive. One of the most challenging problems in ViT
is that the considerable sequence length of image patches
ca a quadratic computational complexity and memory
consumption, which hinders its application in portable
devices.

In recent years, a collection of vision transformer back-
bones mainly focused on the following aspects to seek a
better trade-off between performance and efficiency, i.e., in-
troducing hierarchical architecture into vision transformers
and enhancing the locality of vision transformers.

2.1. Hierarchical Vision Transformers

In computer vision tasks, pyramid pooling is widely used
for extracting multi-scale feature maps. He et al. [24] in-
troduced pyramid pooling to deep CNNs for image classi-
fication and object detection, while Mask-RCNN [22] and
FPN [33] applied pyramid pooling for object detection and
semantic segmentation.

Different from CNNs, self-attention operation in vision
transformers is equivalent to low-pass filter [39] and gen-
erates similar patches, which causes redundant calculation.
A number of improvements of vision transformer models
have been proposed with hierarchical structures to provide
a multi-scales encoding while reducing computational costs
and memory consumption. A common practice is to use a
single pooling operation to reduce the sequence length.

Wang et al. [45] proposed PVT, a pyramid transformer
that presented a hierarchical structure with four stages, and
showed that it can provide better results with fewer FLOPs
and parameters for image recognition tasks. It reduced the
sequence length of the transformer as the network deep-
ens, which can reduce redundant calculation and at the same
time extract high-level semantic information. Such design
is followed by many other works afterward [34, 29, 57, 14].
Heo et al. [28] proposed a Pooling-based Vision Trans-
former combined with a series of pooling layers. It enabled
the spatial size reduction in the vision transformer structure.
Wu et al. [49] proposed P2T to adapt pyramid pooling to
Multi-head Self-Attention (MSA) in vision transformer, so
as to reduce the sequence length and capture powerful con-
textual features. In order to enhance the generalization of
vision transformer to dense predictions of large patch size,
Pan et al. [38] proposed a general hierarchical pooling strat-
egy that significantly reduced the computation complexity
while strengthening the scalability of essential dimensions
of vision transformer models. CrossViT [5] extracted richer
features by fusing the multi-branch feature maps with dif-
ferent scales.

2.2. Local-Enhanced Vision Transformers

Considering the quadratic computational cost caused by
global self-attention operation, many methods constrain the
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range of attention within a local region [34, 14, 29, 48] or
cooperate with local attention [20, 61, 9, 31, 60] to improve
the efficiency of vision transformer while keeping the per-
formance of the model.

Liu et al. [34] restricted the self-attention operation
in non-overlapping local windows and realized the cross-
window connection by shifting these windows. Yuan et
al. [14] presented the Cross-Shaped Window (CSWin) self-
attention method in the horizontal and vertical stripes in par-
allel. Wu et al. [48] proposed Pale-Shaped self-Attention
(PSAttention), which computed self-attention within a pale-
shaped region.

Local-enhanced methods generate patches with local at-
tention and make the interaction between patches to ex-
tract global information, which are similar to depth-wise
convolution followed by point-wise convolution in Mo-
bileNets to reduce the computation. In contrast, the hier-
archical vision transformers reduce the number of FLOPs
and parameters by reducing the number of patches. These
two methods are orthogonal and can be combined together.
Besides, there are some methods that combine convolu-
tion and self-attention operations. For example, Mobile-
Former [8], Conformer [40] and DS-Net [35] integrated fea-
tures produced by convolution and self-attention with the
well-designed dual-branch structures. In contrast, Local
ViT [32], CvT [47] and Shuffle Transformer [29] inserted
several convolutional layers into transformer models. In
this paper, we mainly discuss the hierarchical vision trans-
former methods. Local-enhanced methods and CNNs com-
bined methods [52] are out of our scope.

3. Problem Formulation
In this section, we illustrate the motivation of our

method. We introduce the preliminaries of vanilla ViT
and the redundant calculation challenge generated by self-
attention. Then, we propose the data loss ratio Rd after
downsampling, and discuss the drawback of the current hi-
erarchical architecture of vision transformers that overcom-
pensate for the aforementioned challenge by having a large
Rd at the early stage of the network.

