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Figure 1: Demo results of our Versatile Diffusion (VD) framework on three out of all primary tasks (i.e. Figures a, b, and c) and three
derived tasks (i.e. Figure d, e, and f). As shown in the captions, the three primary tasks are text-to-image, image-variation, and image-
to-text. Figure d demonstrates the disentanglement between image semantics and style. Figure e shows the demo of dual-context blender
using one image and one text. Figure f shows the demo of the multi-context blender using multiple images and one text.

Abstract

Recent advances in diffusion models have set an im-
pressive milestone in many generation tasks, and trend-
ing works such as DALL-E2, Imagen, and Stable Diffu-
sion have attracted great interest. Despite the rapid land-
scape changes, recent new approaches focus on extensions
and performance rather than capacity, thus requiring sep-
arate models for separate tasks. In this work, we expand
the existing single-flow diffusion pipeline into a multi-task
multimodal network, dubbed Versatile Diffusion (VD), that
handles multiple flows of text-to-image, image-to-text, and
variations in one unified model. The pipeline design of
VD instantiates a unified multi-flow diffusion framework,
consisting of sharable and swappable layer modules that
enable the crossmodal generality beyond images and text.

Through extensive experiments, we demonstrate that VD
successfully achieves the following: a) VD outperforms the
baseline approaches and handles all its base tasks with
competitive quality; b) VD enables novel extensions such
as disentanglement of style and semantics, dual- and multi-
context blending, etc.; c) The success of our multi-flow
multimodal framework over images and text may inspire
further diffusion-based universal AI research. Our code
and models are open-sourced at https://github.com/SHI-
Labs/Versatile-Diffusion.

1. Introduction

Multi-modality is the “crown jewel” for achieving uni-
versal AI. With the attributes of deep learning, methods
designed for traditional tasks such as classification, detec-
tion, segmentation, etc., have reached near-human level
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accuracy. On top of them, multimodal research such as
[19, 37, 3, 31] primarily focused on discriminative tasks
of jointly recognizing, matching, or understanding multi-
modal data. Nevertheless, research on multimodal genera-
tive models remains scarce. Previously, the best-performing
generative vision models, generative adversarial networks
(GAN) [34, 7, 35] merely focus on specific domains (i.e.
faces [35, 10, 94], fonts [99, 45], natural scenes [75, 51],
etc.); and on specific tasks (inpainting [84, 103, 98], super-
resolution [48], image-to-image translation [30, 105], etc.).

The recent success of diffusion models [28, 78, 63,
70, 67] has brought new horizons. Diffusion models are
likelihood-based models that gradually restore image con-
tents from Gaussian corruptions. It has proved to be ef-
fective in bridging modalities and tasks, for instance, un-
conditional generation [28, 78, 16], density estimation [39],
super-resolution [71], and text-to-image generation [56,
63, 70, 67]. The success of diffusion models can be at-
tributed to several aspects. Firstly, their training objec-
tives lead to a more robust training procedure than other
approaches like GANs. The iterative refinement inference
procedure also expands the model capability at the cost of
more running time. Besides, the competitive performance
of recent diffusion models such as DALL-E2 [63], Ima-
gen [70], and Stable Diffusion [67] benefits from the re-
markable data collection such as LAION [74], CC12M [11],
COYO [9], etc. The disadvantages of earlier diffusion mod-
els, such as the data hunger and high inference costs, are
gradually alleviated by more efficient structures and sched-
ulers [78, 43, 73, 29, 67]. Diffusion-based text-to-image
methods [63, 70, 67] arguably set new state-of-the-art for
multi-modal generative AI. However, those works by far al-
most exclusively hinge on single-flow diffusion pipelines
(illustrated in Section 3); and meanwhile, most of them are
trained and evaluated on a single specialized generation task
(e.g., text to image) despite being cross-modality.

