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Abstract

Harmonizing cut-and-paste images into perceptually re-
alistic ones is challenging, as it requires a full understand-
ing of the discrepancies between the background of the tar-
get image and the inserted object. Existing methods mainly
adjust the appearances of the inserted object via pixel-level
manipulations. They are not effective in correcting color
discrepancy caused by different scene illuminations and the
image formation processes. We note that image colors are
essentially camera ISP projection of the scene radiance. If
we can trace the image colors back to the radiance field,
we may be able to model the scene illumination and har-
monize the discrepancy better. In this paper, we propose
a novel neural approach to harmonize the image colors in
a camera-independent color space, in which color values
are proportional to the scene radiance. To this end, we
propose a novel image unprocessing module to estimate an
intermediate high dynamic range version of the object to
be inserted. We then propose a novel color harmonization
module that harmonizes the colors of the inserted object
by querying the estimated scene radiance and re-rendering
the harmonized object in the output color space. Extensive
experiments demonstrate that our method outperforms the
state-of-the-art approaches.

1. Introduction
Image compositing is a common process in vision and

graphics. It is a technique to render a novel image by insert-
ing a target object from the source image onto a target im-
age. However, humans can easily identify this cut-and-paste
(or composite) image as a synthetic one due to its color [7]
and texture inconsistencies [31, 63]. Hence, there is a line of
research to develop algorithms to harmonize cut-and-paste
images to produce visually realistic output images.

Existing image harmonization methods typically fall
into two categories, i.e., non-deep learning-based meth-
ods [42, 10, 47, 58, 63] and deep learning-based meth-
ods [48, 13, 8, 12, 33, 21, 27, 20]. Non-deep learning based
methods try to manipulate low-level image statistics (e.g.,
textures [47] and colors [42, 63, 58]) of the inserted ob-

(a) Input (b) IIH [21] (c) CDT [11]

(d) WBH [29] (e) Ours (f) Ground Truth

(g) Input (h) IIH [21] (i) CDT [11]

(j) WBH [29] (k) Ours (l) Ground Truth

Figure 1. Harmonization results on the iHarmony4 dataset [12].
Existing harmonization methods tend to produce dull (b-d) or in-
consistent (h-j) colors. Our method traces back to and harmonizes
the colors in an intermediate linear color space, resulting in more
realistic composite images as shown in (e) and (k).

ject, to match with those of the background. These meth-
ods often produce unrealistic images of inconsistent col-
ors/textures when the hand-crafted features fail to repre-
sent the foreground/background. In contrast, deep learn-
ing based methods offer strong capability of modelling re-
gion appearances to facilitate harmonization. Some meth-
ods explore different priors (e.g., semantics [48], and gra-
dient/color consistency [8, 53]) to constrain the harmoniza-
tion process. Some other methods [12, 33, 21] may for-
mulate the image harmonization process as a foreground-
background transfer learning task.
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Despite their success, existing harmonization methods
may still produce pale (Figure 1(b-d)) or inconsistent col-
ors (Figure 1(h-j)) across the foreground and background
regions, resulting in visually unpleasant images. We note
that all these methods model the color harmonization pro-
cess in the camera output sRGB (i.e., low dynamic range)
color space. However, object colors in an image are deter-
mined not only by their material reflectance and scene illu-
mination, but also by the black-box imaging pipeline (ISP)
of the camera. Due to the non-linear operations (e.g., tone
mapping) within the ISP, pixel intensities of camera output
sRGB images are not proportional to the scene radiance,
making them unreliable for use in estimating the scene illu-
mination for color harmonization.

To address this problem, we propose in this paper a novel
approach to harmonize a cut-and-paste image (captured in
low dynamic range) in the high dynamic range domain. Our
key idea is to harmonize the scene illumination discrepan-
cies in an intermediate (high dynamic range) color space,
in which the scene illumination is proportional to the orig-
inal scene radiance. To this end, we propose a novel neu-
ral network that first converts the source image (containing
the target object) into an intermediate high dynamic range
domain, then performs the harmonization process, and fi-
nally converts the harmonized image back to the low dy-
namic range sRGB space. To avoid exhaustive modeling
of camera-dependent operations, we propose a novel image
unprocessing module to estimate a high dynamic range ver-
sion of the input image in the linear camera-independent
CIE XYZ color space. We formulate this image unprocess-
ing process as a diffusion process. We propose a novel color
harmonization method that models image colors in the es-
timated linear color space to produce the final harmonized
results. As shown in Figure 1(e,k), our method is able to
produce more visually pleasing results. We conduct ex-
tensive experiments to demonstrate that our method outper-
forms state-of-the-art harmonization approaches.