3.1. Vanilla ViT
The input image x ∈ RC×H×W of vanilla ViT is first

split into a set of N patches which are then flattened into
vectors and concatenated into matrix X0 = {xi

p}Ni=1, where
xp ∈ R(P 2)·C is the feature vector of the p-th token, H
and W are the height and width of the input image, C is
the input channel, P is the resolution of image patches and
N = HW/P 2. Then, the token matrix is fed into the L-
layers vision transformer model composed of multi-head
self-attention (MSA) modules and multi-layer perceptron
(MLP) modules. Let matrix Xl−1 ∈ RN×(d·He) be the in-
put of l-th layer, where He is the number of heads and d is

the embedding dimension of each head, the formulation of
MSA and MLP modules are shown as follows:

MSA(Xl−1) = concat
[

softmax
(
Ql

hK
l⊤
h√

d

)
Vl

h

]He

h=1

·Wl
O,

MLP(X̂l) = ϕ(X̂lWl
a)W

l
b, (1)

in which queries Ql
h = Xl−1Wl

Q, keys Kl
h = Xl−1Wl

K

and values Vl
h = Xl−1Wl

V are linear transformations of
the input matrix, Wl

O is the projection matrix, Wl
a and Wl

b

are weight matrices of MLP module and ϕ(·) represents
the non-linear activation function, which is GeLU in ViT
model. Given the MSA and MLP modules defined above, a
typical vision transformer block can be formulated as:

T l(Xl−1) = MLP(X̂l +Xl−1) + (X̂l +Xl−1), (2)

in which X̂l = MSA(Xl−1).
Many recent researches point out that the redundancy of

patches in vanilla ViT increases as the layer goes deep [43,
39]. This is because MSA acts like a low-pass filter that ag-
gregates feature maps and reduces high-frequency signals,
and the patches become similar as they are weighted aver-
aged and contain all the information of other patches. We
measure the redundancy of patches with widely used co-
sine similarity [43] which is straightforward and can better
demonstrate the changes that occur as the number of layers
deepens. Fig. 1 intuitively show the redundant calculation
challenge in ViT by calculating the average cosine similar-
ity of patches within a layer and plotting the similarities of
each layer (the average of five measurements with 1024 ran-
dom inputs each time). We can observe that the similarity
between patches is acceptable in the shallow layers. How-
ever, as we move deeper into the layers, the redundancy in-
creases and eventually exceeds 80% in the final layer.

3.2. Hierarchical Vision Transformer

The number of patches N remains the same in the en-
tire ViT model. Thus, in order to deal with the chal-
lenge mentioned above, an intuitive solution is to reduce
the number of patches. Hierarchical vision transformers
learn from the success of traditional CNN models and in-
troduce downsampling operations into vision transformers.
Basically, there are two types of downsampling, i.e., max-
pooling [38] and convolution with stride two and a double
number of channels [28]. Given the latter as an example,
the input Zin ∈ RC×H×W will transform to the output
Zout ∈ R(2C)×(H/2)×(W/2). Thus, the ratio of data loss
after downsampling can be computed as:

Rd = 1− Ωout

Ωin

= 1− (2C)× (H/2)× (W/2)

C ×H ×W

= 0.5, (3)
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Figure 2. The process of convolutional operation with non-integer
stride. The point p (the center of the yellow box) is the value at
non-integer coordinates which is derived by gathering the informa-
tion of four auxiliary points {ai}4i=1 around it (the center of four
gray boxes around p). The way of gathering the information can be
selected from maxpooling, average pooling, bilinear interpolation,
etc. Better viewed in color.

in which Ωin and Ωout are the total dimensionality of the
feature maps before and after downsampling.

However, in Fig. 1 we can see that the redundant calcu-
lation challenge is not that severe at the early stage of the
vision transformer, and the challenge is overcompensated
since too much information is lost. In order to decrease the
data loss ratio Rd, an implicit solution is to increase the
number of channels C, since a factor of two is the mini-
mum integer for downsampling and the spatial dimension-
alities H and W can not be further increased. Nevertheless,
a larger C will increase the computational cost at the same
time. Thus, we propose a new way to balance the data loss
ratio and the computational cost in order to better deal with
the redundant calculation challenge.

4. Proposed Method

In this section, we first introduce the flexible down-
sampling layer (FD layer) that is not limited to integer
stride [30, 23, 11, 17, 18] and produce output feature map
with any preset dimensionalities. Then, we propose a
masked auto-encoder architecture to facilitate the training
of FD layer and generate informative outputs. In this way,
we can get a compact vision transformer with less redundant
calculation. Finally, we introduce the overall architecture of
the proposed FDViT.

