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Abstract

Transformers have shown great potential in various
computer vision tasks. By borrowing design concepts
from transformers, many studies revolutionized CNNs and
showed remarkable results. This paper falls in this line of
studies. Specifically, we propose a new convolutional neu-
ral network, ParCNetV2, that extends the research line of
ParCNetV1 by bridging the gap between CNN and ViT. It
introduces two key designs: 1) Oversized Convolution (OC)
with twice the size of the input, and 2) Bifurcate Gate Unit
(BGU) to ensure that the model is input adaptive. Fusing
OC and BGU in a unified CNN, ParCNetV2 is capable of
flexibly extracting global features like ViT, while maintain-
ing lower latency and better accuracy. Extensive experi-
ments demonstrate the superiority of our method over other
convolutional neural networks and hybrid models that com-
bine CNNs and transformers. The code are publicly avail-
able at https://github.com/XuRuihan/ParCNetV2.

1. Introduction
Transformers have shown great potential in computer vi-

sion recently. ViT [14] and its variants [52, 62, 55, 37]
have been adopted to various vision tasks such as object
detection [3, 15], semantic segmentation [67], and multi-
modal tasks such as visual question answering [29] and
text-to-image synthesis [42]. Despite the great performance
of vision transformers, they do not win CNNs in all as-
pects. For example, the computational complexity of self-
attention modules, one of the critical designs in transform-
ers, is quadratic (O(N2C)) to the resolution of inputs [53].
This property restricts its adoption in real applications such
as defect inspection, which finds small defects in high-
resolution images [65]. Moreover, transformers are ar-
guably more data-hungry than CNNs [14, 52, 21, 17], mak-
ing them difficult to deploy to long-tail applications with-
out large-scale data. Lastly, CNNs have been intensively
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Figure 1. Comparison between ParCNetV2 with the prevailing
transformer (Swin), CNN (ConvNeXt), and large kernel CNNs
(RepLKNet & SLaK) when trained from scratch on ImageNet-1K.
Left: performance curve of model size vs. top-1 accuracy. Right:
performance curve of inference latency vs. top-1 accuracy. IG
represents using the implicit gemm acceleration algorithm.

studied in the past several decades [30]. There are lots of
off-the-shelf dedicated features already developed in exist-
ing deployment hardware (CPU, GPU, FPGA, ASIC, etc.).
Some acceleration and deployment techniques are designed
mainly around convolution operations, such as operator fu-
sion [45] and multi-level tiling [66, 6].

Thus pushing the envelope of CNNs is still important and
valuable. Recent works have improved CNNs from multi-
ple perspectives. A straightforward approach is to take the
benefits from both CNNs and transformers by mixing their
building blocks [18, 49, 39, 7, 34]. While bringing together
merits from the two parties, those approaches still keep the
ViT blocks and has the quadratic complexity problem. An-
other line of research is to design purely convolutional ar-
chitectures. For example, with larger convolution kernels,
ConvNeXt [38], RepLKNet [12], and ParCNetV1 [64] suc-
cessfully improved the performance of CNNs by encoding
broader spatial contexts.

Specifically, ParCNetV1 introduced position-aware
circular convolutions (ParC) to CNNs. It uses depth-wise
circular 1D convolutions of input feature map size (C ×
H×1 and C×1×W ) to achieve global receptive fields. To
avoid spatial over-smoothing caused by global kernels, Par-
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a) Circular convolution b) Oversized convolution

Figure 2. Comparison between circular convolution and over-
sized convolution. We only show horizontal convolution for il-
lustration purposes. a) Circular convolution in ParCNetV1 in-
evitably distorts context information at the boundary of images.
b) Oversized convolution resolves the distortion while maintain-
ing the global receptive field over the whole image.

CNetV1 augmented the feature input with absolute position
encoding to ensure the feature output is still location sensi-
tive. It also brought attention mechanisms into the frame-
work by adopting squeeze-and-excitation block [27]. These
modifications lead to the superior performance of ParC-
NetV1, especially on mobile devices.

Despite improved model efficiency and accuracy, ParC-
NetV1 still suffers from some design drawbacks. Firstly,
as mentioned in [64] and shown in Fig 2, the circular
padding introduces spatial distortion by performing convo-
lutions crossing image borders. Secondly, the attention de-
sign is relatively weak compared with transformers which
may limit the framework performance. Thirdly, it is not
feasible to apply global convolution to all blocks in CNNs,
especially those shallow blocks due to expensive computa-
tional costs and over-smoothing effects.

To address these issues, we propose a pure convolutional
neural network architecture called ParCNetV2. It is com-
posed of three essential improvements over ParCNetV1.

