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Abstract

Impressive performance on point cloud semantic seg-
mentation has been achieved by fully-supervised methods
with large amounts of labelled data. As it is labour-
intensive to acquire large-scale point cloud data with point-
wise labels, many attempts have been made to explore
learning 3D point cloud segmentation with limited anno-
tations. Active learning is one of the effective strategies
to achieve this purpose but is still under-explored. The
most recent methods of this kind measure the uncertainty of
each pre-divided region for manual labelling but they suffer
from redundant information and require additional efforts
for region division. This paper aims at addressing this is-
sue by developing a hierarchical point-based active learn-
ing strategy. Specifically, we measure the uncertainty for
each point by a hierarchical minimum margin uncertainty
module which considers the contextual information at mul-
tiple levels. Then, a feature-distance suppression strategy is
designed to select important and representative points for
manual labelling. Besides, to better exploit the unlabelled
data, we build a semi-supervised segmentation framework
based on our active strategy. Extensive experiments on the
S3DIS and ScanNetV2 datasets demonstrate that the pro-
posed framework achieves 96.5% and 100% performance of
fully-supervised baseline with only 0.07% and 0.1% train-
ing data, respectively, outperforming the state-of-the-art
weakly-supervised and active learning methods. The code
will be available at https://github.com/SmiletoE/HPAL.

1. Introduction
Point cloud semantic segmentation aims to assign a cat-

egory label for each 3D point, which can be applied to var-
ious scenarios, such as robotics [34], autonomous driving
[1], and augmented reality [20]. Recently, deep learning

*Corresponding author. †Equal contribution.

based methods [38, 52] have achieved impressive perfor-
mance. These high-performing methods usually rely on
large amounts of data with point-wise labels. However, ac-
quiring such dense labels for 3D point clouds is extremely
tedious and costly.

To relieve the labour and cost of annotation, many recent
methods explore semi-supervised learning to learn 3D seg-
mentation models with limited labelled points that are usu-
ally sampled randomly. These methods attempt to employ
effective strategies to propagate the label information to the
unlabelled points [5, 17, 10, 13]. Although these semi-
supervised methods can greatly decrease labelling costs,
their performance might be limited due to various factors.
Among them, the most important reason is that some of the
randomly selected points are in fact redundant while some
really important points might be omitted.

As an alternative learning strategy, active learning re-
cently is studied to alleviate such limitations for 3D seg-
mentation. Lin et al. [24] divide the whole point clouds
into segments and each segment is utilised as the basic
query unit for sample selection. ReDAL [41] proposes to
select those informative and diverse sub-scene regions for
label acquisition. The entropy, colour discontinuity, and
structural complexity are used to measure the information
of sub-scene regions. Following it, SSDR-AL [29] groups
the original point clouds into superpoints and incrementally
selects the most informative regions for annotation. How-
ever, these methods usually rely on pre-dividing the point
cloud into multiple regions, and the region division strat-
egy might negatively impact the performance. Moreover, as
point clouds present strong semantic similarity in local ar-
eas, selecting all the points in the local region results in a
redundant labelling budget.

Motivated by the above analysis, this research aims at en-
hancing the 3D segmentation performance with limited la-
belled data in the active learning framework. Specifically, in
comparison with previous region-based methods, we mea-
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sure the uncertainty or importance of labelling for each
point to avoid the additional efforts and potential bias of re-
gion division. However, considering each point individually
may introduce extra noise to the training process, leading to
unreliable uncertainty values that cannot reflect the real im-
portance of each point. To alleviate this issue, we design
a hierarchical minimum margin uncertainty (HMMU) mea-
surement module by considering the local contextual infor-
mation. The HMMU involves the uncertainty of the point
and its neighbourhood. In this way, the acquired score can
more effectively represent the importance of each point la-
bel. Based on the uncertainty scores acquired by HMMU,
we can directly choose the Top-K points for labelling.
However, as the point cloud presents semantic similarity in
the local region, some redundant uncertain points tend to
be distributed densely. To further reduce the labelling cost,
we propose a feature-distance suppression module (FDS) to
remove those uncertain points with similar features in the
neighbourhood. By exploiting the devised HMMU mea-
surement and FDS for redundant point filtering, our hierar-
chical point-based active learning strategy is able to select
more valuable points for labelling and thus reduce labelling
costs. Furthermore, inspired by previous semi-supervised
methods that exploit the unlabelled points, we utilise a sim-
ple teacher-student scheme to enhance the supervision sig-
nal by assigning a pseudo label for the unlabelled points.