What is the next move forward, then? We believe in
the central role of multimodal, multi-task models in uni-
versal AI, and we consider diffusion models to be a promis-
ing workhorse to enable so. To fulfill our goal, we pro-
posed Versatile Diffusion (VD) that comprehensively solves
text, images, and variations within one unified generative
model. The key underlying technique is a novel multi-
flow diffusion framework, that generalizes existing single-
flow diffusion pipelines to handle multiple modalities and
tasks simultaneously while effectively sharing information
across them. Thanks to the larger capacity as well as cap-
turing crossmodal semantics, VD not only performs well
on the aforementioned supported tasks but notably derives
many new capabilities including semantic-style disentan-
glement, cross-modal dual context or multi-context gener-
ation (blending), leading to remarkable advances of empir-
ical performance for multi-modal generative AI. Our main

contributions are summarized in the following:

• We introduce Versatile Diffusion (VD), a multimodal,
multi-task diffusion network that adopts a novel gener-
alized multi-flow pipeline, unlike existing single-flow
diffusion models.

• VD solves multiple modalities and tasks in one uni-
fied model, including image generation (text-to-image,
image-variation), and text generation (image-to-text,
text-variation). Through comprehensive experiments,
we show that VD outperforms the baselines via scores
and quality. For example, VD’s high-quality text-to-
image and image-variation results demonstrate that it
indeed better captures the context semantics.

• The unique multi-flow multimodal property of VD en-
ables more novel derivative tasks, that may further fa-
cilitate downstream users engaged in this technology,
including the semantic-style disentanglement, dual-
context and multi-context blending, etc.

2. Related Works
Multi-modalities are unions of information with differ-

ent forms, including but not limited to vision, text, audio,
etc. [83, 4]. Early deep learning work led by Ngiam et
al. [55] learned a fused representation for audio and video.
The similar idea was also adopted across vision and text la-
bel [55], and across vision and language [42]. A part of
multimodal approaches focused on zero-shot learning, for
instance, DiViSE [19] targeted mapping images on seman-
tic space from which unseen category labels can be pre-
dicted. Socher et al. [76] trained a recognition model with
similar ideas in which images were projected on the space
of text corpus. [47] shared the same design as DiViSE
but was upgraded for a large and noisy dataset. Another
set of works [59, 37, 3, 38], focused on increasing classi-
fication accuracy via multimodal training: in which [59]
and [37] did a simple concatenation on multimodal em-
beddings; [3] proposed a gated unit to control the mul-
timodal information flow in the network; [38] surveyed
FastText [32] with multiple fusion methods on text classi-
fication. Meanwhile, multimodal training was also wide-
adopted in detection and segmentation [22, 25, 31]in one
shot. Another topic, VQA [2, 20], conducted cross-modal
reasoning that transferred visual concepts into linguistic an-
swers. Methods such as [100, 54] extracted visual concepts
into neural symbolics, and [101, 95] learned additional con-
cept structures and hierarchies.

Multimodal generative tasks involve simultaneous rep-
resentation learning and generation/synthesis [85], in which
representation networks [93, 41, 23, 90, 58, 89] with
contrastive loss [60, 14, 1, 87, 88] played an essential
role. Specifically, our model VD adopts VAEs [41] and
CLIP [60] as the latent and context encoders, which are
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two critical modules for the network. VD also shares
the common cross-modal concepts such as domain trans-
fer [30, 105] and joint representation learning [82, 96, 86].