First, we push the kernel size to the extreme by doubling
the circular convolution kernel and removing the absolute
positional encoding. As shown in Fig. 2, through large size
(equal to the size of the input) padding, the convolution op-
eration avoids feature distortion around image borders. By
using constant paddings, the oversized kernel implicitly en-
codes spatial locations when it convolves with the feature
maps [28]. It enables us to discard the positional encoding
module without hurting network performance. We explain
why 2× is the extreme in Sec.3.1.

Second, the original ParC block uses a limited attention
mechanism inserted at the end of the channel mixing phase.
We propose a more flexible bifurcate gate unit (BGU) at
both the token mixing phase (spatial BGU) and channel
mixing phase (channel BGU) in our newly designed block.
Compared to the squeeze-and-excitation block, the BGU is
stronger while more compact and general to combine with
various structures, leading to spatial attention and channel
attention. The enhanced attention mechanism also simpli-
fies our ParC V2 block, as both phases adopt the consistent
BGU structure.

Last, in contrast to ParCNetV1 which applies large ker-

nel convolutions only on later-stage CNN blocks, we unify
the block design by mixing large kernel convolutions with
local depth-wise convolutions in all the blocks. Both types
of convolutions are operated on the input feature map chan-
nels. This progressive design combines local features and
global features in one convolution step, unlike many other
works that stack the two sequentially [18, 60, 64] or as two
separate branches [7, 39, 9]. To this end, the resulting re-
designed ParC V2 structure is capable of performing local
convolutions, global convolutions, token channel mixing,
and BGU-based attention all in one block.

To summarize, the main contributions of this paper are
as follows:

• We propose oversized convolutions for the effective
modeling of long-range feature interactions in CNNs.
Compared to ParCNetV1, it enables homogeneous
convolution across all spatial locations, while removes
the need for extra position encoding.

• We propose two bifurcate gate units (spatial BGU and
channel BGU), which are compact and powerful atten-
tion modules. They boost the performance of ParC-
NetV2 and could be easily integrated into other net-
work structures.

• We bring oversized convolution to shallow layers of
CNNs and unify the local-global convolution design
across blocks.

Extensive experiments are conducted to demonstrate that
ParCNetV2 outperforms all other CNNs given a similar
amount of parameters and computation budgets as shown
in Fig. 1. It also beats state-of-the-art ViTs and CNN-ViT
hybrids, which indicates that convolution networks are as
strong as transformers in extracting features.

2. Related Works
Convolution Networks. Before transformers were intro-
duced to vision tasks, convolutional neural networks had
dominated vision architectures in a variety of computer vi-
sion tasks [22, 44, 5, 20, 32]. ResNet [22] introduced resid-
ual connections to eliminate network degradation, enabling
very deep convolutional networks. It has been a strong
baseline in various vision tasks. Inception [51] focuses on
the multi-branch structure and utilizes kernel decomposi-
tion on small kernels. MobileNets [26, 46, 25] introduced
depth separable convolution to build a lightweight convo-
lution model. After the appearance of vision transformers,
researchers improved pure convolution networks with ideas
from transformers. RepLKNet [12] increased kernel size to
as large as 31 × 31, which can extract long-range depen-
dencies in contrast to commonly used 3 × 3 kernels. Con-
vNeXt [38] reviewed the design of the vision transformers
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and gradually modernized a standard ResNet toward a trans-
former. ParCNet [64] proposed a pure convolution network
with position-aware circular convolution, which achieved
better performance than popular light-weight CNNs and vi-
sion transformers.
Vision Transformers. ViT [14] is the first transformer net-
work in computer vision. It cropped images into 16 × 16
patches as input tokens and used positional encoding to
learn spatial information. However, the vanilla ViT was
hard to train and huge datasets are required such as JFT-
300M [50]. DeiT [52] exploited knowledge distillation to
train ViT models and achieved competitive accuracy with
less pretraining data. To further enhance the model archi-
tecture, some researchers attempted to optimize ViTs with
ideas from CNNs. T2T-ViT [62] introduced a token-to-
token process to progressively tokenize images to tokens
and structurally aggregate tokens. PVT [55] inserted con-
volution into each stage of ViT to reduce the number of
tokens and build hierarchical multi-stage structures. Swin
transformer [37] computed self-attention among shifted lo-
cal windows, which has become the new baseline of many
vision tasks. CSWin[13] adopted cross-attention to enlarge
the receptive field of local attention. PiT [23] jointly used
pooling layers and depth-wise convolution layers to achieve
channel multiplication and spatial reduction. Yu et al. [61]
pointed out that the general architecture of the transform-
ers, MetaFormer, is more essential to the model’s perfor-
mance instead of the specific token mixer module. Some
other works focus on efficient transformers [16, 7, 34].
Hybrid Convolution Networks and Vision Transform-
ers. In addition to ViTs, another popular line of re-
search is to combine elements of ViTs and CNNs to ab-
sorb the strengths of both architectures. LeViT [18] pro-
posed a hybrid neural network for fast inference and sig-
nificantly outperformed existing CNNs and ViTs concern-
ing the speed/accuracy trade-off. BoTNet [49] replaces the
standard convolutions with multi-head attention in the fi-
nal three bottleneck blocks of ResNet. CvT [58] introduced
depth-wise and point-wise convolution in front of the self-
attention unit, which introduced shift, scale, and distortion
invariance while maintaining the merits of transformers.
Some other works focused on improving efficiency with hy-
brid models. CMT [19] combined a convolutional inverted
feed-forward network with a lightweight multi-head self-
attention way and took advantage of transformers to capture
long-range dependencies and CNN to model local features.
MobileViT [39] proposed a lightweight model and a fast
training strategy for mobile devices. CabViT [63] enhanced
the interactions of tokens across blocks, which encourages
more information flows to the lower levels.