The main contributions of this research are as follows:

• We propose a point-based active learning method
for semi-supervised point cloud semantic segmenta-
tion, which surpasses current semi-supervised or ac-
tive learning methods and achieves comparable perfor-
mance with full supervision methods relying on scarce
annotations.

• We propose a novel hierarchical minimum margin un-
certainty module to measure the uncertainty for each
point by progressively perceiving the contextual infor-
mation at increasing scales.

• We propose a feature-distance suppression module to
remove redundant points with similar features in the
neighbourhood and further minimise the labelling cost.

2. Related Work
2.1. 3D Semantic Segmentation

In recent years, a large number of deep learning-based
point cloud semantic segmentation methods have been de-
veloped, which can be roughly divided into the following
categories: 1) 2D projection-based methods [4, 19, 2,
8, 26, 39, 40, 44], which project the 3D point cloud onto
2D images through a variety of viewpoints including multi-
view, bird’s eye view, spherical projection etc. Projection-
based methods can make full use of those well-designed 2D

convolution networks for 3D scene parsing, but obviously,
the projection causes the loss of 3D geometric information
and thus limits the performance. 2) voxel-based meth-
ods [6, 11, 31, 47, 7, 33]. Point cloud voxelization regu-
larizes point clouds with uneven densities, making it pos-
sible to extend regular 2D convolutions to 3D scenes. At
an early stage, voxel-based methods usually suffer from the
explosion of computation and the loss of information. For-
tunately, some sparse convolution methods [11, 31, 7] have
been proposed over time to greatly ease the computational
costs. 3) point-based methods [14, 27, 28, 35, 23, 42].
These methods directly take the original uneven point cloud
as input and use MLPs, 3D point convolution, and other
more flexible ways to process the point clouds, which pre-
serve the original 3D information. However, their high per-
formance still relies on a large number of point-level labels.

2.2. Weakly-supervised 3D Semantic Segmentation

We collectively refer to all methods training with sparse
annotation as weakly supervised methods, which is a well-
explored field in point cloud segmentation. These meth-
ods are usually based on a small set of randomly la-
belled data and then exploit more information from the
unlabelled data by leveraging techniques such as transfer
learning, contrastive learning, consistency regularization,
pseudo-label, etc. Based on the transfer learning tech-
nologies, pre-training is widely exploited in 2D images,
and has recently been gradually applied to point clouds
[50, 49, 43, 53, 37, 45]. These methods learn pre-trained
knowledge from 3D point clouds or 2D images and then ap-
ply it to the target dataset, thus achieving better training re-
sults with limited labelled data. Some other works train the
model by using consistency regularization [46, 51, 22, 48]
and pseudo-label [13, 36, 5, 25, 50, 22]. SQN [13] is one of
these works which designs a novel semantic query network
to efficiently obtain the pseudo-labels. To further improve
weakly supervised training, some approaches also use con-
trastive learning [22, 25, 12, 18, 43], which usually com-
bine contrastive loss with pre-training, consistency regular-
ization, and pseudo-labels to better exploit the supervision
information. Most weakly-supervised methods explore in-
formation from the labelled data, so how to select the most
informative data to label is a question of crucial importance.

2.3. Active Learning on 3D Semantic Segmentation

Similar to weakly-supervised learning, active learning
also aims to train deep models with limited labelled data.
The main difference is that weakly-supervised learning
mainly focuses on enhancing supervision by exploiting
available label information while active learning focuses on
the selection of valuable information for labelling.

