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Abstract

The key to the success of few-shot segmentation (FSS)
lies in how to effectively utilize support samples. Most solu-
tions compress support foreground (FG) features into pro-
totypes, but lose some spatial details. Instead, others use
cross attention to fuse query features with uncompressed
support FG. Query FG could be fused with support FG,
however, query background (BG) cannot find matched BG
features in support FG, yet inevitably integrates dissimilar
features. Besides, as both query FG and BG are combined
with support FG, they get entangled, thereby leading to in-
effective segmentation. To cope with these issues, we de-
sign a self-calibrated cross attention (SCCA) block. For
efficient patch-based attention, query and support features
are firstly split into patches. Then, we design a patch align-
ment module to align each query patch with its most sim-
ilar support patch for better cross attention. Specifically,
SCCA takes a query patch as Q, and groups the patches
from the same query image and the aligned patches from
the support image as K&V . In this way, the query BG
features are fused with matched BG features (from query
patches), and thus the aforementioned issues will be mit-
igated. Moreover, when calculating SCCA, we design a
scaled-cosine mechanism to better utilize the support fea-
tures for similarity calculation. Extensive experiments con-
ducted on PASCAL-5i and COCO-20i demonstrate the su-
periority of our model, e.g., the mIoU score under 5-shot
setting on COCO-20i is 5.6%+ better than previous state-
of-the-arts. The code is available at https://github.
com/Sam1224/SCCAN .

1. Introduction
With the rapid development of deep learning, semantic

segmentation has made tremendous progress [21, 48, 1],

but such success requires massive time and human efforts

*Co-corresponding authors
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Figure 1. (a) Details of cross attention for FSS. (b)&(c) Existing
and our proposed cross attentions. In (b), query FG features

are correctly fused with matched support FG features, but query

BG features are combined with mismatched support FG features,

and they get entangled. In (c), query BG is correctly fused with

matched query BG instead, so query features are disentangled.

for annotating the pixel-wise masks. To save annotation

cost, semi-/weakly-supervised segmentation [38, 11, 4] are

proposed to take advantages of unlabelled/weakly-labelled

data. Nevertheless, they both fail to segment unseen classes

(during training), which prevents segmentation from gener-

alizing to novel classes. To tackle this problem, few-shot

segmentation (FSS) [28, 35, 45] is introduced to quickly

adapt the model to novel classes, with the help of a few an-

notated samples.

Naturally, human could refer to a few samples of a

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

655



novel object, and recognize them in unlabelled images,

even without knowing what they actually are, i.e., class-

agnostic. Inspired by this phenomenon, researchers develop

the learning-to-learn paradigm [26, 30] for FSS models.

They learn a segmentation pattern on some base classes dur-

ing training, and apply the same pattern to segment novel

classes during testing. Particularly, this pattern is to use the

knowledge of a few annotated support samples to perform

segmentation on an unlabelled query image for a class.

There exist many solutions for FSS, where prototype-

based methods [45, 35, 15] are the most popular. Specifi-

cally, support prototypes [45, 15] are extracted from support

FG1, and they are used to segment query image through,

e.g., feature comparison [35]. However, compressing sup-

port FG to prototypes leads to information loss, Therefore,

some methods [44, 34, 46, 37] employ cross attention in-

stead to fuse query features with uncompressed support FG

(as shown in Fig. 1(a)). Unfortunately, two other issues

would arise. (1) As shown in Fig. 1(b), query BG (Q, car-

pet) cannot find matched features in support FG (K&V ,

cat), i.e., the similarity scores between all query BG and

support FG pixel pairs are low. Then, such low scores are

amplified after softmax normalization, e.g., 1e-10 to 0.1 for

one pair. As a result, query BG features are inevitably fused

with mismatched support FG features and get biased. This

issue is termed BG mismatch. (2) Meanwhile, query FG

could effectively integrate the knowledge of matched sup-

port FG. As both query FG and BG are fused with support

FG, their features get entangled, which is called FG-BG en-
tanglement, thereby leading to ineffective segmentation.

To address these two issues, we propose a novel attention

module named self-calibrated cross attention (SCCA)
that calculates self and cross attentions simultaneously. As

shown in Fig. 1(c), query features are still taken as Q, but

the query features and support FG are grouped as K&V .

The rationality is explained as follows: (1) Query BG fea-

tures are effectively fused with matched query BG features

from the same query image in K&V (via self attention).