Although many works have successfully combined
transformers and CNNs for vision tasks, they are not as
much focused as our work on the systematic design of the

global receptive field, advanced attention mechanism, and
unified local-global balance across the whole network. We
invent a newly evolved version of these designs and demon-
strate the potential of pure CNNs compared with transform-
ers and hybrid architectures.

3. Methods

An overview of the ParCNetV2 architecture is presented
in Fig. 3. Compared with the original ParCNet (Fig. 3a),
we first substitute the position-aware circular convolution
with oversized convolution to encode long-range dependen-
cies along with position information (Fig. 3b). Then we
introduce bifurcate gate units as a stronger attention mech-
anism (Fig. 3c). Finally, we propose a uniform block that
balances local and global convolutions to build full ParC-
NetV2 (Fig. 3d). The following sections describe the details
of these components.

3.1. Oversized convolution

In ParCNetV1, the model is divided into two branches,
alternating the order of vertical and horizontal convolution.
However, we find that changing the order does not affect
the output (proof in supplementary), thus we keep only one
branch for simplicity. To further enhance the model’s ca-
pacity and incorporate long-range spatial context, we intro-
duce an oversized depth-wise convolution with a kernel size
approximately twice the input feature size (ParC-O-H and
ParC-O-W), as illustrated in Fig. 3b. In this section, we
provide details about the oversized convolution and discuss
its effectiveness, efficiency, and adaptability.
Formulation: We denote the input feature map as X ∈
RC×H×W , where C, H , and W represent the number of
channels, height, and width of X , respectively. The kernel
weight for vertical and horizontal oversized convolution is
kh ∈ RC×(2H−1)×1 and kw ∈ RC×1×(2W−1). We let in-
dex 0 denote the center point of kh and kw. As shown in
Fig. 4, we choose this size because it naturally covers the
global receptive field at each position, and keeps the out-
put size the same as the input without requiring any post-
processing. In contrast, smaller kernels can not simultane-
ously preserve position cues and provide a global receptive
field, while larger kernels need post-processing to adjust the
output size.

To compute the output of the oversized convolution Zi,j

at location (i, j), we use the following equations:

Yi,j =

H−1∑
s=−(H−1)

khsXi+s,j , (1)

Zi,j =

W−1∑
t=−(W−1)

kwt Yi,j+t, (2)
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Figure 3. The transitions from the original ParC V1 to ParC V2 block. Compared with ParCNetV1, we first introduce oversized
convolutions to further enhance capacity while simplifying architecture; then we design a bifurcate gate unit to improve efficiency and
strengthen attention; finally, we propose a uniform local-global block and construct the whole network with this uniform block.

Input: 1×Wzero padding

Input: 1×Wzero padding

Output

zero padding

Kernel: 1×(2W-1)

Kernel: 1×(2W-1)

Figure 4. Illustration of the oversized convolution. Kernels are
almost twice the size of input feature maps, and zero-padding is
applied to keep the output resolution the same as the input.

where Eq. (1) denotes ParC-O-H, and Eq. (2) denotes ParC-
O-W. Zero-padding means that Xi,j = 0 and Yi,j = 0, if
i /∈ [0, H − 1] or j /∈ [0,W − 1].