Lin et al. [24] make the first attempt for active learn-
ing on 3D semantic segmentation using segments as the ba-
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Figure 1. The proposed hierarchical point-based active learning framework for semi-supervised point cloud semantic segmentation. (a)
A segmentation network using the teacher-student model is trained with the initial labelled and unlabelled training data. The teacher is
updated from the student by the exponential moving averaging (EMA) and the student network is obtained as our target segmentation
model. (b) Those representative candidate points are measured by the trained model using the proposed hierarchical minimum margin
uncertainty module (HMMU). (c) Feature-distance Suppression module (FDS) is then applied to remove those redundant points in the
neighbourhood and select the final to-be-annotated points. The selected valuable points are annotated and added to the labelled training set
to improve the segmentation model.

sic query unit, and propose a segment entropy strategy to
measure the informativeness of each segment. To improve
the efficiency of active learning, superpoints are introduced
as the most common basic query units [30, 41]. Consider-
ing the limitation of uncertainty, Shi et al. [30] propose to
design active acquisition functions from multiple perspec-
tives, including feature diversity, shape diversity, and en-
tropy. ReDAL [41] combines entropy with the geometric
structure and colour information and uses feature clustering
to prevent selection redundancy. In addition to the entropy-
based method, SSDR-AL [29] improves MMU based on
super-point by considering the principal class within super-
points. To date, all active learning methods for point cloud
semantic segmentation are region based. However, the pre-
region division can greatly affect the active learning perfor-
mance and unnecessary annotation in the semantic-similar
areas is prone to occur.

3. Approach

3.1. Overview

In the following, we describe our proposed hierarchical
point-based active learning approach for semi-supervised
point cloud semantic segmentation in detail. As shown in
Figure 1, the initial labelled and unlabelled training data are
utilised to train the point cloud semantic segmentation neu-
ral network in a semi-supervised way. A teacher-student
model is adopted. With the trained model, the valuable un-
labelled points that are able to improve the segmentation
performance most can be measured and selected in an active
learning manner. The hierarchical minimum margin uncer-

tainty module is proposed to measure the point-wise uncer-
tainty by hierarchically increasing contextual ranges, which
enables progressively capturing the local context at different
scales. Then, the neighbouring points with similar features
are removed by the feature distance suppression module,
thereby further reducing the annotation redundancy. The
remaining points with high uncertainty scores as well as
sparse distributions are regarded as the candidates to be an-
notated. In this manner, the most valuable and represen-
tative unlabelled points are selected to expand the labelled
set, with which the semi-supervised point cloud semantic
segmentation neural network can be further enhanced. In
the following, we describe each component of the proposed
framework in detail.

3.2. Hierarchical Minimum Margin Uncertainty
Measurement

In the proposed method, we aim to select and label the
most valuable points that can bring maximum performance
improvements. Intuitively, identifying and using the most
informative labelled data for training is the key to obtaining
a model with good quality, and consequently accurate seg-
mentation prediction. Merely considering individual points
without their surrounding context information cannot reflect
the real importance of the point. Thus, we design the hier-
archical minimum margin uncertainty measurement module
to calculate the uncertainty score for each point by grouping
points at multiple scales and progressively perceiving con-
text information in a broader range along the hierarchy for
the unlabelled point.

As shown in Figure 1, the prediction for each point gen-

18100



erated with the currently trained model is input into the
HMMU module. We first calculate the point-level mini-
mum margin uncertainty score Ux for each unlabelled point
with Eq. 1:

Ux = h(xu; p1(x
u))− h(xu; p2(x

u)), (1)

where xu is the candidate point that is chosen to be labelled;
p1(x

u) and p2(x
u) are the highest and second-highest pre-

diction of xu under the segmentation predictor h(·).
Then we group a wider range of neighbours through

downsampling. The softmax prediction of each downsam-
pled point is obtained by averaging the softmax prediction
of its neighbouring points in the original point cloud. Each
softmax label of the downsampled point represents the pre-
diction distribution of a local region, which is denoted by
SR.

We perform N levels of voxel downsampling. The local
context information of the to-be-annotated point xu at the
ith level of downsampling, denoted by Si

R(x
u), can be rep-

resented as the average of predictions of the grouped points
in the following:

Si
R(x

u) =
1

K

K∑
j=1

p(xu
j ), (2)

where xu
j is the jth neighbour for xu in the original point

cloud; K is the number of neighbours within the predefined
voxel radius vr; and p(·) is the prediction probability.