Hence, the BG mismatch issue is solved. (2) Query FG can

be enhanced by matched information in both query features

(via self attention) and support FG (via cross attention). In

this way, query BG features persist to integrate BG infor-

mation, while query FG is combined with FG information,

the FG-BG entanglement issue is mitigated.

Unluckily, the attention cost of SCCA is twice as much

as that of standard cross attention. Therefore, we incor-

porate SCCA with the memory efficient swin transformer

(ST) [20], and present the self-calibrated cross attention
network (SCCAN) to boost FSS. To be specific, a pseudo

mask aggregation (PMA) module is firstly developed to

generate pseudo query masks. PMA takes all pairwise sim-

ilarities to generate the mask value for a query pixel, which

1FG and BG are used to represent foreground and background.

is better at alleviating the effects of noises, compared to ex-

isting methods [22, 32] that merely use a single largest simi-

larity value. Then, self-calibrated cross attention (SCCA)
block is proposed for effective patch-based cross attention,

which mainly consists of (1) patch alignment (PA) module

and (2) aforementioned SCCA module. (1) ST-based cross

attention may have the patch misalignment issue in local at-

tention calculation. Thus, we design a PA module to align

each query patch with its most similar support patch (with

FG pixels). (2) Given pairs of query and aligned support

patches, SCCA effectively fuses query features with sup-

port FG features. Recall that query FG features integrate

information both from the same query image patches and

the support image patches. Naturally, a query patch is more

similar to itself than another support patch, and thus self at-

tention might dominate in SCCA, and the query FG features

may not integrate sufficient support FG features, which may

weaken the FG feature representations. Hence, we further

incorporate SCCA with a scaled-cosine (SC) mechanism to

encourage query FG to integrate more information from the

support image. In a nutshell, our contributions could be

summarized as follows:

• We propose a self-calibrated cross attention network

(SCCAN), including pseudo mask aggregation (PMA)

module and self-calibrated cross attention (SCCA)

blocks, to effectively utilize support information.

• SCCA could tackle the BG mismatch and FG-BG en-
tanglement issues, which disentangles query FG and

BG, thereby leading to effective segmentation.

• Training-agnostic PMA module could roughly locate

query FG, and it is better at suppressing the effects of

noises, compared to existing methods.

• New state-of-the-art could be set on PASCAL-5i and

COCO-20i, e.g., the mIoU score under 5-shot setting

on COCO-20i is 5.6%+ better than previous methods.

2. Related work

Few-shot segmentation. To alleviate the generaliza-

tion problem on unseen classes of semantic segmenta-

tion, few-shot segmentation (FSS) is firstly introduced in

OSLSM [28], which segments query image with the help of

annotated support samples. Recent FSS methods could be

roughly divided into four categories. (1) Prototype-based

methods [45, 35, 32, 15, 14, 18, 43, 5, 19] compress sup-

port FG into single or multiple prototypes, which are then

used to help segment the query image through, e.g., co-

sine similarity or feature concatenation. Based on the intu-

ition that pixels from the same object are more similar than

those from different objects, SSP [5] is designed to generate
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Figure 2. Overall architecture of (a) self-calibrated cross attention network (SCCAN) and (b) self-calibrated cross attention (SCCA)
block. (a) Pseudo mask aggregation module generates a pseudo mask that could roughly locate query FG. Feature fusion module adapts

query and support features for better cross attention. SCCA blocks could effectively fuse query features with support FG. Finally, the

enhanced query features is forwarded to a decoder for segmentation. (b) SCCA blocks perform patch-based attentions. Patch alignment
module aims at finding the most similar support patch SA

i for each query patch Ti. SCCA takes a query patch Ti as Q, and groups the

same Ti and its aligned support patch SA
i as K&V to address the BG mismatch and FG-BG entanglement issues.

query FG and BG prototypes to find other similar query fea-

tures. (2) To prevent from information loss of prototypes,

attention-based methods [46, 44, 34, 9, 39, 37, 12] build

up per-pixel relationships between query and uncompressed

support features, then use cross attention to fuse query fea-

tures with support FG features. Nevertheless, they suffer

from the BG mismatch and FG-BG entanglement issues as

explained in Sec. 1. (3) More recently, correlation-based

methods [24, 29, 8, 40] focus on visual correspondence to

build 4D correlations upon query and support features, then

use expensive 4D operations to perform segmentation. (4)

There also exist some other methods, e.g., DPCN [17] gen-

erates dynamic kernels from support sample which is then

used to process query features, some methods [13, 31, 10]

benefit from base classes during testing and generate good

results. In this work, we focus on the cross attention-based

methods, and contribute effective self-calibrated cross at-

tention (SCCA) for FSS, to solve the aforementioned issues.