Diffusion models (DM) [77, 28] consolidate large fam-
ily of methods including VAEs [41, 90, 65], Markov
chains [6, 77, 72, 79], and score matching models [80, 81],
etc. Differ from GAN-based[23, 7, 35] and flow-based
models [66, 40], DM minimizes the lower-bounded like-
lihoods [28, 80] in backward diffusion passes, rather than
exact inverse in flow [66] or conduct adversarial train-
ing [23]. Among the recent works, DDPM [28] prompted
ϵ-prediction that established a connection between diffusion
and score matching models via annealed Langevin dynam-
ics sampling [92, 80]. DDPM also shows promising results
on par with GANs in unconditional generation tasks. An-
other work, DDIM [78], proposed an implicit generative
model that yields deterministic samples from latent vari-
ables. Compared with DDPM, DDIM reduces the cost
of sampling without losing quality. Regarding efficiency,
FastDPM [43] investigated continuous diffusion steps and
generalized DDPM and DDIM with faster sampling sched-
ules. Another work, [73], replaced the original fixed sam-
pling scheme with a learnable noise estimation that boosted
both speed and quality. [29] introduced a hieratical struc-
ture with progressive increasing dimensions that expedite
image generations for DM. Regarding quality, [16] com-
pared GANs with DMs with exhaustive experiments and
concluded that DMs outperformed GANs on many image
generation tasks. Another work, VDM [39], introduced a
family of DM models that reaches state-of-the-art perfor-
mance on density estimation benchmarks. Diffwave [44]
and WaveGrad [13] show that DM also works well on au-
dio. [57] improved DDPM with learnable noise scheduling
and hybrid objective, achieving even better sampling qual-
ity. [53] introduced semantic diffusion guidance to allow
image or language-conditioned synthesis with DDPM.

Text-to-image generation, nowadays a joint effort of
multimodal and diffusion research, has drawn lots of at-
tention. Among these recent works, GLIDE [56] adopted
pretrained language models and the cascaded diffusion
structure for text-to-image generation. DALL-E2 [63],
a progressive version from DALL-E [64], utilized CLIP
model [60] to generate text embedding and adopted the
similar hieratical structure that made 256 text-guided im-
ages and then upscaled to 1024. Similarly, Imagen [70]
explored multiple text encoders [15, 62, 60] with condi-
tional diffusion models and explores the trade-offs between
content alignment and fidelity via various weight samplers.
LDM [67] introduced a novel direction in which the model
diffuses on VAE latent spaces instead of pixel spaces. Such
design reduced the resource needed during inference time,
and its latter version, SD, has proven to be equally effective
in text-to-image generation.

3. Method
In this section, we will first revisit the fundamentals of

diffusion models [77, 28], including the forward-backward
processes and training objectives. We will then highlight
the multi-flow multimodal framework of Versatile Diffusion
(VD), which is a key contribution that makes VD a unified
model of multiple tasks. Finally, we will reveal all details
of VD, including the choice of VAEs, context encoders, loss
functions, etc.

3.1. Diffusion basics

The forward diffusion process p(xT |x0) is a Markov
Chain [28] with T steps that gradually degrade x0 to xT

with random Gaussian noises (Equation 1).

q(xT |x0) =

T∏
t=1

q(xt|xt−1) =

T∏
t=1

N (
√
1− βtxt−1;βtI)

= N (
√
ᾱtx0; (1− ᾱtI));

ᾱt =

T∏
t=1

αt; αt = 1− βt

(1)
Given the forward diffusion process as prior, diffusion

models are trained to reverse the process and recover signal
x0 back from xT by removing the added Gaussian noises.
This is known as the backward diffusion process, and each
step pθ(xt−1|xt) is sampled from the Gaussian distribu-
tion with network predicted mean µθ(xt, t) and variance
Σθ(xt, t), shown as Equation 2.

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (2)

The objective function to train a diffusion model
is to minimize the variational bound for negative log-
likelihood [28] shown in Equation 3. In practice, many
works assume deterministic αt and βt for step t in Equa-
tion 1. Given that both forward and backward processes are
Gaussian processes, the objective can then be simplified as
the variational weighted l2 loss between the ground truth
and predicted mean.