The padding operation is designed to work with over-
sized convolution, which encodes not only global depen-
dency but also position information. For the horizontal con-
volution, we apply W − 1 pixels zero padding to both left
and right sides, where W is the width of the input feature.
Similar operations are performed for vertical convolution.
This schema keeps the output feature size the same as the
input feature, and implicitly encodes position cues by zero-
ing out partial convolution kernel parameters according to
spatial locations.
Effectiveness: The oversized convolution brings two ad-
vantages. First, it encodes position information by embed-
ding it into each location using zero-padding, eliminating
the need for position embeddings. As shown in Fig. 4, each
position in the output is transformed by different param-
eters across the input features, and thus embeds position
information in the model weights. It is similar to relative
position embeddings [47], while the oversized convolution

encodes both spatial context and position information in
kernel weights. As a result, position embeddings are no
longer required and therefore abandoned to make the net-
work more concise.

Second, it improves model capacity with limited compu-
tational complexity. For instance, the largest oversized ker-
nel in ParCNetV2-Tiny is extended to 111× 1 and 1× 111
with input size 224 × 224. The capacity of the model will
be significantly enhanced with such large convolution ker-
nels. As far as we know, it has achieved the largest convolu-
tion kernel among prevailing vision CNNs. Other works on
large kernel [43, 12, 36] use a spatially dense form of con-
volution, which requires massive computation. In contrast,
our oversized convolution boosts performance with much
less computation cost. It enables our model to achieve state-
of-the-art performance, which indicates that it is an effective
operation.

Efficiency: The complexity of the oversized convolution is
proportional to HW × [(2H − 1) + (2W − 1)]. Although
it has less computation than the previous large kernel con-
volution networks [12, 36], the multi-fragment structure
is poorly supported by the hardware, especially with Py-
Torch. This is because PyTorch is not optimized for multi-
fragmentation, hence we implement a block-wise (inverse)
implicit gemm algorithm following RepLKNet [12]. Fig 1
shows the comparison results. Compared to other recently
proposed models, our ParCNetV2 offers a clear advantage
in terms of both accuracy and inference speed. Furthermore,
even on Vanilla PyTorch, our ParCNetV2 achieves a supe-
rior trade-off between accuracy and speed. Additional re-
sults can be found in the supplementary material.

Adaptability to multi-scale input: To deal with input im-
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Figure 5. Illustration of the Bifurcate gate unit (BGU). We pro-
pose a general BGU which can be easily integrated into various
network structures. For Spatial GPU, we insert our ParC branch
and a point-wise convolution to extract spatial features. While in
Channel BGU, we simply adopt a point-wise convolution to con-
duct channel mixing.

ages of different resolutions, each convolution kernel will
be first zoomed with linear interpolation to C×(2H−1)×1
and C × 1× (2W − 1). In addition, this method keeps the
model’s global receptive field on any input size and learns
to extract scale-invariant features.

3.2. Bifurcate Gate Unit

To make the model data-driven as ViT models, ParC-
NetV1 employed the squeeze-and-excitation block, which
was demonstrated to boost the model performance on var-
ious tasks. In this work, the attention mechanism is rein-
vented with two major improvements: strengthened atten-
tion and better computation efficiency. Specifically, we pro-
pose the Bifurcate Gate Unit (BGU) structure inspired by
gated linear unit (GLU) [10] which improves MLP through
gating mechanism. BGU inherits high computation effi-
ciency from GLU and accomplishes attention and feature
extraction in a single unit. Different from GLU which in-
serts gate operation into two homologous features, the pro-
posed BGU applies gate operation on two features from
two branches. One branch adopts a point-wise convolu-
tion to serve as attention weights. The other transforms
the features depending on the purpose of the module, i.e.,
ParC branch to extract spatial information for spatial inter-
action, and point-wise convolution to perform channel mix-
ing. Therefore, the BGU design is extended to spatial BGU
and channel BGU modules, making it a general module as
shown in Fig. 5. Finally, the outputs of the two branches are
fused by an element-wise multiplication operation and an
additional point-wise convolution. We introduce the details
and discuss the difference from other attentions.
Spatial BGU: In the spatial BGU, we aim to extract repre-
sentative spatial information including local and global de-
pendencies. We adopt ParC branch as the feature transform
branch, which consists of a point-wise convolution, a stan-
dard local depth-wise convolution and an oversized separa-
ble convolution. We will describe it in detail in Sec. 3.3.

Basically, our spatial BGU is defined as:

X1 = ParC(X),

X2 = PWConv1(X),

SpatialBGU(X) = PWConv2(X1 ⊙X2).