In summary, this paper has three main contributions:

• We propose a novel neural approach for image harmo-
nization that performs the color harmonization process
in the linear color space, allowing object color model-
ing based on faithful scene radiance.

• Our approach includes two novel modules: (1) a novel
image unprocessing module to convert the source im-
age (of the target object) into a version in the high dy-
namic range linear color space, and (2) a novel color
harmonization module to harmonize object colors by
querying scene radiance information and re-render the
harmonized objects in the output color space.

• Extensive experiments show that the proposed method
outperforms state-of-the-art harmonization methods.

2. Related Work
Image Harmonization aims to adjust the appearance of

the foreground object so that it is compatible with the new
composite background. Traditional methods [42, 10, 31,
47, 58, 63] typically rely on adjusting the appearance of the
foreground to match with the color statistics of the back-
ground. Sunkavalli et al. [47] propose to first transfer the
visual appearance of the target image to the source image
via image histogram matching, and then use alpha blending
to produce the composite image. Xue et al. [58] suggest to
match zones of the (instead complete) histogram is more ef-
fective, and propose the zone selection classifier for match-
ing. Reinhard et al. [42] propose a color transfer method
to match the global color statistics between the source and
target images. Lalonde and Efros [31] divide the source and
target images into corresponding cluster pairs, and perform
the color transfer [42] for each cluster pair locally.

In recent years, many deep methods are proposed for im-
age harmonization. Zhu et al. [63] propose to train a CNN
classifier to distinguish between real and composite images,
and use the learned model to adjust the brightness and con-
trast model for image composition. Tsai et al. [48] present
the first end-to-end CNN-based harmonization method to
leverage the semantic information of a scene parsing branch
to help boost the performance of the harmonization branch.
Cun and Pun [13] propose to use spatial attention modules
to learn regional appearance changes for harmonization.
Chen and Kae [8] propose a GAN-based method to har-
monize images with geometric and color consistency con-
straints. Wu et al. [53] propose a GAN-based method to
explore both gradient and color constraints for image har-
monization. Cong et al. [12] construct a large-scale dataset,
iHarmony4, and propose a domain verification discrimina-
tor to guide the generator to translate the foreground ob-
ject to the background domain. Ling et al. [33] formulate
the image harmonization task as a style transfer problem,
and propose the region-aware adaptive instance normaliza-
tion module to model the background style and apply it to
the foreground. Guo et al. [21] propose to decompose the
composite image into reflectance and illumination, and har-
monize the two via material consistency and light transfer.
Self-supervised learning and transformers have also been
applied to image harmonization in [27] and [20], respec-
tively. Methods are also proposed for high-resolution image
harmonization [11, 32, 29, 57], multiple objects harmoniza-
tion [44] and interactive portrait harmonization [49].

Unlike existing methods that harmonize colors in the low
dynamic range image domain, we propose to model and
harmonize these object colors by tracing back to the high
dynamic range scene radiance field.

Image Enhancement aims to produce visually pleas-
ing images with vivid colors and details from low-quality
input images of over- or under-exposures. Some meth-
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Figure 2. Overview of the proposed method. Given an input composite image, we first convert it into an intermediate linear color space
via the image unprocessing process. The Color Harmonization process then harmonizes the foreground colors in the feature domain, and
renders the harmonized colors to produce an output sRGB image with the guidance of the background preserving process.

ods [19, 17, 5, 51, 45, 36, 54] rely on the retinex theory
to decompose the input image into reflectance and illumi-
nation layers, and enhance the illumination layer. Cai et
al. [6] separately model illuminance and detail layers from
multi-exposed images to enhance an under-exposed image.
Xu et al. [56] decompose and enhance under-exposed im-
ages based on frequency information. Moran et al. [38]
learn a set of local parametric filters for image enhance-
ment. Some methods directly learn an image-to-image
mapping using high dynamic range information [18, 59, 46]
or adversarial learning [25, 9, 26, 43]. Mahmoud et al. [2]
propose a coarse-to-fine network to learn color and detail
enhancement for addressing over- or under-exposure. Re-
cently, Wang et al. [50] build a local color distributions
pyramid with a dual-illumination estimation method to han-
dle images of both over-/under-exposures.