Attention. Recently, some works [2, 33, 36, 42, 47,

20] demonstrate that pure transformer architecture could

achieve excellent results in computer vision tasks. Particu-

larly, swin transformer (ST) [20] calculates efficient self at-

tention within small windows to reduce computational bur-

den, while achieving good results. In spite of its good per-

formance, ST in its original form does not support effective

cross attention that could be utilized to fuse query features

with support samples in FSS. In this work, we adapt ST for

SCCA to enable efficient and effective cross attentions.

3. Problem definition
Suppose the sets for training and testing are denoted as

Dtr and Dte, respectively. Dtr involves some classes Ctr,

while Dte covers another class set Cte. FSS studies a sce-

nario where Ctr and Cte are disjoint, i.e., Ctr∩Cte = ∅. Both

Dtr and Dte contain numerous episodes, which are the ba-

sic elements of episodic training. For k-shot setting, each

episode consists of a support set S = {InS ,Mn
S }kn=1 and a

query set Q = {IQ,MQ} for a specific class c, where InS
and Mn

S represent the n-th support image and its annotated

binary mask, IQ and MQ indicate the query image and cor-

responding mask. During training, the model learns to seg-

ment IQ under the guidance of support set S for classes Ctr,

and then apply the learned pattern to Cte during testing. For

simplicity, we introduce our method under 1-shot setting.

4. Methodology
As shown in Fig. 2(a), we propose self-calibrated cross

attention network (SCCAN), which consists of pseudo

mask aggregation (PMA) module, feature fusion (FF) mod-

ule and self-calibrated cross attention (SCCA) blocks. PMA

is responsible for generating a pseudo query mask that could

roughly locate query FG with minor cost. Then, FF adapts

query and support features to close the gap between their

FG features for better cross attention. Particularly, SCCA is
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Figure 3. Issues of swin transformer when used for cross at-
tention. Support BGs are usually not used in FSS, we preserve

them for completeness. (a) Invalid support patch. (b) Misaligned
support patch.

designed to alleviate the BG mismatch and FG-BG entan-
glement issues of existing cross attention-based FSS meth-

ods, and to effectively fuse query features with support FG

information. Next, we will introduce the details of SCCA

first, followed by PMA and FF modules.

4.1. Self-calibrated cross attention block

Swin transformer (ST) [20] is well known for its excel-

lent performance and efficiency for self attention. Specifi-

cally, it seamlessly splits features into small windows, and

performs window-based self attention. Then, windows are

shifted for another self attention to capture long-range de-

pendencies. Nevertheless, merely taking query patch (we

denote that pixels in a window form a patch) as Q, and

its corresponding support patch as K&V for cross atten-

tion would raise some problems. (1) BG mismatch and FG-
BG entanglement (as explained earlier); (2) Invalid support
patch (Fig. 3(a)): T0’s corresponding patch S0 does not

contain FG objects, and thus T0 cannot be enhanced after

performing cross attention with S0; (3) Misaligned support
patch (Fig. 3(b)): T2 represents headstock, but in support

image, headstock locates in S3. T2 would perform cross

attention with S2, and thus its most similar features, i.e.,

headstock, cannot be directly accessed, which degrades the

effectiveness of cross attention.

Therefore, we propose self-calibrated cross attention

(SCCA) to adapt ST for effective cross attention and mit-

igate these issues. We employ 8 consecutive SCCA blocks

(as shown in Fig. 2(b)), each of which takes the enhanced

query and support features from previous block as inputs,

and seamlessly split them into patches. Then, patch align-

ment (PA) module is proposed to align each query patch

with its most similar support patch. After that, each query

patch and its aligned support patch are grouped for SCCA

to effectively enhance query features with support FG.

The inputs for the first block come from feature fusion

(FF) module, which will be introduced later. Both input

features of the L-th block FL
Q ∈ R

C×H×W and FL
S ∈

R
C×H×W are split into patches Ti ∈ R

N2×C×K×K and
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Figure 4. Details of patch alignment (PA) module. Firstly, pro-

totype is obtained from each input patch. Then, cosine similarity

is calculated among query and support prototypes. Finally, each

query patch’s most similar support patch is obtained via argmax
operation, and then they are aligned.

Si ∈ R
N2×C×K×K , i ∈ {0, · · · , N2− 1}, where N2 is the

number of patches, and K ×K denotes window/patch size.