4.1. Flexible Downsampling Layer (FD layer)

Given an input Zin ∈ RCin×Hin×Win and a convolu-
tional layer with filter F ∈ RKh×Kw×Cin×Cout , the spatial
size Hout of the output feature map can be calculated as:

Hout =
Hin −Kh + 2Ph

Sh
+ 1, (4)

in which Kh, Ph and Sh are the kernel size, padding and
stride along the height dimension, and Cin and Cout are the
number of input and output channels. The calculation along
width dimension is similar to that of height and is ignored
in the following. Given an integer stride Sh, it is common
that the height of the feature map is downsampled by a fac-
tor of Sh, which means the spatial dimensions are at least
halved. We aim to smoothly reduce the spatial dimensions
so that more information will be kept at the early stage of
the network.

We relax the restriction of convolution with integer
stride, allowing for the use of non-integer strides and pro-
pose a flexible downsampling layer that can output feature
maps with arbitrary pre-defined size Hout. Specifically,
given the input feature map size Hin, we have:

Ŝh =
Hin −Kh + 2Ph

Hout − 1
. (5)

Without loss of generality, we define Ph = Kh−1
2 and the

output of the FD layer is:

Zout(c, h, w) =

⌊Kh
2

⌋∑
i=⌈−Kh

2
⌉

⌊Kw
2

⌋∑
j=⌈−Kw

2
⌉

Cin∑
k=1

Zin(k, hŜh + i, wŜw + j)× F (i, j, k, c),

(6)

in which Ŝh(Ŝw) is non-integer stride defined in Eq. 5.
Note that the values of input at non-integer coordinates

are required in order to derive the output feature map. Thus,
the value of point p = f(ph, pw) at coordinate (ph, pw) ∈
R2

+ can be calculated with the help of four auxiliary points:

a1 = f(⌈ph⌉, ⌈pw⌉), a2 = f(⌈ph⌉, ⌊pw⌋),
a3 = f(⌊ph⌋, ⌈pw⌉), a4 = f(⌊ph⌋, ⌊pw⌋), (7)

by gathering their information. Typically, maxpooling p =
max(ai), average pooling p = mean(ai), and the bilinear
interpolation operation p = bilinear(ai), i = 1, · · ·, 4 can
be used, as depicted in Fig. 2. The comparison of using
different gathering functions is shown in the ablation study
in Sec. 5.

Thus, we can set Hout = Hin/α and Cout = βCin, and
the data loss ratio after FD layer can be computed as:

R′
d = 1− Ω′

out

Ωin

= 1− (βCin)× (H/α)× (W/α)

Cin ×H ×W

= 1− β

α2
, (8)

and Eq. 3 can be treated as a special case with α = β = 2.
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Figure 3. The overall architecture of the proposed method. FDViT-S is used as an example. Modules with red lines are only used for
training and do not participate in the inference process.

Recall that merely increase β reduces the data loss while
at the same time increasing the computational cost. Thus,
we need to simultaneously change α and β to keep the
FLOPs roughly unchanged. In the following experiments,
we set α = β =

√
2 and the data loss after the downsam-

pling layer reduces to R′
d ≈ 0.29 which is less than that of

the original downsampling layer which discards 50% of the
data in Eq. 3. By doing this, we can better cope with the
redundant calculation challenge while keeping more infor-
mation at the early stage of the network. More results of
using different α/β can be seen in the experiments.

The proposed FD layer is different from several exist-
ing methods that also utilizing values at non-integer coordi-
nates [30, 23, 11, 17, 18]. For example, RoIAlign [23] com-
putes bilinear interpolation four times followed by a max
function, while we compute only one time which is faster.
Deformable convolution [11] generates kernel locations by
adding learnable offsets and keeping integer stride, while
we are parameter-free and derive outputs with an arbitrary
size by fixing the kernel and using non-integer stride.