L = E[− log pθ(x0)] ≤ E
[
− log

pθ(x0:T )

q(x1:T |x0)

]
(3)

3.2. Multi-flow multimodal diffusion framework

The core part of Versatile Diffusion (VD) is the multi-
flow multimodal diffusion framework capable of generating
various forms of outputs (e.g. image, text, 3D, etc.) condi-
tioned on various crossmodal contexts (e.g. image, text, au-
dio etc.). A formal definition of a single flow in VD is to
synthesize features of modality n using contexts of modal-
ity m. One may notice that the well-explored text-to-image
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Figure 2: Graphic illustration of one diffusion step of VD’s multi-
flow multimodal diffusion framework, in which multiple choices
of data layers (blue), context layers (green), and fixed global lay-
ers (gray) are involved. The black dash line shows one flow of
the model that handles one crossmodal task (i.e. text-to-image),
in which the top data blocks, the bottom context blocks, and the
shared global layers are activated. Other data and context blocks
stay silent but will be activated when performing other tasks.

task [21, 63, 70, 67], i.e. synthesizing images based on text
prompts, matches the definition of a single flow in VD. But
the scope of VD goes beyond one single task; particularly
in this work, VD is set up to fulfill numerous tasks: text-to-
image, image-to-text, and variations, and may further ex-
tend to cover more modalities such as 3D, audio, music,
etc.

Speaking with details, VD handles groups of crossmodal
tasks due to its multi-flow framework, in which layers can
be activated or muted based on the modalities of the in-
put contexts and output results. As shown in Figure 2,
we categorize all diffuser layers into three groups: global
layers, data layers, and context layers. The global layers
are flow-independent layers that will always be activated.
Data layers are output-dependent layers that will be acti-
vated when the network generates the corresponding output
type. Lastly, context layers are context-dependent layers
that will be activated when the corresponding context type
is input. Using SD [67] as a reference, the global layers are
time-embedding layers; the data layers are residual blocks;
and the context layers are cross-attentions. One flow of VD
routes the feed-forward pass through the shared global lay-
ers and the chosen data and context layers, while other ir-
relevant layers will stay silent (see Figure 2). Use text-to-
image as an example. The t-step intermediate result xt will
be fed to image data blocks and text context blocks to gen-
erate the next step result xt−1. Similarly, if our goal is to
perform image-variation, we need to use image data blocks
and image context blocks.

One may notice that such a multi-flow multimodal
framework highly promotes parameter sharing. In this
work, our default VD setting is a four-flow model. In or-
der to replicate such four-flow VD, one would require a to-
tal of four diffusion models (i.e. four times the size of an

SD [67]), while VD reduces the number of parameters by
half via its shared layers in the framework. A more gen-
eralized version of VD handles N × M crossmodal tasks
with N types of output and M types of context. The size
of the model would then become O (max(N,M)), which is
significantly smaller than a vanilla model ensembling that
requires an accumulated size of O(N ×M).

3.3. Versatile Diffusion

Tasks: As mentioned earlier, Versatile Diffusion (VD)
is a unified diffusion model for text-to-image, image-to-
text, and variations. Text-to-image and image-to-text are
two well-known tasks in which the former generates im-
ages from text prompts, and the latter generates image cap-
tioning. Image-variation (IV) is a fairly new task in which
users generate new images that are semantically similar to
the reference images. IV differs from SD’s image-to-image
(I2I) [67] by two points a) IV diffuses from pure noise
while I2I diffuses from images half-mixed with noise; b)
IV maintains high-level semantics but relaxes the low-level
structures, while I2I only replicates low-level structures and
has no guarantee on high-level semantics. Lastly, VD can
also generate variations in text due to its multi-flow nature,
whose goal is to generate similar expressions from refer-
ence text.