Patch alignment (PA). PA could mitigate the invalid sup-
port patch and misaligned support patch issues by align-

ing each query patch with its most similar support patch

(with FG pixels) for effective cross attention. Specifically,

as shown in Fig. 4, the prototype of each patch is obtained

via patch-wise average pooling.

TP
i = PAP (Ti), S

P
i = PAP (Si) (1)

where TP
i ∈ R

N2×C×1×1 and SP
i ∈ R

N2×C×1×1 are the

prototypes of query and support patches, and PAP denotes

patch-wise average pooling. Note that support features and

support prototypes only contain FG information.

Next, we measure the cosine similarity between patch

prototypes TP
i and SP

i , mask out support patches without

FG objects in the similarity score, and perform argmax to

obtain each query patch’s most similar support patch.

Indices = argmax(Cos(TP
i , SP

i ) ◦MP
S ) (2)

where Indices ∈ R
N2

are the indices of aligned sup-

port patches SA
i , Cos means cosine similarity, ◦ denotes

Hadamard product, MP
S ∈ {1, 0}1×N2

is a mask indicating

if each support patch has FG pixels or not. Then, each query

and its aligned support patch are grouped for SCCA.

Self-calibrated cross attention (SCCA). Given a pair of

query and its aligned support patch, the query patch is taken

as Q, while both of them are taken as K&V , and thus

self attention (query patch in Q with query patch in K&V )

and cross attention (query patch in Q with support patch in

K&V ) would be calculated simultaneously. We explain the

rationale as follows.

(1) For a query BG pixel, it cannot find similar infor-

mation from support FG in existing cross attention-based
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Figure 5. Details of self-calibrated cross attention. Fusion mod-

ule is a feed-forward network. Query patch firstly calculates self

and cross attention scores with itself and the aligned support patch.

Scores are then concatenated and normalized. Finally, the score is

used to obtain useful support information, which is fused with in-

put query patch for query feature enhancement.

FSS methods. During SCCA, query BG could find other

matched BG information from query features themselves

(via self attention), while ignoring the dissimilar support

FG. Thus, the BG mismatch problem is solved.

(2) Query FG could find matched FG features not only

from support FG but also from query features, and thus it

could be fused with reasonable features, and get enhanced.

(3) Since both query FG and BG are correctly fused with

their matched features in SCCA, the FG-BG entanglement
problem could be mitigated.

Recall that the performance of FSS is affected by how the

support sample is utilized. Unfortunately, in (2), query FG

may not be fused with sufficient support features, because

FG pixels in a query patch are more similar to themselves,

compared with those in the aligned support patch. As a re-

sult, self attention might dominate in SCCA. To address this

issue, we further contribute a scaled-cosine (SC) mecha-

nism. As illustrated in Fig. 5, when performing SCCA, we

use scaled dot product for self attention, and cosine sim-

ilarity for cross attention. Their attention scores are then

concatenated and normalized. Dot product is a more strict

similarity-related operator, as it takes both direction and

magnitude into consideration. In contrast, cosine similar-

ity only measures the similarity of directions. Hence, we

employ cosine similarity for cross attention to encourage to

discover more similar regions, and query FG is more likely

to integrate sufficient information from support FG.

We formally describe SCCA as follows. Scaled dot prod-

uct is firstly conducted on query patch Ti and itself to ob-

tain self attention score. Meanwhile, cosine similarity is

performed on the same Ti and aligned support patch SA
i to

obtain cross attention score. Their scores are denoted as

AQQ ∈ R
N2×K2×K2

and AQS ∈ R
N2×K2×K2

, where N2

and K2 are the number of patches and pixels, respectively.

AQQ =
Ti · Ti√

dk
, AQS =

Ti · SA
i

‖Ti‖‖SA
i ‖

(3)

Co
sin

e 
Si

m
ila

rit
y

Softmax

D
ot

 P
ro

du
ct

Flatten

Flatten

Flatten

CNN

CNN

Normalize
&Reshape

Co
sin

e 
Si

m
ila

rit
y

Softmax

D
ot

 P
ro

du
ct

Flatten

Flatten

Flatten

CNN

CNN

Normalize
&Reshape

 

  

 

Co
sin

e 
Si

m
ila

rit
y

Softmax

D
ot

 P
ro

du
ct

Flatten

Flatten

Flatten

CNN

CNN

Normalize
&Reshape

 

  

 

Figure 6. Details of pseudo mask aggregation (PMA). Given a

query pixel, the weighted summation of its normalized similar-

ity scores with all support pixels and the annotated support mask

means the probability of being FG.