While sharing some similarities with image harmoniza-
tion methods, e.g., pixel-wise curve modeling and retinex-
based image decomposition, image enhancement methods
do not model the discrepancy between source and target
scenes. Directly enhancing composite images with image
enhancement methods tends to amplify scene discrepancies.

3. Proposed Method

We propose to harmonize cut-and-paste object colors by
tracing back them to the scene radiance field. To this end,
we propose an image unprocessing method to transfer the
input composite image into a linear high dynamic range
color space, and a harmonization method to re-render the
target object colors by querying the scene radiance infor-
mation. Figure 2 shows the whole harmonization process.

3.1. Image Unprocessing

Converting camera output sRGB images back to camera
raw images, i.e., image unprocessing [60, 39, 40, 3, 55, 41],
requires a systematic modelling of the ISP operations. Ex-

isting methods are typically sensor-specific, requiring ad-
ditional camera information to convert each image. We
note that most camera ISPs typically apply a set of camera-
variant linear operations (e.g., white balance) to convert
CCD data into a camera-independent color space, and then
apply another set of non-linear operations (e.g., quantiza-
tion and local enhancement) to render images [28]. Hence,
converting the sRGB images back into the intermediate
camera-independent color space has two advantages for
harmonization. First, colors in this intermediate space re-
sponse to the scene radiance linearly, which helps recover
scene discrepancy for harmonization. Second, it avoids
the need to model camera-dependent operations (e.g., cam-
era response curves selection [16] or estimation [46]). We
formulate a generative diffusion model to address this dy-
namic range expansion problem of image unprocessing. Al-
though single-image reverse tone mapping is challenging
(as it needs to generate missing info in the over-/under-
exposed regions), learning such image unprocessing in our
task is feasible, as images to be harmonized are typically
captured with proper exposures.

Model Formulation. A diffusion model has a forward dif-
fusion process and a reverse denoising process (used for
generation). Given a distribution q (x0), the forward diffu-
sion process q is a Markovian noising process [23], which
gradually adds noise to x0 to obtain x1:T . Specifically, at
each step t, the diffusion process adds random Gaussian
noise with a βt-controlled variance:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (2)

where βt ∈ (0, 1), t = 1, ...T . With the reparameterization
trick [30], we sample xt from each time step t in a closed
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Figure 3. The feature harmonization process. Given the concatenated linear foreground and background features f = [Ff , Fb], it first uses
an SE block [24] to adjust the attention for each channel to be the same, and then propagates channel consistency to the spatial domain to
produce harmonized foreground features fh.

form: xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I):

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. In this way, we di-
rectly derive xt from q(xt|x0) without repeatedly applying
the Markovian process q and calculating q(xt|xt−1).

We formulate image unprocessing as a reverse denoising
process (i.e., generation process) that is conditioned on the
sRGB input image Iin. We compute x0 (i.e., the linear color
image Il) via the reverse diffusion process pθ(xt−1|xt) pa-
rameterized by θ with a random Gaussian distribution, i.e.,
xT ∼ N (0, I), as:

pθ(x0:T |Iin) = p(xT )

T∏
t=1

pθ(xt−1|xt, Iin), (4)

pθ(xt−1|xt, Iin) = N (xt−1;µθ(xt, Iin, t),
∑

θ(xt, Iin, t)).
(5)

Unlike previous methods that are conditioned on the class
labels [14] or shape latents [35], we condition the diffusion
process on the sRGB image Iin pixel-wisely.