4.2. Generate Informative Output of FD Layer

Note that our basic motivation of using downsampling
layer is to reduce the similarity of patches and derive com-
pact feature maps, which copes well with the purpose of
auto-encoder [46] that is widely used as an unsupervised
learning method to generate compact features from the orig-
inal input. Thus, besides training downsampling layers
through an end-to-end manner with classification loss, we
propose to use an auto-encoder architecture to facilitate the
training of FD layers and generate informative output after

downsampling.
Specifically, given the input Iin ∈ RCin×Hin×Win , we

treat each FD layer as the encoder and derive the middle out-
put Imid = E(Iin) ∈ R(βCin)×(Hin/α)×(Win/α), in which
E(·) is the operation introduced in Eq. 6. Then, Imid is sent
to the decoder:

Iout = D(Imid) = FDConv2(ReLU(BN(Conv1(Imid)))),
(9)

in which BN is the batch normalization, ReLU is the non-
linear activation function, Conv1 is the traditional convolu-
tional layer that maps the channel dimension from βCin to
Cin and FDConv2 maps the spatial dimension from Hin/α
(Win/α) to Hin (Win) by using non-integer stride 1/α. The
auto-encoder is trained by minimizing the mean squared er-
ror between the input Iin and the output Iout:

Lrecon =
1

n

n∑
i=1

(Iout − Iin)
2, (10)

in which n is the number of samples.
In practice, we find that this simple solution has little ef-

fect on the final performance. This is mainly due to two rea-
sons. Firstly, the difficulty of reconstruction task is less than
the original classification task, and Eq. 10 converges at the
beginning of the training process. Thus, the divergence of
training stages between the two different tasks may hurt the
final performance. Secondly, the target of the reconstruc-
tion task Iin is not reliable at the early stage of training,
since the vision transformer network does not converge and
the input may change rapidly.
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Table 1. Details of the proposed FDViT architectures.

Stage Layer Configuration FDViT
Ti S B

1

Patch # Spatial 27 27 31
Embedding # Channel 64 144 256
Transformer MLP Ratio 4

Block # Block 2 2 3

2

Flexible # Spatial 19 19 22
Downsample # Channel 92 204 360
Transformer MLP Ratio 4

Block # Block 3 3 3

3

Flexible # Spatial 14 14 16
Downsample # Channel 128 288 512
Transformer MLP Ratio 4

Block # Block 3 3 3

4

Flexible # Spatial 10 10 11
Downsample # Channel 184 408 720
Transformer MLP Ratio 4

Block # Block 2 2 2

5

Flexible # Spatial 7 7 8
Downsample # Channel 256 576 1024
Transformer MLP Ratio 4

Block # Block 2 2 2

Parameter (M) 4.5 21.5 67.8

FLOPs (G) 0.6 2.8 11.9

Based on the above reason, we propose to align the
difficulty of the reconstruction task to the classification
task and apply a mask on the input to generate output
that can generalize better, which is shown to be useful in
MAE [21]. Specifically, given the input Iin, a binary mask
Mr ∈ {0, 1}Cin×Hin×Win is multiplied on Iin and derive
the masked input IMr

in = Iin⊙Mr, in which r = |Mr(m=0)|
|Mr|

is defined as the masking ratio with |Mr(m = 0)| indi-
cates the number of 0’s in the binary mask and |Mr| is
the total number of elements in Mr. The output of the
masked auto-encoder is generated based on the masked in-
put IMr

out = D(E(IMr
in )), and the reconstruction loss is ap-

plied to the output and the original input:

LMr
recon =

1

n

n∑
i=1

(IMr
out − Iin)

2, (11)

where the masking ratio r controls the difficulty of this
task. Note that the mask and the decoder architecture are
only used during training, and do not have an effect on the
inference process.

4.3. Overall Architecture of FDViT
We plot the overall architecture of the proposed FDViT

in Fig. 3. Since the spatial dimensions are smoothly re-
duced, we use more FD layers for downsampling than the
baseline model PiT [28] and other traditional hierarchical
vision transformers such as PSViT [4] with two downsam-
pling layers. For FD layers, the original input Iin is used for
subsequent layers to generate the classification output, and
the masked input IMr

in is used as the input of auto-encoder
architecture to further help FD layers generate informative
feature maps. The mainstream network and the masked
auto-encoder architecture are learned through an end-to-end
training method by back-propagating the final loss func-
tion which combines the ordinary classification loss with
the proposed reconstruction loss (Eq. 11):

L = Lc +
θ

S

∑
S

LMS
r

recon, (12)

in which S is the number of FD layers, Lc =∑
Hcross(y,ygt) is the cross-entropy loss for classification

and θ is the trade-off parameter. Detailed architectures can
be seen at Tab. 1.