Then, two scores are concatenated and normalized by the

softmax operation to obtain the final attention score A ∈
R

N2×K2×2K2

.

A = Softmax(Concat(AQQ, AQS)) (4)

Finally, A is used to aggregate information from Ti and SA
i ,

and then be fused with Ti for query feature enhancement.

T̂i = FFN(A · Concat(Ti, S
A
i ) + Ti) (5)

where FFN is feed-forward network.

Once all enhanced query patches are obtained, they are

assembled to be FL+1
Q ∈ R

C×H×W . Moreover, F 7
Q from

the last SCCA block is forwarded to the decoder [13] and

generate the segmentation M̂Q ∈ R
2×H×W .

Window shifting. To enable interactions among patches,

we adopt window shifting operation in even layers as swin

transformer [20]. After window shifting, some irregular

patches are obtained at image borders, and we pad them

to have regular size for PA and SCCA.

4.2. Pseudo mask aggregation

Pseudo masks [17, 22, 32, 46] are commonly incorpo-

rated into FSS models because they could roughly locate

the query FG object without learnable parameters. Specif-

ically, they measure the cosine similarity between each

pair of high-level query and support FG pixels [32, 46] or

patches [17, 22]. Then, query pixel’s largest similarity score

is normalized and taken as its probability of being FG.

However, existing methods suffer from the following

two issues. (1) They only take support FG into consider-

ation, which may not work well when both query FG and

BG look dissimilar to support FG, i.e., their scores are sim-

ilar. (2) As each value in pseudo mask merely corresponds

to the largest cosine similarity among pixel or patch pairs,

they would be heavily affected by noises. As a result, the

locating function of pseudo mask is weakened.

To tackle these issues, we propose a pseudo mask aggre-

gation (PMA) module, which is illustrated in Fig. 6. Con-

cretely, we apply two changes to the original one: (1) Both

support FG and BG features are used for reliable compar-

isons, e.g., human head (query FG) is more similar to body
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(support FG) than room (support BG), and thus it is classi-

fied as FG. (2) To suppress the effects of noises, we use all

pairwise similarities to perform weighted summation on bi-

nary support mask, instead of merely taking a largest value.

First of all, PMA calculates cosine similarity Sim ∈
R

HW×HW between high-level query features FHigh
Q ∈

R
C×H×W and support features FHigh

S ∈ R
C×H×W . Then,

a softmax operation is applied to normalize the score. Af-

ter that, dot product is conducted on Sim and support mask

MS to obtain the pseudo mask MPseudo ∈ R
HW×1. Fi-

nally, normalization and reshape operations are employed

to generate the pseudo mask MPseudo ∈ R
1×H×W .

4.3. Feature fusion

Due to the fact that FG objects in query and support im-

ages could be dissimilar, we start from the mid-level query

features FMid
Q and support features FMid

S (obtained from

the 3rd and 4th blocks of the backbone [32]), and use the

support prototype PS (extracted from support FG) to close

their gaps. Concretely, FMid
Q is combined with PS and its

pseudo mask MPseudo to obtain FQ. Similarly, FMid
S is

fused with support prototype PS and support mask MS to

generate FS . Particularly, FQ and FS are inputted to SCCA

as F 0
Q and F 0

S , respectively.

5. Experiments
5.1. Experimental settings

Datasets. We evaluate our method on two public bench-

mark datasets, including PASCAL-5i [28] and COCO-

20i [25]. PASCAL-5i contains 20 classes, and is built upon

PASCAL VOC 2012 [3] with additional annotations from

SDS [6], while COCO-20i is created from MSCOCO [16],

which is more challenging and has 80 classes. Both

PASCAL-5i and COCO-20i are evenly split into 4 folds for

cross validation, i.e., 5 and 20 classes per fold, respectively.

In each fold, the union of other three folds is for training,

while the fold itself is preserved for testing. Besides, 1,000

and 4,000 episodes are randomly sampled from PASCAL-

5i and COCO-20i during testing.

Evaluation metrics. Following existing works [32, 46,

8], mean intersection over union (mIoU) and foreground-

background IoU (FB-IoU) are adopted as evaluation met-

rics. The former measures the mean IoU scores for all FG

classes in a fold, while FB-IoU regards them as a single FG

class, and reports the average IoU scores for FG and BG.