For each level of downsampling, the voxel-level contex-
tual uncertainty scores U i

R for the unlabelled point xu can
be obtained with:

U i
R = h(xu;Si

R1(x
u))− h(xu;Si

R2(x
u)), (3)

where Si
R1(x

u)) and Si
R2(x

u) are the highest and the sec-
ond highest average prediction of the grouped points of xu

from the segmentor h(·) in the ith downsampling.
Finally, for each unannotated point xu, we integrate the

point-level and the voxel-level contextual uncertainty scores
to get the final uncertainty vu using Eq. 4:

vu = Ux +

N∑
i=1

ωi × U i
R. (4)

Here, ωi ∈ {0.1, 0.01, 0.001} is the hyperparameter rep-
resenting the fusion weight of the contextual uncertainty at
the ith level of downsampling and three levels of downsam-
pling is performed in the experiment.

With HMMU, the context information is fused to signif-
icantly improve performance by merely annotating points
rather than regions.

(a) (b)

(c) (d)

Figure 2. Visualization of selected points. (a) and (c) show the
points selected using the Top-K approach (blue dots); (b) and (d)
present points chosen by FDS (orange dots). FDS enables a more
spread-out point selection.

3.3. Feature-distance Suppression based Point Se-
lection

With the point-wise uncertainty score vu, we can se-
lect the Top-K points with the highest uncertainty to la-
bel. However, as shown in Figure 2, such a point selection
way might make points concentrate in local areas, causing
label redundancy. Thus, we propose a feature-distance sup-
pression (FDS) module to ensure the selected points retain
a spread-out distribution in the space, thus offering a more
effective overall representation.

Given a distance suppression radius r and a feature sim-
ilarity threshold τ , for a point xi to be selected, we first de-
termine whether there are points within its radius r that have
been already selected. A judgment set Di is constructed for
the candidate point xi in the current point selection itera-
tion.

Di = Di ∪ {xj}, if
∀xj is selected : dij < r,

(5)

where xj is the neighbour of xi within the radius of r; dij
is the Euclidean distance between xi and xj ; and Di rep-
resents if there are other candidate points in the neighbour-
hood and Di is initialized to be empty.

If there is no neighbour of xi that is selected as a candi-
date, i.e. the judgment set Di is empty, xi is regarded as the
valuable point that can represent the local area for labelling.
Conversely, if the neighbouring point xj is already selected
as the uncertainty point, cosine similarity Simij between
the features of xi and xj is then computed with Eq. 6.

Sim(xi, xj) =
fi · fj

||fi|| · ||fj ||
, (6)

where fi and fj are the features of xi and xj extracted with
the trained student segmentation network.

If there exists an xj in Di for which Simij > τ , xi is
regarded as a redundant point with respect to the labelled
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data and xi is excluded from labelling.

3.4. Training objective

To train a network with partly annotated data, a usual
approach is to apply the cross-entropy loss to the labelled
points and ignore the unlabelled ones, which causes inad-
equate supervision for model learning. Inspired by pre-
vious semi-supervised 3D point cloud segmentation meth-
ods, in the proposed method we employ a teacher-student
framework to exploit unlabelled points and provide addi-
tional supervision. Specifically, we construct two segmen-
tation networks using MinkowskiNet [7], denoted as the
teacher model Mt and student model Ms, respectively. A
consistency constraint between the teacher model and the
student model is exploited to learn knowledge from unla-
belled data. Pseudo-labels of unlabelled data are generated
using the teacher model. During training, the original sam-
ple is input into the teacher network while its augmented
counterparts are input into the student. For those labelled
points, we apply the standard cross-entropy loss. For the
unlabelled ones, we generate pseudo-labels from the output
of the teacher and also compute the cross-entropy loss. The
losses in both labelled and unlabelled points are then used
to optimize the student network by gradient descent. After
updating the student model at each step, Exponential Mov-
ing Average (EMA) is used to transfer the parameters of the
student model to the teacher model:

θjt = αθj−1
t + (1− α)θjs, (7)

where θt and θs are the parameters of the teacher and stu-
dent networks, respectively, and j denotes the j-th training
step. α is the hyper-parameter to determine the speed of
parameter transmission, which is generally close to 1.