5. Experiments
In this section, we empirically verify the effectiveness

of the proposed FD layer and masked auto-encoder ar-
chitecture for FDViT on widely used benchmark dataset
ImageNet-1k [12], which contains over 1.2M training im-
ages from 1000 different classes and 50k validation images.
We compare our method with state-of-the-art vision trans-
formers containing hierarchical architectures, and also other
non-hierarchical transformer and CNN models. Then, we
conduct several ablation studies to better investigate each
part of the proposed method. Finally, we conduct experi-
ments for object detection on MSCOCO 2017 dataset which
contains 118k training and 5k validation images, and also
semantic segmentation task on ADE20K.

5.1. Experiments on ImageNet

Implementation details. We train our models for 300
epochs with an initial learning rate of 0.001 and a cosine
learning rate decay scheduler. We use AdamP [27] opti-
mizer for optimization with weight decay and momentum
set to 0.05 and 0.9, respectively. The total batch-size is set
to 1024. The trade-off parameter θ and the masking ratio r
are set to 0.1 and 0.2, respectively. Other training parame-
ters and the data augmentation strategy are same as those in
DeiT [44].

Compared Methods. To verify the effectiveness of
the proposed FDViT, we compare our method with (1)
vision transformers with hierarchical architectures such
as TP-ViT [36], HVT [38], PiT [28], PoolFormer [58]
and PVT [45]; (2) Local-enhanced transformers such as
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Table 2. Comparison with state-of-the-art methods on ImageNet-1k dataset. Methods are grouped by FLOPs.

Model Category Parameters (M) FLOPs (G) Top-1 Accuracy (%)

ResNet-18 [26] CNN 11.7 1.8 69.8
DPSViT-Ti [43] Non-hierarchical ViT - 0.6 72.1
SAViT-Ti [10] Non-hierarchical ViT 4.2 0.9 70.7

ViT-Ti (DeiT-Ti) [15] Non-hierarchical ViT 5.7 1.3 72.2
TPViT-0.6G [36] Hierarchical ViT - 0.6 71.7

HVT-Ti [38] Hierarchical ViT 5.7 0.6 69.6
PiT-Ti (baseline) [28] Hierarchical ViT 4.9 0.7 73.0

FDViT-Ti (ours) Hierarchical ViT 4.5 0.6 73.7
RegNetY-3.2GF [41] CNN 19.4 3.2 79.0

ResNet-50 [26] CNN 25.6 4.1 78.5
ResNext50-32x4d [51] CNN 25.0 4.2 79.1

DPSViT-S [43] Non-hierarchical ViT - 2.4 79.5
SAViT-S [10] Non-hierarchical ViT 14.7 3.1 80.1

ViT-S (DeiT-S) [15] Non-hierarchical ViT 22.1 4.6 79.8
T2TViT-14 [59] Non-hierarchical ViT 21.5 4.8 81.5

LIT-Ti [37] Local-enhanced ViT 19.0 3.6 81.1
Twins-S [9] Local-enhanced ViT 24.1 3.8 81.2
Swin-T [34] Local-enhanced ViT 29.0 4.5 81.3
HVT-S [38] Hierarchical ViT 22.1 2.4 78.0

TPViT-4.4G [36] Hierarchical ViT - 4.4 81.2
PoolFormer-S36 [58] Hierarchical ViT 31.0 5.1 81.4
PiT-S (baseline) [28] Hierarchical ViT 23.5 2.9 80.9

FDViT-S (ours) Hierarchical ViT 21.5 2.8 81.5
ResNet-152 [26] CNN 60.0 11.3 80.6

ResNext101-64x4d [51] CNN 83.5 15.6 81.5
RegNetY-12GF [41] CNN 51.8 12.1 80.3

DPSViT-B [43] Non-hierarchical ViT - 9.4 81.5
T2TViT-24 [59] Non-hierarchical ViT 64.1 13.8 82.3

ViT-B (DeiT-B) [15] Non-hierarchical ViT 86.6 17.6 81.8
PiT-B (baseline) [28] Hierarchical ViT 73.8 12.5 82.0

FDViT-B (ours) Hierarchical ViT 67.8 11.9 82.4

Table 3. Classification results on ImageNet-1k dataset using differ-
ent numbers and types of downsampling layers. ‘#ds’ represents
the number of downsampling layers used in the network architec-
ture. None of them use masked auto-encoder during training.