Channel BGU: For the channel mixing module, the orig-
inal feed-forward network (FFN) of common transformers
usually contains two point-wise convolutions separated by
a GELU activation. The first layer expands the number of
channels by a factor of α, and the second layer shrinks the
dimension back to the original:

FFN(X) = GELU(XW1 + b1)W2 + b2,

where W1 ∈ RC×αC and W2 ∈ RαC×C indicate weights
of the two point-wise convolutions, b1 and b2 are the bias
terms, respectively. In our channel BGU, we split the hid-
den layer into two branches and merge with element-wise
multiplication. The whole module is defined as:

X1 = GELU(XW̃1 + b̃1),

X2 = XW̃2 + b̃2,

ChannelBGU(X) = (X1 ⊙X2)W̃3 + b̃3,

where W̃1, W̃2 ∈ RC×α̃C and W̃3 ∈ Rα̃C×C indicates
weights of point-wise convolutions, b̃1, b̃2, b̃3 denotes bi-
ases, respectively. We adjust α̃ to fit the model size close to
the original FFN (details in supplementary).
Comparisons with previous attention mechanisms: The
classic channel attentions [27, 54, 40] and spatial atten-
tions [57, 24] consist of two imbalanced branches: a heavy
backbone branch and a light attention branch. The at-
tention branch drops massive information by global av-
erage pooling, shared attention value across channels or
space, and bottleneck structures. However, it contains a
large number of parameters similar to the backbone branch.
BGU is a compact attention mechanism with more balanced
branches. There is no downsampling or bottleneck in each
branch. Besides, BGU does not increase the number of pa-
rameters of the model.

3.3. Uniform local-global convolution

ParCNetV1 used two different network structures, tradi-
tional convolutional block MBConvs [25] in shallow lay-
ers and ParC operation in deep layers. We extend the
global convolution to each block through the early and
late stages, since it is shown that a large receptive field is
also critical in the shallow layers, especially in downstream
tasks [12, 36]. We design a unified block composed of both
local and global convolutions for the entire network. As
shown in Fig. 3, we adopt a point-wise convolution first to
fuse channel information. Then we pass the feature into two
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Models No. Channels No. Blocks
ParCNetV2-XT (48, 96, 192, 320) (3, 3, 9, 2)
ParCNetV2-T (64, 128, 320, 512) (3, 3, 12, 3)
ParCNetV2-S (64, 128, 320, 512) (3, 9, 24, 3)
ParCNetV2-B (96, 192, 384, 576) (3, 9, 24, 3)

Table 1. Model configuration of ParCNetV2. Each tuple repre-
sents the number of channels or blocks for the four stages.

branches, one of which is a standard 7x7 depth-wise convo-
lution to extract local cues, and the other is an oversized
convolution to model global independence. Finally, we add
the two branches to create a multiscale feature. Formally,
the uniform local-global convolution is defined as:

Ylocal = DWConv (X) ,

Yglobal = ParC-O-W (ParC-O-H (X)) ,

ParC(X) = PWConv (Ylocal + Yglobal) .

3.4. ParCNetV2

Based on the proposed modules above, we build ParC-
NetV2 with four different scales. We adopt a hierarchi-
cal architecture with 4-stage inspired by [37, 38], and the
number of channels and blocks of each stage are listed
in Tab. 1. ParCNetV2-XT is designed to fairly compare
with ParC-ConvNeXt-T (0.5×W), which is a four-stage
version of ParCNetV1 [64]. ParCNetV2-T, ParCNetV2-S,
and ParCNetV2-B are designed to compare with the state-
of-the-art networks. The expand ratio α̃ of channel BGU is
set to 2.5, which is close to the original FFN in complexity.

4. Experiments

In this section, we exhibit quantitative and qualitative ex-
periments to demonstrate the effectiveness of ParCNetV2.
First of all, we conduct experiments on image classification
on the ImageNet-1K [11]. We compare the performance
with convolutional neural networks and show that our Par-
CNetV2 performs better over pure convolutional networks,
including ParCNetV1. Then, we compare our model with
transformers and hybrid neural networks. Next, we con-
duct experiments on downstream tasks including object de-
tection and instance segmentation on COCO [35], and se-
mantic segmentation on ADE20K dataset [68]. Finally, we
compare the inference latency on GPUs and edge devices.