Network: The full model of VD includes three com-
ponents: a) A diffuser that follows our multi-flow multi-
modal framework described in Sec 3.2; b) VAEs that con-
vert data samples to latent representations; c) Context en-
coders that encode contexts into embeddings. The overall
network diagram is also shown in Figure 3. Diffuser: We
use the well-adopted UNet [68] with cross attentions [91]
as the main structure of our diffuser network. Part of the
UNet follows SD [67], where we adopt residual blocks [26]
as image data layers and cross-attention as text and im-
age context layers. For text data layers, we propose the
fully connected residual blocks (FCResBlock) that expand
768-dimensional text latent vectors into a 320-by-4 hid-
den feature and follow a similar residual block paradigm
with GroupNorms [97], SiLU [18], and skip connections
(see Figure 4). VAE: We adopt the same Autoencoder-
KL [67] like SD as our image VAE. Parallelly, we adopt Op-
timus [49] as our text VAE. Optimus consists of a Bert [15]
text encoder and a GPT2 [61] text decoder, by which it can
bidirectionally transform sentences into 768-dimensional
normally-distributed latent vectors. Context encoder: We
use both CLIP [60] text and image encoders as VD’s con-
text encoders. Unlike SD, which uses raw text embeddings
as context inputs, we use normalized and projected embed-
dings that minimize the CLIP text-image contrastive loss. In
our experiments, we noticed that closer embedding spaces
between contexts (i.e. image and text) help converge fast
and perform better.
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Figure 3: The overall structure of four-flow Versatile Diffusion (VD). Each color line depicts a single flow of VD that represents one
supported task (i.e. green line for text-to-image). The VAE encoders at the far left are only used in training and are replaced with Gaussian
noise inputs during inference. Oppositely, the VAE decoders at the far right are only used in inference for output generation, not train-time
loss computation. For simplicity, we hide global layers in this figure. Better viewed in color.

Algorithm 1: Backpropagation of VD

X = {x(1) . . . x(N)}; // N types data

C = {c(1) . . . c(M)}; // M types context

Lθ(x
(·), c(·)); // Loss with params θ

δθ = 0; // Param gradients

for x(i) ∈ X do
for c(j) ∈ C do

δ′θ = ∇θLθ(x
(i), c(j)); // One flow

δθ = δθ + δ′θ;
end

end
Update network with δθ;

Loss: Training VD is surprisingly simple. For each of
the flows, we compute the variational weighted l2 losses de-
scribed in Equation 3 and do regular backpropagation (see
Algorithm 1). Model weights will be updated when the gra-
dients in all flows are accumulated. Besides, when updating
the weights, we manually set gradient scales for parame-
ters in data and context layers to better adapt our multi-flow
model settings. More information can be found in the Ex-
periments session.

4. Experiments
In this session, we will describe VD’s data and settings,

show the performance of VD on primary tasks, and intro-
duce several derived applications empowered by the multi-
flow multimodal property of VD.

4.1. Dataset

We used Laion2B-en [74] and COYO-700M [9] as VD’s
train data. Both Laion2B and COYO are collections of
image-text pairs in English, in which images are collected
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Figure 4: FCResBlock contains two sets of fully connected layers
(FC), group normalizations (GN) [97], and sigmoid linear units
(SiLU) [18]. x is the input text latent code, t is the input time
embedding, and hi are the intermediate features.

from websites, and the corresponding captions are ex-
cerpted from HTML pages. We further filtered all data
with the following criteria: a) image-text CLIP similarity
scores above 0.3; b) safety scores (i.e. NSWF) below 0.3;
c) the probability containing watermark below 0.3; d) im-
age aspect ratios within 0.6 to 1.6667; e) image area above
2562 × 0.75. These filtered samples served as the train data
for all our VD experiments. Besides, we noticed that the
web crawling captions tend to be noisy, so we cleaned them
with a customized algorithm described in Supplementary.