4. Experiments
4.1. Datasets

We evaluate the proposed approach on two publicly
available benchmark datasets, S3DIS [3] and ScanNetV2
[9], to demonstrate its superior performance.

S3DIS (Stanford Large-Scale 3D Indoor Space Dataset)
is a large-scale indoor point cloud dataset captured by
Matter-port scanners which mainly dedicate to 3D segmen-
tation tasks. It consists of 6 different large-scale indoor ar-
eas with a total of 271 rooms, each room is a separate point
cloud sample that includes coordinate, colour, and anno-
tation information for each point. Following the standard
evaluation criterion, Area 5 is used as the test set and the
rest of the areas are used as the training set.

ScanNetV2 is an RGB-D video dataset. It contains 1513
point cloud samples from 707 individual indoor scenes for
training and 100 unlabelled samples for testing. For the 3D
semantic segmentation task, ScanNetV2 provides up to 40

categories of classification labels and selects 20 categories
as classification targets to establish the segmentation task.
Each point in the dataset contains coordinate, colour, and
annotation information. In the experiments, we follow the
official data split, dividing the 1513 training data into 1201
training samples and 312 validation samples, and evaluate
methods on the test set.

4.2. Implementation Details

Segmentation Model. In our experiments, we use the
PyTorch implementation of MinkowskiNet in ReDAL [41]
as our backbone network with the stochastic gradient de-
scent (SGD) optimizer. The architecture is trained on a sin-
gle NVIDIA RTX A6000 GPU.

Training Settings. For S3DIS, we set the batch size
to 4, and train 60K steps per iteration. The initial learning
rate is 0.1, and cosine annealing with a period of 5000 is
used as the learning rate decay strategy. For ScanNetV2,
we set the batch size to 4, and train 30K steps per iteration.
The initial learning rate is 0.1, and the learning rate decay
strategy is using polynomial decay with a power of 0.9. In
the teacher-student model, the keep rate of EMA and the
thresholds for the pseudo-label are set to 0.955 and 0.75,
respectively. 5 iterations are performed in the active learn-
ing framework. In HMMU, the point cloud is downsampled
at each scale with the sampling radius of 10cm, 50cm, and
100cm, respectively. In the FDS module, the radius of the
local region is set to 20cm and the feature similarity thresh-
old is set to 0.8.

4.3. Comparison with Active Learning Methods

To demonstrate the effectiveness of our active learn-
ing strategy, we remove the semi-supervised module in the
comparisons with active learning methods. As current ac-
tive learning methods for point cloud semantic segmenta-
tion are region-based, we compare our proposed method
against them to verify the effectiveness of the point-based
active learning method. The compared results are shown
in Table 1. Compared with the region-based active learn-
ing methods, our point-based selection strategy greatly re-
duces the labelling cost, with the demand of achieving 90%
performance of the fully-supervised baselines. With only
0.1% (about 13,000 points) of the downsampled points, our
method allows for 90% of the performance of our fully
supervised baseline, i.e. fully-supervised MinkowskiNet.
This verifies our theory that the strong semantic similarity
in local areas of point clouds results in redundant labelling
and ineffective training in region-based active learning.

Furthermore, we compare the performance of our active
learning strategy with existing region-based ones and four
basic point-based selection strategies including random se-
lection (Random), softmax least confidence (LC), softmax
minimum margin uncertainty (MMU) and softmax entropy
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Methods Segmentors Labelled points
ReDAL [41] SPVCNN 13%
ReDAL [41] MinkowskiNet 15%
SSDR-AL [29] Randlanet 11.7%
Ours MinkowskiNet 0.1%

Table 1. The comparison of the percentage of labelled points re-
quired to achieve 90% accuracy of fully-supervised baseline on the
S3DIS dataset against current region-based active learning meth-
ods. For a fair comparison, the semi-supervised module of our
method is removed here which means only labelled data and se-
lected points are used during training.

(Entropy). The results are shown in Table 2. It can be seen
that the performance of our method is increased by 4.6%
compared with random point selection and surpasses the
state-of-the-art region-based active learning method by 1%
with significantly fewer labelled points (0.1% v.s. 11.7%).