#ds Layer Param FLOPs Top1 acc
Type (M) (G) (%)

2 original 23.5 2.9 80.9
2 FD 10.9 2.8 80.8
4 original 47.4 2.7 80.3
4 FD 21.5 2.8 81.3

LIT [37], Swin [34] and Twins [9]; (3) Other non-
hierarchical transformer models such as DPS-ViT [43],
T2T-ViT [59], SAViT [10] and (4) state-of-the-art CNN
models such as ResNet [26], ResNext [51] and RegNet [41].

Experimental results. We show our experimental re-
sults in Tab. 5. The proposed models achieve better

classification accuracy with fewer parameters and FLOPs
compared to other hierarchical transformer-based models.
Also, we outperform non-hierarchical transformers and
CNN counterparts. Specifically, for the tiny model we
achieve 73.7% classification accuracy which is 1.5% higher
than DeiT-Ti model with over 2× FLOPs reduction and
surpasses the baseline model PiT-Ti by 0.7% with fewer
FLOPs. Similarly, the proposed FDViT-S and FDViT-B out-
perform baseline model PiT-S and PiT-B by 0.6% and 0.4%
with 0.1G and 0.6G fewer FLOPs and 2.0M and 6.0M fewer
parameters.

5.2. Ablation Studies

In this section, we conduct ablation studies to demon-
strate the effectiveness of each part of the proposed method.

Effect of FD layers. Instead of using two downsampling
layers with stride=2 as the baseline model PiT does, we use
four FD layers with stride=

√
2 as shown in Tab. 1 to align

the spatial dimension of the final output feature before clas-
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Table 4. Ablation study of using different gathering functions
to generate value at non-integer coordinates using four auxiliary
points. Experiments are conducted on FDViT-S.

Type Top1 acc (%)

bilinear 81.3
max pooling 80.3

average pooling 79.8

0 50 100 150 200 250 300
Epochs

Lo
ss

CE loss w/o recon
CE loss w/ recon

Figure 4. Classification loss with (blue line) and without (red line)
using masked auto-encoders. The experiments are conducted on
FDViT-Ti for ImageNet-1k dataset.

sification. Thus, in order to better verify the effectiveness of
the proposed FD layers, we compare the classification per-
formance of using different number of downsampling lay-
ers with different strides, as shown in Tab. 3. Experiments
are conducted based on PiT-S model using ImageNet-1k
dataset.

Note that using four FD layers yields the best result
among different settings since it copes well with the chal-
lenge of redundant calculation of different patches. It can
smoothly reduce the similarity at the early stage while at
the same time discarding enough information in the later
period. Instead, line 1 and line 3 discard too much infor-
mation at an early period. Line 2 only reduces 50% of the
patch data in total and is too conservative to solve the prob-
lem since the patch similarity at the end of the network is
much larger. All the settings have similar FLOPs by adjust-
ing the number of channels after downsampling, and none
of them use masked auto-encoder during training.

We also give an ablation study on the way of gathering
the information of four auxiliary points {ai}4i=1 in Eq. 7.
Results in Tab. 4 shows that using the bilinear interpolation
operation yields the best result among 3 different choices.

Effect of masked auto-encoder. In previous section,
we use masked auto-encoders to facilitate the training of
FD layers. In Fig. 4 we plot the classification loss with

Table 5. Experimental results of using different hyper-parameters
α/β for FDViT-Ti on ImageNet dataset.

α/β Params (M) FLOPs (G) Top-1 Acc (%)

2.0 / 2.0 4.9 0.7 73.0
1.8 / 1.8 3.8 0.5 72.8
1.6 / 1.6 4.1 0.5 73.1
1.4 / 1.4 4.5 0.6 73.7
1.2 / 1.2 2.8 0.6 70.6
1.0 / 1.0 5.7 1.3 72.2

Table 6. Classification results on ImageNet-1k dataset using differ-
ent hierarchical vision transformer models as baselines, and apply
the proposed method to them. ‘FD’ and ‘MAE’ stand for FD lay-
ers and masked auto-encoder training strategy.