Model Architecture. Our image unprocessing model
adopts a fully convolutional encoder-decoder network [34],
as shown in Figure 2(left). Given the sampled noise with the
sRGB image as the condition, we encode them into a low
dimensional latent representation, which is then decoded to
reconstruct the linear color image. We leverage the genera-
tion ability of reversing the denoising process to expand the
dynamic range, and use the encoder-decoder architecture to
perform image unprocessing. To facilitate the learning pro-
cess, we add a skip connection directly from the input image
to the output. Instead of learning to generate the linear color
image of the whole dynamic range, the image unprocess-
ing network only needs to generate the difference between

the input and the output, resulting in a fast reverse diffu-
sion process. We train this network from scratch and use
batch normalization and GELU activation for all the convo-
lutional layers. We use the weighted variational bound [23]
to optimize this model.

3.2. Harmonization and Rendering

We propose a harmonization module to harmonize the
colors of the target object by querying background radi-
ance information and re-render the harmonized image in the
sRGB space.

Harmonization in Linear Space. As shown in Fig-
ure 2(right), given the reconstructed linear color image Il,
we first separately obtain foreground and background fea-
tures (i.e., Ff and Fb) via two separate encoders and the
foreground mask M , as Ff = Encf (Il ∗ M) and Fb =
Encb(Il ∗ (1 − M)). Our goal is to harmonize the fore-
ground features Ff based on Fb to obtain F̂f , and then ren-
der the harmonized foreground features F̂f into the sRGB
space F̂f → Îf conditioned on the rendering process of
Fb → Ib. To this end, we harmonize the concatenated
features f = [Ff , Fb] in both channel and spatial dimen-
sions. We implement the channel harmonization by using
the squeeze-and-excitation operation [24] to assign consis-
tent attention for each channel of f = [Ff , Fb]. As the
reweighed features are computed channel-wisely accord-
ing to both foreground and background representations, the
consistent attention indicates that these representations are
harmonized to be consistent as well. We then propagate
channel harmonization to the spatial domain via the bilat-
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(a) Input (b) IIH [21] (c) CDT [11] (d) WBH [29] (e) Ours (f) Ground Truth

Figure 4. Visual comparison on composite images with humans. The proposed method is able to harmonize the colors in the cut-and-paste
regions and produce realistic images compared with the state-of-the-art methods.

eral propagation activation functions:

ysi =
1

C(f)

∑
j∈s

g(∥j − i∥)fj , (6)

yri =
1

C(f)

∑
j∈v

h(fi, fj)fj , (7)

yi = c(ysi , y
r
i ), (8)

where fi is the feature channel at position i of the input
features f . fj is a neighboring feature channel around i
at position j. ysi and yri are the features after spatial and
range similarity measurements. The normalization factor
is set to C(f) = N , where N is the number of positions
in f . c represents the pixel-wise summation and a linear
transformation of ysi and yri via a 1× 1 convolutional layer.
The bilateral propagation extends the consistency of feature
channels to both spatial and range dimensions. In spatial
propagation, we set the neighboring region s to be of the
same spatial resolution as the input features for global prop-
agation. A Gaussian function g(·) [52] is used to compute
the spatial contributions from neighboring background fea-
tures. In range propagation, we measure the similarity be-
tween features fi and fj via h(·) within a neighboring re-
gion v around i. The size of v is set to 3 × 3. The range
similarity is computed via the pairwise function h(·) with a

dot product operation:

h(fi, fj) = (fi)
T (fj). (9)

In this way, the bilateral propagation process harmonizes
the foreground colors by considering both global continuity
via ysi and local consistency via yri . Figure 3 shows the
feature harmonization process.

Our bilateral propagation is close in spirit to the non-
local block [52], in that for each i, 1

C(f)

∑
g(fi, fj) com-

putes the softmax scores along dimension j. The main dif-
ference is the regions of propagation. The non-local block
uses feature channels from all positions to generate yi and
the similarity is only measured between fi and fj . In con-
trast, our method considers channel similarity, long-range
and neighboring spatial correlations between fi and fj for
feature harmonization. During the long-range correlation
modeling, we query the global scene radiance information
using region s of the original background features (i.e.,
before the channel-wise harmonization), while during the
neighboring correlation modeling, we query the local scene
information using the background features after channel-
wise adjustment. The foreground colors are then set to be
consistent to the background both globally and locally.