Type Methods Segmentors labelled points mIoU(%)

Region-based
ReDAL SPVCNN 15% 58.0
ReDAL MinkowskiNet 15% 57.3
SSDR-AL Randlanet 11.7% 58.3

Point-based

Random MinkowskiNet 0.1% 54.7
Entropy MinkowskiNet 0.1% 48.2
LC MinkowskiNet 0.1% 53.3
MMU MinkowskiNet 0.1% 55.5
Ours MinkowskiNet 0.1% 59.3

Table 2. The comparison of mIoU between our active strategy
without the semi-supervised module and different active learning
methods on the S3DIS dataset.

4.4. Comparison with Weakly-supervised Methods

We also compare the proposed method with the state-of-
the-art weakly-supervised methods. Similar to [22, 48], we
present state-of-the-art segmentation methods with different
supervision settings. The comparison results on the datasets
of S3DIS and ScannetV2 are presented in Table 3 and Table
4, respectively.

S3DIS. we perform experiments under three different
annotation budgets, namely 0.7%, 0.07%, and 0.02%. For
the sake of fairness, we follow the SQN [13] to calculate the
annotation percentage which is defined as the ratio between
the number of labelled data and all training and validation
data. Each annotation budget is completed through five it-
erations. As shown in Table 3, our approach gains consis-
tent improvements in the segmentation performance with
labelled points increased from 0.02% to 0.43%. It is worth
noting that, for the 0.7% annotation budget, the segmenta-
tion performance at the third iteration (0.43% annotations)
has already surpassed the fully-supervised MinkowskiNet.
This verifies that selecting the most representative points
and making full use of the remaining unlabelled data can
greatly benefit the performance of point cloud semantic seg-
mentation. Our method also outperforms the state-of-the-art
PSD, SQN and HybridCR under 1% labelled data by 2.2%,
2.0% and 0.4%, respectively. When the number of labelled

Methods Labelled points Area 5
PointNet [27] 100% 41.1

PointCNN [23] 100% 57.3
KPConv [35] 100% 67.1

PointTransformer [54] 100% 70.4
CBL [32] 100% 69.4

MinkowskiNet† [7] 100% 64.5
PSD [51] 1% 63.5
SQN [13] 1% 63.7

HybridCR [22] 1% 65.3
Ours 0.43% 65.7

SQN [13] 0.1% 61.4
Ours 0.07% 62.3

PSD [51] 0.03% 48.2
HybridCR [22] 0.03% 51.5

MIL [48] 0.02% 51.4
GaIA [21] 0.02% 53.7
VIB [36] 0.02% 52.0

Ours 0.02% 55.9
Table 3. Comparison with existing weakly-supervised methods on
S3DIS Area-5. † represents the result of the baseline trained on
our own device.

points is reduced to 0.07%, our method is also superior to
the SQN with 0.1% labelled points and achieves 96.5% per-
formance of the fully-supervised baseline (MinkowskiNet).
In the case of the least labelling budget, we evaluate our
method in the setting of 0.02% labelled points. It can be
seen that our method also achieves the best performance,
outperforming the state-of-the-art GaIA, MIL, HybridCR
and PSD by 2.2%, 4.5%, 4.4% and 7.7%.

We also visualize the segmentation results of our method
under different annotation budgets in Figure 3. The re-
sults show that with 0.43% labelled data, our approach can
achieve comparable segmentation results with the fully su-
pervised baseline. Benefiting from the points selected by
our method, our segmentation results are even more promis-
ing in some cases, such as the bookcase and column.