Model Params (M) FLOPs (G) Top1 acc (%)

HVT-Ti 5.7 0.6 69.6
+FD 5.8 0.7 69.8 (+0.2)

+MAE 5.7 0.6 69.7 (+0.1)
+FD & MAE 5.8 0.7 70.0 (+0.4)

PiT-Ti 4.9 0.7 73.0
+FD 4.5 0.6 73.4 (+0.4)

+MAE 4.9 0.7 73.3 (+0.3)
+FD & MAE 4.5 0.6 73.7 (+0.7)

and without using masked auto-encoders. We can see that
masked auto-encoders can facilitate the training process and
reduce the classification loss by a margin, thus yield a better
performance from 73.4% to 73.7% on FDViT-Ti.

Ablation Study on α and β. We conduct experiments
using different α and β for FDViT-Ti on the ImageNet
dataset. The results are shown in the following table. Note
that α = β = 2 equals the original setting of PiT, α = β =
1.4 is the setting of proposed FDViT (this is equal to using
α = β =

√
2 since the dimensions are rounded to integers)

and α = β = 1 stands for the original setting of ViT. A dif-
ferent number of downsampling layers are used to generate
roughly the same FLOPs. We can see in Tab. 5 that using
α = β = 1.4 yields the best result and is selected as the
hyper-parameter.

General effect. In order to better verify the general ef-
fect of the proposed method, we apply our FD layer and
masked auto-encoder to several hierarchical vision trans-
former models and report the results in Tab. 6, and show
that FD layer and masked auto-encoder can improve the
performance of hierarchical vision transformer models, and
combine them together yield the best results.
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Table 7. Experimental results on MSCOCO 2017 dataset using dif-
ferent backbones.

BackBone AP AP50 AP75 Params (M)

ViT-S 36.9 57.0 38.0 34.9
PiT-S 39.4 58.8 41.5 36.6

FDViT-S 39.9 59.4 42.2 34.7

Table 8. Semantic segmentation results on ADE20K dataset.

Model PiT-S FDViT-S
mIoU 42.6 44.0

5.3. Experiments on COCO

We further conduct experiments for object detection on
MSCOCO dataset. Following PiT [28], we use the training
setup from Deformable DETR [63] except for the image
resolution. We use SGD optimizer with an initial learning
rate of 2e-4, weight decay of 1e-4 and batch size of 16. A
total of 50 epochs are used for training the model and the
learning rate decays to 0.1 of the origin at the 30-th epoch.
Different backbones are all pretrained on ImageNet dataset.

We compare FDViT to previous vision transformer net-
works (e.g., ViT [15] and PiT [28]) in Tab. 7. Our FDViT-S
detector achieves 39.9% mAP on the object detection task
which is 3.0% and 0.5% higher than that of ViT-S and PiT-S
with 0.2M and 1.9M fewer parameters respectively, which
shows that the proposed method is effective on not only im-
age recognition task but also object detection task.

5.4. Semantic Segmentation on ADE20K

ADE20K [62] is a semantic segmentation dataset con-
taining 20k training images from 150 semantic categories,
2k validation images and 3k testing images. UperNet [50]
is used as the framework for conducting the experiments.

AdamW is used as the optimizer of training with the ini-
tial learning rate of 6e−5, weight decay of 1e−2 and batch-
size of 16. A linear learning rate decay strategy is used, and
the models are trained for 160K iterations in total.

In Tab. 8, using FDViT-S as the backbone achieves 44.0
mIoU on ADE20K while PiT-S achieves 42.6 mIoU. We
can see that FDViT-S outperform PiT-S by +1.4 mIoU,
which means that the proposed method also has advantages
on the semantic segmentation task.

6. Conclusion
In this paper, we propose a novel hierarchical archi-

tecture of vision transformer to better deal with the chal-
lenge that different patches are redundant in the original
ViT model while keeping more information at the early

stage of the network. We introduce a flexible downsampling
layer (FD layer) which has a non-integer stride and can pro-
duce an output feature map with any preset dimensional-
ity. We further propose a masked auto-encoder to facilitate
the training of FD layers and generate informative outputs.
Experimental results on benchmark datasets ImageNet-1k,
MSCOCO 2017 and ADE20K demonstrate the effective-
ness of the proposed method which has better performance
with fewer FLOPs and parameters.
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