4.1. Performance Comparison with CNNs

We conduct image classification on ImageNet-1K [11],
the most widely used benchmark dataset. We train the ParC-
NetV2 models on the training set and report top-1 accuracy
on the validation set. We follow the same training hyperpa-
rameters and augmentations used in ConvNeXt [38] except

Models Param(M) MACs(G) Top-1(%)
ParC-Net-S [64] 5.0 3.5 78.6
ParC-ConvNeXt-T(0.5×W) [64] 7.4 1.1 78.3
ParCNetV2-XT 7.4 1.6 79.4
ResNet50 [22, 56] 23 4.1 79.8
ReGNetY-4G [41, 56] 21 4.0 81.3
ConvNeXt-T [38] 29 4.5 82.1
SLaK-T [36] 30 5.0 82.5
PoolFormer-S24 [61] 21 3.6 80.3
ParCNetV1-27M [64] 27 4.5 82.1
RevCol-T [1] 30 4.5 82.2
ParCNetV2-T 25 4.3 83.5
ResNet101 [22, 56] 45 7.9 81.3
ReGNetY-8G [41, 56] 39 8.0 82.1
ConvNeXt-S [38] 50 8.7 83.1
SLaK-S [36] 55 9.8 83.8
RevCol-S [1] 60 9.0 83.5
ParCNetV2-S 39 7.8 84.3
ResNet152 [22, 56] 60 11.6 81.8
ReGNetY-16G [41, 56] 84 15.9 82.2
ConvNeXt-B [38] 89 15.4 83.8
RepLKNet-31B [12] 79 15.3 83.5
SLaK-B [36] 95 17.1 84.0
RevCol-B [1] 138 16.6 84.1
ParCNetV2-B 56 12.5 84.6

Table 2. Comparison with the modern convolution networks on
image classification. All experiments are trained on ImageNet-1K
dataset with 300 epochs. Top-1 accuracy on the validation set is re-
ported. ParC-ConvNeXt-T (0.5×W) [64]: ParCNetV1 of hierar-
chical 4-stage architecture the same as ParCNetV2. ParCNetV1-
27M: ParCNetV1 with bigger backbone.

that the batch size is restricted to 2048 and the initial learn-
ing rate is set to 4e-3. We also substitute LayerScale with
Resscale [48] to stabilize training.

The comparison with pure convolution networks on im-
age classification is listed in Tab. 2. It is clear that Par-
CNetV2 outperforms other convolutional networks by a
large margin across various model scales, including vari-
ants of the ResNet (ResNet [22, 56]), NAS architecture
(ReGNetY [41]), ConvNeXt [38], and MetaFormer archi-
tecture (PoolFormer [61]). Specifically, our ParCNetV2-
T surpasses ParCNetV1-27M [64], which indicates that
our methods go deeper along the larger convolutions and
stronger attention mechanisms. In addition, ParCNetV2-S
performs better than the other CNNs even twice larger in pa-
rameters and complexity (e.g., ParCNetV2-S and RevCol-
B), which indicates that our model is highly effective.

4.2. Performance Comparison with ViTs and Hy-
brid Models

Apart from CNNs, ParCNetV2 also beats various lat-
est ViTs and Hybrid models. As shown in Tab. 3, com-
pared with famous transformers such as Swin-T [37] and
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Models Mixing Param MACs Top-1
Type (M) (G) (%)

DeIT-S [52] Attn 22 4.6 79.9
T2T-ViT-14 [62] Attn 21.5 4.8 81.5
Swin-T [37] Attn 29 4.5 81.3
CSwin-T [13] Attn 23 4.3 82.7
CvT-13 [58] Attn + Conv 20 4.5 81.6
CoAtNet-0 [9] Attn + Conv 25 4.2 81.6
Uniformer-S [33] Attn + Conv 20 4.8 82.9
ParCNetV2-T Conv 25 4.3 83.5
T2T-ViT-19 [62] Attn 39 8.5 81.9
Swin-S [37] Attn 50 8.7 83.0
CSwin-S [13] Attn 35 6.9 83.6
CvT-21 [58] Attn + Conv 32 7.1 82.5
CoAtNet-1 [9] Attn + Conv 42 8.4 83.3
Uniformer-B [33] Attn + Conv 50 8.3 83.9
ParCNetV2-S Conv 39 7.8 84.3
DeiT-B/16 [52] Attn 86 17.6 81.8
T2T-ViT-24 [62] Attn 64 13.8 82.3
Swin-B [37] Attn 88 15.4 83.5
CSwin-B [13] Attn 78 15.0 84.2
CoAtNet-2 [9] Attn + Conv 75 15.7 84.1
ParCNetV2-B Conv 56 12.5 84.6

Table 3. Comparison with state-of-the-art transformer and hy-
brid networks on ImageNet-1K classification dataset. Top-1
accuracy on the validation set is reported.