Implementation details. We take ResNet50/101 [7] pre-

trained on ImageNet [27] as backbones, whose weights are

frozen. Following CyCTR [46], we use AdamW and SGD

optimizers to optimize attention-related (i.e., SCCA) and

other parameters, respectively, and Dice loss [23] is taken as

the loss function LSeg . The model is trained for 200 epochs

on PASCAL-5i, and 50 epochs on COCO-20i. For both

datasets, the batch size is fixed as 8, and the learning rates of

AdamW and SGD are initialized as 6e-5 and 5e-3, respec-

tively. During training, all images are randomly cropped to

473×473 patches as inputs, and we employ the same set

of data augmentation techniques as PFENet [32]. During

testing, we resize the outputs to compare with the original

ground truths. For SCCA, we employ 8 SCCA blocks, and

set window size as 8. For other attention-related parame-

ters, number of heads is 8, embedding dimension is 256,

and MLP ratio is 1. For k-shot setting, when k > 1, we

simply follow PFENet [32] to average the support features.

5.2. Comparisons with state-of-the-arts

Quantitative results. The results of baselines, as well as

our proposed SCCAN, are shown in Tab. 1 and Tab. 2, and

we could draw the following conclusions. (1) SCCAN out-

performs all baselines by considerable margins under most

of the settings, and achieves new state-of-the-arts. (2) Par-

ticularly, the gap between SCCAN and other methods is

larger on COCO-20i. For example, with ResNet50, SC-

CAN outperforms others by 1.3%+ and 3.0%+ under 1-shot

setting on two datasets, in terms of mIoU (averaged from 4

folds). When referring to 5-shot setting (with ResNet50),

the gap is more prominent, e.g., mIoU of SCCAN is 5.6%+

better than that of the best baseline DCAMA [29] on

COCO-20i. We believe this can be explained by the dif-

ferences between two datasets. PASCAL-5i contains many

images with easy BG (e.g., pure sky), while COCO-20i is a

more challenging benchmark, e.g., the images usually con-

tain multiple FG objects from different classes. In each

episode, only one class is considered as FG, while other ob-

jects will be taken all as BG. Therefore, BG is much more

complex in this case. Our SCCAN directly mitigates the

BG mismatch and FG-BG entanglement issues, and could

deal with the complex BG better. Thus, SCCAN could gain

more improvements on COCO-20i than on PASCAL-5i.

Qualitative results. To better understand our SCCAN, we

take some episodes from two datasets, then compare SC-

CAN with a latest baseline VAT [8], and the qualitative re-

sults are presented in Fig. 7. We could observe that SCCAN

is better at distinguishing FG and BG, e.g., in the third and

fifth columns of PASCAL-5i, VAT mistakenly classifies hu-

man as FG (horse and train), but SCCAN could recognize

them well. Moreover, SCCAN could sometimes yield more

reasonable results than human-annotated labels, e.g., in the

second column of COCO-20i, there exist a hole for plate in

the right doughnut, SCCAN could point it out, but VAT and

ground truth wrongly consider it as FG.

5.3. Ablation study

Components analysis. To validate the effectiveness of pro-

posed modules, we perform ablation study with ResNet50

on PASCAL-5i, under 1-shot setting. SCCAN mainly con-
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Backbone Method
1-shot 5-shot

50 51 52 53 Mean FB-IoU 50 51 52 53 Mean FB-IoU

ResNet50

PFENet† (TPAMI’20) [32] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

MLC† (ICCV’21) [41] 59.2 71.2 65.6 52.5 62.1 - 63.5 71.6 71.2 58.1 66.1 -

HSNet‡� (ICCV’21) [24] 63.5 68.2 62.4 59.8 63.5 76.5 70.1 72.0 67.9 67.1 69.3 80.6

CyCTR† (NIPS’21) [46] 65.7 71.0 59.5 59.7 64.0 - 69.3 73.5 63.8 63.5 67.5 -

NTRENet† (CVPR’22) [18] 65.4 72.3 59.4 59.8 64.2 77.0 66.2 72.8 61.7 62.2 65.7 78.4

DPCN† (CVPR’22) [17] - - - - 65.7 77.4 - - - - - -

DCAMA‡� (ECCV’22) [29] 66.1 71.9 59.7 57.5 63.8 75.7 70.7 72.9 63.0 65.0 67.9 79.4

VAT‡� (ECCV’22) [8] 65.9 70.0 64.9 59.0 65.0 77.4 72.1 74.2 69.7 65.3 70.3 81.1

SCCAN† (Ours) 67.5 72.6 67.2 60.5 67.0 76.4 69.9 74.3 70.1 66.9 70.3 79.7

SCCAN‡ (Ours) 68.3 72.5 66.8 59.8 66.8 77.7 72.3 74.1 69.1 65.6 70.3 81.8

ResNet101

PFENet† (TPAMI’20) [32] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5

MLC† (ICCV’21) [41] 60.8 71.3 61.5 56.9 62.6 - 65.8 74.9 71.4 63.1 68.8 -

HSNet‡� (ICCV’21) [24] 65.7 70.3 63.2 61.9 65.3 77.2 72.0 73.6 68.7 68.4 70.7 80.9