ScanNetV2. As illustrated in Table 4, we use the criteria
of percentage and fixed number of labelled points as differ-
ent annotation budgets to evaluate the methods, including
0.1%, 200pts, and 20pts. Similar to S3DIS, each annota-
tion budget completes through five iterations, and the third
iteration (120pts) is reported in the case of 200pts. We sub-
stantially beat SQN’s performance by 11.3% using 0.1% of
annotation. Compared against PSD, HybridCR and GaIA
which are trained with 1% annotations, our method outper-
forms them with only 0.1% labels by 13.5%, 11.4% and
3%, respectively. In the case of the fixed number of an-
notation points, we use 200 points per scene (200pts) and
20 points per scene (20pts) as the annotation budget. In
our experiment with 200pts, when the labelling points reach
120pts, our method has achieved comparable performance
to the fully supervised baseline. This proves the effective-
ness of our active learning strategy on the semi-supervised
point cloud semantic segmentation. We also evaluate our
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(a) Input (b) Ground Truth (e) Ours (0.07%)(c) Fully-supervised (f) Ours (0.43%)(d) Ours (0.02%)

ceiling floor wall column doorwindow chair table bookcase board clutter

Figure 3. Visualization of segmentation results on the test set of S3DIS Area-5. Our method achieves comparable or even better results
than our fully-supervised baseline (MinkowskiNet) when 0.43% of the labelled data is adopted.

(a) Input (b) Ground Truth (e) Ours (0.1%)(c) Fully-supervised (f) Ours (120pts)(d) Ours (20pts)

wall floor cabinet chair tablesofa door bookshelf counter desk window curtainsink other furniturebed

Figure 4. Visualization of segmentation results on the validation set of ScannNetV2. Our method achieves comparable or even better results
than our fully-supervised baseline (MinkowskiNet) when 120 labelled points per scene are adopted.

Methods Labelled points val test
PointNet++ [28] 100% - 33.9

KPConv [35] 100% - 68.4
VMNet [16] 100% - 74.6
BPNet [15] 100% - 74.9

MinkowskiNet† [7] 100% 69.3 68.0
PSD [51] 1% - 54.7

HybridCR [22] 1% 56.9 56.8
GaIA [21] 1% - 65.2
SQN [13] 0.1% - 56.9

Ours 0.1% 69.9 68.2
SQN [13] 200pts - 59.8
CSC [12] 200pts 68.2 66.5
GaIA [21] 200pts - 68.5

VIBUS [36] 200pts 69.6 69.1
Ours 120pts 70.2 69.4

SQN [13] 20pts - 48.6
CSC [12] 20pts 55.5 53.1
MIL [48] 20pts 57.8 54.4

VIBUS [36] 20pts - 58.6
GaIA [21] 20pts - 63.8

Ours 20pts 62.2 62.5
Table 4. The comparison with existing weakly-supervised meth-
ods. † is the result of the baseline trained on our device.

method on the least annotation setting. In the case of
20pts, our result is much higher than SQN, CSC, MIL,

and VIBUS, showing that our method effectively selects
the most valuable points. However, our result is slightly
lower than GaIA, as the performance of our feature extrac-
tion backbone is limited given only 20pts (the proportion is
less than 0.02% of ScanNetV2).

As shown in Fig. 4, we visualize the segmentation results
of our method under different annotation budgets on Scan-
NetV2. It is observed that our method can achieve compara-
ble or even better segmentation results with minor training
budgets compared to our fully-supervised baseline.

4.5. Ablation Studies

To demonstrate the effectiveness of each module in
our method, we conduct the following ablation studies on
S3DIS dataset. Following [13], all the ablated networks are
trained using 0.1% labelled points on Areas 1, 2, 3, 4, 6
and tested on Area 5. The number of iterations is set to
5 and 0.02% data is selected in each iteration. To clearly
see the effect of active learning, we present the results as
shown in Figure 5. We take random sampling as the ba-
sic strategy for active selection where points are randomly
selected in each iteration. After we replace the random sam-
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Figure 5. The comparison of performance improvements for dif-
ferent combinations of modules.

pling with MMU for active sampling, the mIoU is slightly
improved by 1.5%. After utilising HMMU to select points,
we acquire an improvement of around 3.0% compared with
MMU in the last iteration. The FDS module is also added
to further improve the performance. HMMU+FDS achieves
an extra 2.9% mIoU improvement compared to HMMU.
More impressively, merely relying on the active learning
modules including HMMU and FDS, our approach already
outperforms the random sampling baseline by 8% and sur-
passes 90% performance of full-supervision with only 0.1%
labelling data. The effectiveness of the semi-supervised
module is also demonstrated by the experimental results of
HMMU+FDS+TS. Obviously, adding the semi-supervised
teacher-student module, the segmentation result is further
improved by 5% compared to HMMU + FDS. The pro-
posed method also reaches 95% of the fully-supervised set-
ting with only 0.1% labelled data.