Background Preserving Guided Rendering. After the
harmonization process in the linear embedding space, we
assign a decoder to re-project the harmonized linear image
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(a) Input (b) IIH [21] (c) CDT [11] (d) WBH [29] (e) Ours (f) Ground Truth

Figure 5. Visual comparison on composite images with general objects. The proposed method is able to harmonize the colors in the
cut-and-paste regions and produce more realistic images compared with the state-of-the-art methods.

back to the sRGB space. To avoid further artifacts pro-
duced during the foreground rendering process, we leverage
the identity property of the background rendering process
(i.e., the background should remain identical after the color-
metric conversion, harmonization and rendering processes)
as the guidance. Since our encoder of the image unpro-
cessing and the color rendering decoder are symmetric, we
add a foreground feature consistency constraint to guide the
rendering process. In our implementation, we add an L1

and a Cosine similarity terms to align the foreground fea-
tures in magnitude and directions, of the image unprocess-
ing encoder and the Color Harmonization decoder (Figure 2
right). We follow previous methods to produce the final har-
monized image Ih as:

Iout = Io ×M + Iin × (1−M), (10)

where Io is the decoder output of the Color Harmonization
process. We use standard L1 loss to optimize this model.

3.3. Implementation Details

We have implemented the proposed model under Py-
torch, and tested it on a PC with an i7 4GHz CPU and a
GTX4090 GPU. The network parameters are initialized us-
ing the truncated normal initializer. For loss minimization,
we adopt the AdamW optimizer. We first train the image
unprocessing network on the Adobe5K dataset [4] for 300
epochs with an initial learning rate of 1e−4, which is di-

vided by 2 every 75 epochs. We then freeze the image un-
processing network and train the Color Harmonization net-
work on the iHarmony4 dataset [12] for 75 epochs, with an
initial learning rate of 1e−4, which is divided by 10 at the
30th epoch. T in Eq. 1 is empirically set to 4000. It takes
around 50 hours to train our model and 0.87s for testing a
256× 256 image (3.78s for a 1024× 1280 image).

4. Results

Evaluation Methods. We compare our method to 7 lat-
est state-of-the-art deep harmonization methods: Dove [12],
S2AM [13], IIH [21], IHT [20], CDT [11], WBH [29] and
SCSCo [22]. Since SCSCo [22] does not provide code
and results, we directly copy their performances reported
in their paper for references. For other methods, we use ei-
ther the pre-trained models released by their authors or their
released results for evaluation. Among them, S2AM [13]
and WBH [29] learn either implicit mapping curves or ex-
plicit filters to adjust the appearances of the foreground ob-
jects; Dove [12] and SCSCo [22] perform harmonization
based on style transfer learning. IIH [21] is retinex-based.
It harmonizes the foreground objects in the intermediate il-
lumination layer. CDT [11] and IHT [20] model the har-
monization process with pixel-to-pixel mapping while an
additional color-to-color mapping is used in CDT [11]. We
compare our method to these methods to demonstrate the
effectiveness of harmonizing foreground objects in the in-
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Datasets Metrics S2AM [13] Dove [12] IIH [21] IHT [20] CDT [11] WBH [29] SCSCo [22] Ours

HAdobe5K
PSNR↑ 33.77 34.34 35.20 36.10 38.24 37.64 38.29 38.93
MSE↓ 63.40 52.32 43.02 47.96 20.62 21.89 21.01 20.11
fMSE↓ 404.62 380.39 284.21 321.14 - 170.05 165.48 154.82

HFlickr
PSNR↑ 30.03 29.75 31.34 32.37 33.55 33.63 34.22 34.76
MSE↓ 143.45 145.21 105.13 88.41 68.61 64.81 55.83 54.20
fMSE↓ 785.65 827.03 716.60 617.26 - 434.06 393.72 386.12

HCOCO
PSNR↑ 35.47 35.83 37.16 37.87 39.15 38.77 39.88 39.94
MSE↓ 41.07 36.72 24.92 20.99 16.25 17.34 13.58 11.27
fMSE↓ 542.06 551.01 416.38 377.11 - 298.42 245.54 217.55