CyCTR† (NIPS’21) [46] 67.2 71.1 57.6 59.0 63.7 - 71.0 75.0 58.5 65.0 67.4 -

NTRENet† (CVPR’22) [18] 65.5 71.8 59.1 58.3 63.7 75.3 67.9 73.2 60.1 66.8 67.0 78.2

DCAMA‡ (ECCV’22) [29] 62.5 70.8 64.5 56.4 63.5 76.5 70.0 73.8 66.8 65.0 68.9 81.1

VAT‡� (ECCV’22) [8] 68.1 71.7 64.8 63.3 67.0 78.7 72.6 74.1 69.5 69.5 71.4 82.0

SCCAN† (Ours) 69.1 74.0 66.3 61.6 67.7 77.3 71.6 75.2 69.5 66.5 70.7 79.6

SCCAN‡ (Ours) 70.9 73.9 66.8 61.7 68.3 78.5 73.1 76.4 70.3 66.1 71.5 82.1

Table 1. Comparison with state-of-the-arts on PASCAL-5i. Bold results represent the best performance, while the underlined results

indicate the second best. � means a method originally uses different data lists for testing, and is adapted with the uniform ones. † and ‡
indicate that the resize methods from PFENet [32] and HSNet [24] are used (which is explained in supplementary material).

Backbone Method
1-shot 5-shot

200 201 202 203 Mean FB-IoU 200 201 202 203 Mean FB-IoU

ResNet50

MLC† (ICCV’21) [41] 46.8 35.3 26.2 27.1 33.9 - 54.1 41.2 34.1 33.1 40.6 -

HSNet‡ (ICCV’21) [24] 36.7 41.4 39.5 39.1 39.2 67.6 44.4 49.7 46.1 45.5 46.4 70.9

CyCTR† (NIPS’21) [46] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -

NTRENet† (CVPR’22) [18] 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 38.4 40.3 69.2

DPCN† (CVPR’22) [17] - - - - 41.5 62.7 - - - - - -

DCAMA‡ (ECCV’22) [29] 41.9 45.1 44.4 41.7 43.3 69.5 45.9 50.5 50.7 46.0 48.3 71.7

VAT‡ (ECCV’22) [8] 39.1 43.5 42.1 39.9 41.1 68.2 45.2 50.1 48.0 45.6 47.2 71.6

SCCAN† (Ours) 39.5 49.3 47.3 44.3 45.1 68.5 45.7 56.4 56.5 50.7 52.3 72.2

SCCAN‡ (Ours) 40.4 49.7 49.6 45.6 46.3 69.9 47.2 57.2 59.2 52.1 53.9 74.2

ResNet101

PFENet† (TPAMI’20) [32] 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9

MLC† (ICCV’21) [41] 50.2 37.8 27.1 30.4 36.4 - 57.0 46.2 37.3 37.2 44.4

HSNet‡ (ICCV’21) [24] 37.6 44.5 44.4 40.7 41.8 69.0 45.1 52.3 48.5 47.9 48.5 72.1

NTRENet† (CVPR’22) [18] 38.3 40.4 39.5 38.1 39.1 67.5 42.3 44.4 44.2 41.7 43.2 69.6

DCAMA‡ (ECCV’22) [29] 41.5 46.2 45.2 41.3 43.5 69.9 48.0 58.0 54.3 47.1 51.9 73.3

SCCAN† (Ours) 41.7 51.3 48.4 46.7 47.0 68.5 49.0 59.3 59.4 52.7 55.1 73.4

SCCAN‡ (Ours) 42.6 51.4 50.0 48.8 48.2 69.7 49.4 61.7 61.9 55.0 57.0 74.8

Table 2. Comparison with state-of-the-arts on COCO-20i. Bold results represent the best performance, while the underlined results

indicate the second best. † and ‡ indicate that the resize methods from PFENet [32] and HSNet [24] are used.

PMA Attention PA SC mIoU FB-IoU

62.3 73.3

� 65.2 76.0

� ST 65.9 75.5

� CST 65.3 75.4

� SCCA 66.0 75.3

� SCCA � 66.5 76.2

� SCCA � � 67.0 76.4

Table 3. Ablation study. mIoU shows the average score of 4 folds.