4.2. Training

We trained VD progressively with three settings: single-
flow, dual-flow, and four-flow, among which the single-
flow is an image-variation model; the dual-flow is a text-
to-image and image-variation model; and the four-flow is
the main VD model with four tasks we majorly described in
this work. During training, we kept diffusion settings close
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Figure 5: These figures show the qualitative comparison between our VD models and prior works, from which we conclude that VD
performs well on all three tasks. In text-to-image and image-variation, VD captures semantics from the input context more accurately. In
image-to-text, VD generates more creative sentences and has a better chance to describe images with more details.
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to DDPM [28] and SD [67], i.e., 1000 diffusion steps and
linearly increasing β from 8.5e − 5 to 1.2e − 2 according
to steps. The learning rates were set to 1.e − 4 for single-
flow and dual-flow, and were set to 5.e − 5 for four-flow.
The single-flow model used SD checkpoint v1.4 [67] as its
initial weights, and others continued finetuning the latest
checkpoint from the previous models. During training, we
set different gradient scales for different layers to best coop-
erate with the initial weights. One can find these details in
Table 1. The effective batch size was 2048 for single-flow,
1024 for dual-flow, and 512 for four-flow. The logic be-
hind the learning rates, batch sizes, and gradient scales is to
roughly balance each gradient step while training. All mod-
els were trained with 30 million samples on resolution 256,
followed by 6.4 million samples on resolution 512. Com-
pared with SDv1.4, which was trained on 500 plus 230 mil-
lion samples on resolutions 256 and 512, VD’s training cost
is more affordable, benefiting researchers in the long run.

Data(I) Data(T) Ctx(I) Ctx(T) Global

VD (1-flow) 0.1 – 1.0 – 0.1
VD (2-flow) 0.1 – 1.0 1.0 0.1
VD (4-flow) 0.2 1.0 1.0 1.0 0.1

Table 1: This table shows the gradient scales used by different
layers when training various settings of VD. Data(I) means the
image data layer, so on and so forth.

4.3. Performance

To the best of our knowledge, VD is the first image-
text multi-flow multimodal model that can be evaluated
across different tasks. Thus, we chose single-task-focused
prior works as our baselines when comparing the perfor-
mance. Explicitly speaking: we chose SDv1.4 [67] as our
text-to-image baseline; SD-variation [33] (i.e. a finetuned
SD for image-variation) as our image-variation baseline;
and BLIP [50] as our image-to-text baseline. We con-
ducted both qualitative and quantitative comparisons be-
tween baselines and various versions of VD, i.e., dual-flow
and four-flow for text-to-image, and all three models for
image-variation. Although DALLE2 [63] and Imagen [70]
also achieved SOTA on text-to-image, they were not com-
pared because of no publicly available code and model.
For image-to-text (i.e. image captioning), we only compare
BLIP [50] with our four-flow VD since other settings do not
support this task.

Figure 5 compares VD’s qualitative performance with
its baseline, in which images in each row are created with
the same random seeds for better quality checks. We also
compute text-to-image and image-variation FID scores by
comparing 30000 randomly generated samples with the val-
idation set of COCO-caption [52]. In Figure 6, we list
VD’s performance along with other related works. We

Method FID ↓

(A) Text-to-Image Synthesis

CogView [17] 27.10
LAFITE [104] 26.94
GLIDE [56] 12.24

Make-a-Scene [21] 11.84
LDM [67] 12.63

SD (baseline) 11.21 ±0.03

VD (four-flow) 11.10 ±0.09

(B) Image-Variation Synthesis

SD (baseline) 18.81 ±0.06

VD (four-flow) 4.57 ±0.02
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Figure 6: FID scores of VD comparing with baseline and prior
approaches, and under various unconditional (classifier-free) guid-
ance scales.
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Figure 7: User studies on text-to-image and image-variation in
which we count the votes from 4 individual moderators on SD
(blue), VD (cyan), or equally good (gray).

also plot the changes in VD’s FID according to the un-
conditional guidance scale (i.e. the classifier-free guidance
scale). Lastly, we carried out user studies on 2000 sam-
ples from COCO-Caption [52] split by four moderators, in
which moderators were asked to vote for better quality or
“equally good” (see Figure 7).