Hday2night
PSNR↑ 34.50 35.53 35.96 36.38 37.95 37.56 37.83 38.42
MSE↓ 76.61 56.92 55.53 58.14 36.72 33.14 41.75 39.79
fMSE↓ 989.07 1075.71 797.04 823.68 - 542.07 606.80 587.44

Average
PSNR↑ 34.35 34.75 35.90 36.71 38.23 37.84 38.75 39.36
MSE↓ 59.67 52.36 38.71 37.07 23.75 24.26 21.33 20.77
fMSE↓ 594.67 532.62 400.29 395.66 - 280.51 248.86 238.19

Table 1. Quantitative comparison between the proposed method and state-of-the-art deep harmonization methods on the iHarmony4
dataset [12] at 256 × 256 image resolution. It shows that the proposed method outperforms existing image harmonization methods.
Best performances are marked in bold.

termediate linear color space.
In addition, to verify whether our image unprocessing

module produces faithful linear images, we perform an in-
ternal analysis and compare it to 4 representative state-
of-the-art deep networks, including Unprocess [3], HDR-
CNN [15], CycleISP [61], and CIE-XYZNet [1]. Among
them, Unprocess [3] is a systematic pipeline that converts
sRGB images to raw images via a sequence of reverse
ISP operations. HDRCNN [15] uses an encoder-decoder
network to convert sRGB images into the HDR domain.
CycleISP [61] and CIE-XYZNet [1] learn cycle mappings
(sRGB-to-raw and raw-to-sRGB).
Evaluation Datasets and Metrics. We follow existing
methods to evaluate the harmonization performance by us-
ing the Mean Square Error (MSE), foreground MSE (fMSE)
and Peak Signal-to-Noise Ratio (PSNR), on the iHarmony4
dataset [12]. When internally analyzing the proposed image
unprocessing module on the Adobe5K dataset [4], in addi-
tion to the PSNR metric, we also use the widely adopted
HDR-VDP-2 [37] metric to measure the image quality
based on human perceptions.

4.1. Comparing to State-of-the-art Methods

We compare the proposed method with state-of-the-art
image harmonization methods on the standard benchmarks.
Visual Comparison. Figure 4 shows visual comparison
where the the cut-and-paste regions contain humans. While
the latest methods are effective in adjusting the brightness
of the foreground targets to fit the background illumination
conditions, they are not able to produce visually pleasing
colors, as shown in Figure 4(b-d). In contrast, our method
is able to render realistic colors in the cut-and-paste re-
gions, as shown in Figure 4(e). Figure 5 shows some ex-

amples where the cut-and-paste regions contain general ob-
jects. While existing methods may produce pale colors Fig-
ure 5(b,c) or color artifacts Figure 5(d). In contrast, our
method produces foreground colors that are more realis-
tic and consistent with the background, as shown in Fig-
ure 5(e).

Quantitative Comparison. In addition to the visual evalu-
ation, we also provide quantitative comparison between the
proposed method and existing harmonization methods. We
first follow existing methods to evaluate the harmonization
performance on images of resolution 256×256 in the iHar-
mony4 benchmark [12]. Table 1 shows the results. We can
see that the proposed method outperforms existing methods
on all evaluation metrics under all subsets of iHarmony4.
Table 2 shows additional comparisons at the original im-
age resolution. Note that CDT [11] only releases their low-
resolution results. The comparison shows that our method
can handle images of higher resolutions.

4.2. Internal Analysis

As our method first converts the input composite image
into the intermediate linear color space via the image unpro-
cessing process, we demonstrate its effectiveness in produc-
ing faithful colors in the high dynamic range domain. We
evaluate it on the CIE xyz version of the Adobe 5K dataset
using the PSNR and HDR-VDP2 metrics. The HDR-VDP2
metric produces a Q score for each test image via a Mean-
Opinion-score metric. The Q score indicates the degree
of image quality degradation. Table 3 reports the average
PSNR and Q score on the test set. The results show that
the proposed image unprocessing process can produce more
faithful images due to its generation ability.