PMA: Pseudo mask aggregation; ST: Swin transformer; CST:

Swin transformer with cross attentions; SCCA: Self-calibrated

cross attention; PA: Patch alignment; SC: Scaled-cosine.

sists of PMA module and SCCA which further contains PA,

and SC (Scaled-cosine) mechanism. Our basic model is

obtained when we remove all these components from SC-

CAN. As shown in Tab. 3, the usage of PMA could bring

2.9% growth of mIoU, and if we further employ the stan-

dard ST for feature enhancement, the mIoU score could

reach 65.9%. When we merely replace self attention as

cross attention in ST (denoted as CST), the BG mismatch
and FG-BG entanglement issues would arise, and the mIoU

score will be 0.6% worse. Fortunately, SCCA could mit-

igate these issues, but the obtained score is close to that

of the standard ST (66.0% vs 65.9%), which is caused

by invalid&misaligned support patch issues (described in

Sec. 4.1). PA is used to tackle the issues, and the score is

66.5%. Finally, SC mechanism aims at encouraging cross

attention, and the final mIoU is boosted to 67.0%.
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Figure 7. Qualitative results of our SCCAN and VAT [8] under 1-shot setting on PASCAL-5i and COCO-20i.
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Figure 8. Visualization of attention scores (after softmax)
with/without SC mechanism. Zoom in for more details. Red

rectangle means query patch, while yellow rectangle means sup-

port patch.

Patch size 50 51 52 53 mIoU FB-IoU

5 67.1 72.4 66.5 60.0 66.5 76.0

8 67.5 72.6 67.2 60.5 67.0 76.4
10 67.2 72.3 66.8 60.1 66.6 75.6

15 67.8 72.5 66.4 59.8 66.6 75.1

Table 4. Parameter study of window/patch sizes on PASCAL-
5i. mIoU shows the average score of 4 folds.

Visualization of scaled-cosine mechanism. To better un-

derstand the function of SC mechanism, we refer to the

last two rows of Tab. 3, and visualize their attention scores

with an example in Fig. 8. The yellow support patch is the

aligned patch of the red one. Referring to the rightmost col-

umn in Fig. 8, we could observe that for a query FG pixel,

SC mechanism could help to focus more on support FG fea-

tures, i.e., more information could be obtained from support

patch. In this way, support information is better utilized.

#SCCA Blocks mIoU FB-IoU #Params (M) FLOPs (G)

4 66.3 75.8 31.8 447.7

8 67.0 76.4 35.0 480.9

12 66.3 76.0 38.1 514.1

16 66.2 75.8 41.3 547.3

Table 5. Parameter study of number of SCCA blocks on
PASCAL-5i. mIoU shows the average score of 4 folds.

Patch/Window size in SCCA. Patch size plays an impor-

tant role in swin transformer. With the decrease of patch

size, less GPU memory is required, but one pixel could ac-

cess to less pixels within one attention. In SCCA, patch size

would also affect patch alignment. Therefore, we take val-

ues from {5, 8, 10, 15} to study its impacts. As shown in

Tab. 4, when patch size is 8, best performance is achieved.

Number of SCCA blocks. SCCA blocks are the basis

of our proposed SCCAN, and we conduct experiments to

study SCCAN with different number of SCCA blocks. As

shown in Tab. 5, the best mIoU and FB-IoU scores could be

achieved when we use 8 SCCA blocks. The Floating Point

Operations (FLOPs) score is calculated based on one query

and support image pairs, whose shapes are uniformly set as

473× 473.

6. Conclusion

We propose a self-calibrated cross attention network

(SCCAN) for accurate FSS, which consists of SCCA blocks

and PMA module. SCCA is designed to effectively fuse

query features with support FG features. PMA could gen-

erate robust pseudo masks for query images with minor

cost. Extensive experiments are conducted and show that

SCCAN could achieve new state-of-the-arts for FSS.
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Limitation. Currently, we follow PFENet [32] to average

the features of 5 support samples under 5-shot setting. How-

ever, cross attention will be affected, e.g., if there are objects

at the top-left and bottom-right corners for 1 and 4 support

images, respectively, then their features will roughly multi-

ply 1/5 and 4/5 due to the average operation, and the top-left

support features will be less similar to query features, and

less used. Thus, a k-shot strategy should be particularly de-

signed for cross attention, and we leave it for future work.
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