Through all results, we not only demonstrated that VD
outperforms its baseline on these primary tasks, but reveals
the effectiveness of our multi-flow multimodal diffusion
framework in which context and data with distinct modali-
ties can be analyzed and generated in one unified model.

4.4. Disentanglement of style and semantic

One exciting discovery of our VD is that it can enhance
or reduce image styles from semantics without further su-
pervision. Such a phenomenon inspires us to explore a
novel area where disentanglement between styles and se-
mantics can happen on images with arbitrary contents in
arbitrary styles. Recall that prior works such as [5, 24] ex-
plored similar properties in GAN latent spaces, but their
domain of study was restricted to well-aligned data such
as faces or churches. To our best knowledge, we are the
first group exploring: a) unsupervised semantic and style
disentanglement on natural images without domain specifi-
cations; b) semantic and style disentanglement on diffusion
models’ latent space.

Figure 8 shows the disentanglement results of VD. In
practice, we notice that both two-flow and four-flow mod-

7760



Semantic Focused Style FocusedVariationInput

Figure 8: Our VD can disentangle image semantics from styles
and vice versa. In this figure, we first generate variations of the in-
put images and then manipulate them focused on either semantics
(to the left) or styles (to the right).

A picture in 

oil painting 

style

Evening sky 

with grand 

nebula

(ours)

(SD)

(ours)

(SD)

Figure 9: This figure shows images generated from dual-context
blender (one image and one prompt). Images without borders are
baseline results generated by ensembling SDv1.4 [67] with SD-
variation [33]. Images with green borders are VD’s outputs (ours)
with a deeper level of mixing. To fairly compare the performance,
samples in the same columns use the same random seed and initial
noise inputs.

els serve similar performance, while single-flow has slightly
lower performance. This may be due to the caption-agnostic
and insufficient training that reduced the model’s capacity.
More details and analysis can be found in Supplementary.

4.5. Dual- and multi-context blender

Since VD is a unified model for multiple tasks, gener-
ation from multi-context becomes a natural extension for
VD. Recall that a baseline multi-context generation can be
achieved by mixing up diffusion steps from distinct mod-
els [53]. However, in practice, we notice such a baseline
cannot reach satisfactory results despite doubling the model
usage. Figure 9 compares the dual-context results using
one text and one image, in which we use the mixing of

Snow on the 

street

Superman

Rose blooms 

on the three

Figure 10: This figure shows images created with VD’s multi-
context blender in which multiple images with optional text and
masks are applied as contexts. One can notice that VD can
smoothly transfer and reconstruct semantic from contexts to out-
puts.

SDv1.4 [67] (text-to-image) and SD-variation [33] (image-
variation) as our baseline (labeled as SD). One may easily
notice that VD generates more natural-looking results with
fewer distortions. We believe that the good performance of
VD is largely attributed to its multi-flow structure, through
which intermediate features generated from different con-
texts can be merged on a much deeper level (i.e. layer-level
or attention-level), instead of merged on the shallow model-
level between diffusion steps. More details regarding mix-
ing levels can be found in Supplementary.

We further expand this task to a more generalized form
with multi-context, resulting in the multi-context blender
application. The multi-context blender for VD supports an
optional text context, several image contexts, and optional
image masks in order to guide the generation process with
more detail controls. Figure 10 shows the performance of
our multi-context blender. Notice that there are other recent
works such as [27, 8, 102, 12, 69, 46, 36] focused on the
broader image editing topic. We encourage readers to check
our Supplementary for more details and comparisons.

5. Conclusion

In this article, we proposed Versatile Diffusion that han-
dles text, image, and variations all in one, from which we
generalized a multi-flow multimodal framework that can
further extend to new tasks and domains. Through inclusive
experiments, we demonstrate that such a multi-flow multi-
modal diffusion method can perform well on both primary
tasks and applications. Moreover, VD can be a heuristic
step toward universal AI research.
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