CSwin-T [13], ParCNetV2-T improves the accuracy by a
clear margin of 2.2% and 0.8% with comparable parameters
and computational costs. This result demonstrates that our
pure convolution model utilizes the design concepts from
transformers in a more efficient way. Compared with hy-
brid models, ParCNetV2-T outperforms CvT [58], CoAt-
Net [9], Uniformer [33] and Next-ViT [31] with much fewer
parameters. Combined with the above analysis of pure con-
volutions in Sec. 4.1, our proposed model has achieved bet-
ter classification accuracy with comparable parameters and
computation sizes over various kinds of architectures.

4.3. ParC V2 Performance on Downstream Tasks

To evaluate the transfer ability of ParC V2, we conduct
experiments on the object detection and instance segmenta-
tion task with COCO [35] semantic segmentation task with
ADE20K [68].
Object detection and instance segmentation on COCO.
Following previous works [37, 38], we finetune Mask R-
CNN and Cascade Mask R-CNN [2] on COCO dataset [35]
with ParCNetV2 backbones. MMDetection [4] is used as
the base framework. All models use pre-trained weights
from ImageNet1K and are trained with 3× schedule with
multi-scale training. The experiment settings follow [38].
Tab. 4 shows object detection and instance segmentation re-
sults comparing our ParCNetV2 with Swin [37] and Con-
vNeXt [38]. ParCNetV2 outperforms both the transformer
network and convolution network by a large margin across

backbone APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

Mask R-CNN 3× schedule
Swin-T [37] 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T [38] 46.2 67.9 50.8 41.7 65.0 44.9
ParCNetV2-T 48.9 70.3 53.9 43.7 67.6 47.0

Cascade Mask R-CNN 3× schedule
Swin-T [37] 50.4 69.2 54.7 43.7 66.6 47.3
ConvNeXt-T [38] 50.4 69.1 54.8 43.7 66.5 47.3
ParCNetV2-T 52.6 71.0 57.3 45.6 68.6 49.8

Table 4. Comparisons on COCO [35] object detection and in-
stance segmentation. We use Mask R-CNN and Cascade Mask
R-CNN [2] as a basic framework. All models are pretrained on
ImageNet-1K and trained on COCO for 3× iterations.

backbone Param(M) MACs(G) mIoU(%)
Swin-T [37] 60 945 45.8
ConvNeXt-T [38] 60 939 46.7
ParCNetV1-27M [64] 56 936 46.7
ParCNetV2-T 55 932 49.4
Swin-S [37] 81 1038 49.5
ConvNeXt-S [38] 82 1027 49.6
ParCNetV2-S 69 1005 51.0

Table 5. Comparisons on ADE20K [68] semantic segmentation.
We use UperNet as a basic framework. All models are pretrained
on ImageNet-1K and trained on ADE20K for 160K iterations.
MACs are measured with the input size of (2048, 512).

different model complexities. Interestingly, in experiments
using Cascade Mask R-CNN, ParCNetV2-T has already
outperformed larger models such as Swin-S and ConvNeXt-
S, achieving 51.9 APbbox and 45.0 APmask , which is a sig-
nificant improvement of +0.7 APbbox and +0.6 APmask ,
respectively. For further information on experiments with
backbones of different scales, please refer to the supplemen-
tary materials.
Semantic segmentation on ADE20K. We finetune Uper-
Net [59] on the ADE20K [68] dataset with ParCNetV2
backbones. MMSegmentation [8] is used as the base
framework. All models use pre-trained weights from Im-
ageNet1K and are trained for 160K iterations with a batch
size of 16. Experiment settings follow [38]. Tab. 5 lists
the mIoU, model size, and MACs for different backbones.
ParCNetV2 achieves a substantially higher mIoU than Swin
and ConvNeXt, while taking fewer parameters and compu-
tation. Specifically, our model is +2.7% mIoU higher than
ParCNetV1-27M [64], which validates the transferability of
our ParCNetV2 model.

4.4. Ablation Study

In this section, we make an ablation study on ImageNet-
1K classification to show that each component in our ParC-
NetV2 is critical. To speed up the experiment, we use the
smaller ParCNetV2-XT in this section. Training settings are
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Row OC S-BGU C-BGU Uniform Param MACs Top-1
(M) (G) (%)

baseline ✓ ✓ ✓ ✓ 7.4 1.6 79.4
1 ✓ ✓ ✓ 7.2 1.4 78.9
2 ✓ ✓ ✓ 7.4 1.6 79.2
3 ✓ ✓ ✓ 7.4 1.5 79.1
4 ✓ ✓ ✓ 7.4 1.4 79.2