In Table 5, we show the effectiveness of different mod-
ules by quantitative comparison. We compare different
compositions of our module to verify their effectiveness.
Shown in the first row, for the base case where unlabelled
points are selected by MMU in each iteration, the mIoU is
only 55.51%. After using the HMMU module, the segmen-
tation results are improved to 57.65%. If we only apply
FDS to the MMU selection for each iteration, a slight im-
provement of 1.17% is obtained compared with the based
case. When the active learning strategy is removed, as
shown in the fourth row in Table 5, the semi-supervised
segmentation method only achieves the performance of
57.01%. Point cloud semantic segmentation only using the
active learning technique can reach the mIoU of 59.29%. If
we combine semi-supervised and active learning, as shown
in the last row, the performance can be improved to 62.26%.

In Table 6, we show the ablation study of each layer in
the HMMU module. PL represents the layer that calculates

Components mIoU(%)HMMU FDS TS
base. 55.51
✓ 57.65

✓ 56.68
✓ 57.01

✓ ✓ 59.29
✓ ✓ ✓ 62.26

Table 5. Ablation study of different components.

the point-level minimum margin uncertainty score. VL is
the layer which calculates the voxel-level contextual uncer-
tainty score. vr and ω are the voxel-radius and weight for
each VL layer. It is shown that the combination of one
layer of point-level uncertainty and three layers of voxel-
level uncertainty can achieve the best performance. We also
show the ablation study on the hyperparameters of the FDS
module in Table 7. We achieve the best segmentation re-
sult given that r and τ are set to 20cm and 0.8 respectively.
Thus, we adopt this combination in our experiments.

Layer HMMU iter 1 iter 2 iter 3 iter 4 iter 5
ω vr (cm)

PL – – 37.83 50.37 54.32 56.18 56.68
PL + VL1 {0.1} {10} 37.83 52.71 54.84 56.52 57.03
PL + VL2 {0.01} {50} 37.83 51.45 55.81 57.22 57.43
PL + VL3 {0.001} {100} 37.83 51.06 55.62 57.36 58.03
PL + VL1,2 {0.1, 0.01} {10, 50} 37.83 51.56 55.28 56.66 58.21
PL + VL1,2,3 {0.1, 0.01, 0.001} {10, 50, 100} 37.83 52.02 56.02 58.49 59.29
PL + VL1,2,3,4 {0.1, 0.01, 0.001, 0.001} {10, 50, 100, 200} 37.83 51.56 56.32 57.61 57.71
PL + VL1,2,3,4 {0.1, 0.01, 0.001, 0.0001} {10, 50, 100, 200} 37.83 51.69 56.22 58.53 59.19

Table 6. Ablation study of HMMU layers.

FDS iteration1 iteration2 iteration3 iteration4 iteration5r(cm) τ

20 0.8 37.83 52.02 56.02 58.49 59.29
20 0.9 37.83 51.27 54.90 56.79 58.79
40 0.8 37.83 51.35 55.71 57.09 57.79
40 0.9 37.83 51.65 55.26 57.45 59.13
50 0.95 37.83 50.87 55.73 56.49 57.82

Table 7. Ablation study of the hyperparameters in FDS module.

5. Conclusion
In this paper, we study active learning for 3D point

cloud semantic segmentation. In comparison with previ-
ous region-based methods, we propose a hierarchical point-
based active learning strategy consisting of two new de-
signs, HMMU and FDS. HMMU serves as an effective
way to measure the uncertainty or importance of labelling,
while FDS enables us to select the most valuable points by
considering the feature similarity and spatial distribution.
To better use the unlabelled points during network learn-
ing, we also introduce a teacher-student structure to gen-
erate pseudo-labels. Extensive experiments are conducted
on S3DIS and ScanNet datasets to demonstrate the effec-
tiveness of our method. In the future, a more advanced
semi-supervised architecture can be adopted for generating
more reliable pseudo-labels to further facilitate active learn-
ing based point cloud semantic segmentation tasks.
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