We now perform ablation studies on our network de-
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Datasets Metrics IHT [20] WBH [29] Ours

HAdobe5K PSNR↑ 33.63 37.80 38.42
MSE↓ 56.90 24.37 23.76

HFlickr PSNR↑ 29.59 33.37 33.97
MSE↓ 135.49 69.19 61.70

HCOCO PSNR↑ 34.19 37.69 38.22
MSE↓ 44.95 20.93 20.08

Hday2night PSNR↑ 35.71 37.15 37.64
MSE↓ 63.26 37.28 30.11

Average PSNR↑ 33.54 37.23 37.92
MSE↓ 58.89 27.62 23.90

Table 2. Quantitative comparisons on the iHarmony4 dataset [12]
at the original resolution. It shows that our method outperforms
all existing image harmonization methods. Best performances are
marked in bold.

Methods PSNR↑ Q score↑

Unprocess [3] 22.19 50.33
HDRCNN [15] 27.74 55.61
CycleISP [61] 28.29 54.74
CIE-XYZNet [1] 29.66 56.08
CycleGAN [64] 27.64 56.17
Ours 30.34 58.14

Table 3. Internal Analysis. We quantitatively compare the con-
verted linear images with existing representative methods using
PSNR and Q score. Best performances are marked in bold.

Methods PSNR↑ MSE↓

w/o CC 37.79 24.26
DP→CP 38.28 23.60
w/o FH 38.10 23.94
w/o BP 39.17 21.10

Single Encoder 39.02 22.28
w/o SE Block 38.47 23.79

w/o Spatial Attention 38.19 23.57
Ours 39.36 20.77

Table 4. Ablation Study of network design on iHarmony4 at 256×
256 image resolution. Best performances are marked in bold.

sign. We follow previous methods to perform it on the iHar-
mony4 dataset. In particular, we investigate the following
ablated network architectures: (1) we remove the image un-
processing process and directly train a Color Harmonization
network (denoted as “w/o CC”); (2) we replace the diffu-
sion process of the image unprocessing with a standard con-
volution process (denoted as “DP→CP”); (3) we remove
the Feature Harmonization from the Color Harmonization
process (denoted as “w/o FH”); (4) we remove the Back-
ground Preserving of the Color Rendering process (denoted
as “w/o BP”); (5) we use a single encoder in the Color
Harmonization network (“denoted as Single Encoder”); (6)
we remove the SE block from the feature harmonization

process (“denoted as w/o SE Block”); and (7) we remove
the spatial attention from the feature harmonization process
(“denoted as w/o Spatial Attention”). Table 4 reports the
performance. It shows that our designs of image unpro-
cessing, Feature Harmonization and background preserving
are able to improve the image harmonization performances.
We have tried to train DoveNet [12] from scratch in lin-
ear space and it yields slightly better results (PSNR:34.94
(+0.19)) but fine-tuning using their pre-trained model de-
grades the performance (PSNR:33.18 (-1.57)). This is due
to the discrepancy between linear and non-linear images,
which demonstrates that it is necessary to design a specific
image unprocessing model for harmonization. We have also
tried ControlNet [62] for harmonization, which, however,
does not perform well (PSNR/MAE: 14.36/109.40). As im-
age harmonization requires the harmonized images to be
photorealistic, directly using the diffusion-based model may
generate visually pleasing but fake image details.

(a) Input (b) Ours (c) Ground Truth

Figure 6. Our method may fail to harmonize the color tones of the
inserted target when the new background does not provide suffi-
cient scene illumination information.

5. Conclusion
This paper presents a novel image harmonization method

that performs the color harmonization process in the linear
color space. Our method includes a novel image unprocess-
ing process to convert the cut-and-paste image into the high
dynamic range linear color space, and a novel color har-
monization process to harmonize object colors by querying
background radiance information. We have conducted ex-
tensive experiments on the benchmark datasets to analyze
the properties of the proposed method, and shown that it
outperforms the state-of-the-art harmonization methods.

Our method does have limitations. It may fail when the
background does not contain sufficient scene illumination
information. Figure 6 shows such an example, in which
the background is completely dark and our method fails to
harmonize the color tones of the foreground.
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[18] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
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