Table 6. Ablation study of each component on the ImageNet-
1K classification task. We use smaller ParCNetV2-XT in abla-
tion for fast evaluation. Top-1 accuracy on the validation set is
reported. OC: Oversized Convolution. S-BGU: Spatial Bifurcate
Gate Unit. C-BGU: Channel Bifurcate Gate Unit. Uniform: Uni-
form local-global convolution.

the same as image classification experiments in Sec. 4.2.
Oversized convolution. Oversized convolution increases
the capacity of the model and encodes position information.
Without oversized convolution, the model not only loses ca-
pacity and position information, but also loses the ability to
learn long-range dependencies. By comparing baseline and
Row 1, the accuracy of the model without oversized convo-
lution drops substantially by 0.6% (79.4% v.s. 78.9%) top-1
accuracy. It demonstrates that long-range dependencies are
important to networks.
Bifurcate gate units. The bifurcate gate unit is an im-
portant mechanism to introduce data-driven operations into
ParCNetV2. It increases the non-linearity and enhances the
fitting ability. There is a degradation of 0.2% (79.4% v.s.
79.2%) without spatial BGU, and 0.3%(79.4% v.s. 79.1%)
without channel BGU as shown in baseline, Row 2 and Row
3. It is similar to the data-driven operation of the squeeze-
and-excitation block in ParC V1, while our BGU differs
in the following two points. First BGU does not increase
parameters. With α̃ = 2.5, our channel BGU is slightly
more lightweight than the original FFN. Second, the two
branches in our BGU are more balanced. They share a sim-
ilar number of parameters and computational costs, unlike
the heavy main branch and lightweight channel attention in
most methods.
Uniform local-global convolution. The objective of the
uniform local-global convolution block is to standardize
the blocks used across various stages. In ParCNetv1, Mo-
bileNetV2 blocks had to be mixed with ParC blocks to con-
struct the entire network. However, in ParCNet V2, the en-
tire network is built by stacking ParCNet V2 blocks, as il-
lustrated in Figure 1 in the supplementary material. This
uniform design offers greater flexibility and ease of com-
bination with other structures. Additionally, the uniform
design results in a performance gain of 0.2%.

4.5. Latency analysis

We analyze the inference latency of our ParCNetV2 on
RTX3090 GPU and edge device RK3288. The Rockchip

Models Param(M) MACs Latency↓ Memory↓ Top-1↑
(M) (G) (ms) (MB) (%)

Swin-T 29 4.5 855 139 81.3
ConvNeXt-T 29 4.5 875 129 82.1
ParCNetV2-T 25 4.3 840 118 83.5
Swin-S 50 8.7 1576 222 83.0
ConvNeXt-S 50 8.7 1618 211 83.1
ParCNetV2-S 39 7.8 1485 181 84.3
Swin-B 88 15.4 2649 378 83.5
ConvNeXt-B 89 15.4 2708 364 83.8
ParCNetV2-B 56 12.5 2339 252 84.6

Table 7. Inference on Arm (Quad Core Cortex-A17). We com-
pare the latency and memory cost during inference together with
ImageNet-1K top-1 accuracy. Results are measured using RK3288
with batch size 1 and averaged over 100 iterations.

RK3288 is widely used in real-world applications such as
smart TV and AI entrance guard system.
GPU inference latency. To ensure a fair comparison with
large kernel convolution networks which use the implicit
gemm acceleration algorithm, such as RepLKNet [12] and
SLaK [36], we measure the inference latency of our Par-
CNetV2 models using a single NVIDIA RTX 3090 GPU
with a batch size of 32, following the consistent implemen-
tation as theirs. As illustrated in Fig. 1, ParCNetV2 models
achieve superior latency-accuracy trade-offs among large
kernel networks, outperforming both Swin and ConvNeXt.
Arm inference latency. On RK3288, we port the models to
the chip through ONNX and MNN and conducted each test
for 100 iterations to measure the average inference speed.
Tab. 7 demonstrates that ParCNetV2 runs faster and per-
forms substantially better than Swin and ConvNeXt. More-
over, our model requires less memory, making it a more
suitable option for edge computing applications.

5. Conclusion

This paper presents ParCNetV2, a pure convolutional
neural network with state-of-the-art performance. It ex-
tends position-aware circular convolution with oversized
convolutions and strengthens attention through bifurcate
gate units. Besides, it utilizes a uniform local-global convo-
lution block to unify the design of the early and late-stage
convolution blocks. We conduct extensive experiments on
image classification and semantic segmentation to show the
effectiveness and superiority of the proposed ParCNetV2
architecture.
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