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Abstract

In this paper, we propose a robust 3D detector, named

Cross Modal Transformer (CMT), for end-to-end 3D multi-

modal detection. Without explicit view transformation,

CMT takes the image and point clouds tokens as inputs and

directly outputs accurate 3D bounding boxes. The spatial

alignment of multi-modal tokens is performed by encod-

ing the 3D points into multi-modal features. The core de-

sign of CMT is quite simple while its performance is im-

pressive. It achieves 74.1% NDS (state-of-the-art with sin-

gle model) on nuScenes test set while maintaining faster

inference speed. Moreover, CMT has a strong robustness

even if the LiDAR is missing. Code is released at https:

//github.com/junjie18/CMT.

1. Introduction

Multi-sensor fusion has shown its great superiority in

autonomous driving system [31, 8, 22, 1, 27]. Different

sensors usually provide the complementary information for

each other. For instance, the camera captures information

in a perspective view and the image contains rich semantic

features while point clouds provide much more localization

and geometry information. Taking full advantage of differ-

ent sensors helps reduce the uncertainty and makes accurate

and robust prediction.

Sensor data of different modalities usually has large dis-

crepancy in distribution, making it hard to merge the multi-

modalities. State-of-the-art (SoTA) methods tend to fuse

the multi-modality by constructing unified bird’s-eye-view

(BEV) representation [31, 27, 22] or querying from to-

kens [1, 8]. For example, BEVFusion [31] explores a uni-

fied representation by BEV transformation for BEV feature

fusion (see Fig. 1(a)). TransFusion [1] follows a two-stage

pipeline and the camera images in second stage provide

supplementary information for prediction refinement (see

Fig. 1(b)). However, exploring a truly end-to-end pipeline

for multi-sensor fusion remains to be a question.

✉ Corresponding author.
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Figure 1: Comparison between BEVFusion, TransFusion,

and our proposed CMT. (a) In BEVFusion, the camera fea-

tures are transformed into BEV space by view transform.

Two modality features are concatenated in BEV space and

the BEV encoder is adopted for fusion. (b) TransFusion first

generates the queries from the high response regions of Li-

DAR features. After that, object queries interact with point

cloud features and image features separately. (c) In CMT,

the object queries directly interact with multi modality fea-

tures simultaneously. Position encoding (PE) is added to

the multi-modal features for alignment. ”VT” is the view

transformation from image to 3D space.

Recently, the effectiveness of end-to-end object detec-

tion with transformer (DETR) [3, 60] has been proved in

many perception tasks, such as instance segmentation [13,

15], multi-object tracking [55, 33] and visual 3D detec-

tion [47, 29, 30]. The DETR architecture is simple yet ef-

fective thanks to the object queries for representing different

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Left: Performance comparison between CMT and existing methods. All speed statistics are measured on a single

Tesla A100 GPU using the best model of official repositories. Right: Performance evaluation of CMT under sensor missing.

During inference, CMT achieves vision-based performance when LiDAR is missing, showing strong robustness.

instances and bipartite matching for one-to-one assignment.

Inspired by DETR, we aim to build an elegant end-to-

end pipeline for multi-modal fusion in 3D object detection.

In DETR, object queries directly interact with the image to-

kens through cross-attention in transformer decoder. For 3D

object detection, one intuitive way is to concatenate the im-

age and point cloud tokens together for further interaction

with object queries. However, the concatenated tokens are

disordered and unaware of their corresponding locations in

3D space. Therefore, it is necessary to provide the location

prior for multi-modal tokens and object queries.

In this paper, we propose Cross-Modal Transformer

(CMT), a simple yet effective end-to-end pipeline for ro-

bust 3D object detection (see Fig. 1(c)). First, we propose

the Coordinates Encoding Module (CEM), which produces

position-aware features, by encoding 3D points set implic-

itly into multi-modal tokens. Specifically, for camera im-

ages, 3D points sampled from frustum space are used to in-

dicate the probability of 3D positions for each pixel. While

for LiDAR, the BEV coordinates are simply encoded into

the point cloud tokens. Next, we introduce the position-

guided queries. Each query is initialized as a 3D reference

point following PETR [29]. We transform the 3D coordi-

nates of reference points to both image and LiDAR spaces,

to perform the relative coordinates encoding in each space.

The proposed CMT framework brings many advantages

compared to existing methods. Firstly, our method is a sim-

ple and end-to-end pipeline and can be easily extended. The

3D positions are encoded into the multi-modal features im-

plicitly, which avoids introducing the bias caused by ex-

plicit cross-view feature alignment. Secondly, our method

only contains basic operations, without the feature sampling

or complex 2D-to-3D view transformation on multi-modal

features. It achieves state-of-the-art performance and shows

obvious superiority compared to existing approaches, as

shown in the left graph of Fig. 2. Thirdly, the robustness of

our CMT is much stronger than other existing approaches.

Extremely, under the condition of LiDAR miss, our CMT

with only image tokens can achieve similar performance

compared to those vision-based 3D object detectors [29, 26]

(see the right graph of Fig. 2).

To summarize, our contributions are:

• we propose a fast and robust 3D detector, which is a

truly end-to-end framework without any post-process.

It overcomes the sensor missing problem.

• The 3D positions are encoded into the multi-modal to-

kens, without any complex operations, like grid sam-

pling and voxel-pooling.

• CMT achieves state-of-the-art 3D detection perfor-

mance on nuScenes dataset. It provides a simple base-

line for future research.

2. Related Work

2.1. Camera Based 3D Object Detection

Camera-based 3D object detection is one of the basic

tasks in computer vision. Early works [45, 44] mainly fol-

low the dense prediction pipeline. They first localize the

objects on image plane and then predict their relevant 3D at-

tributes, such as depth, size and orientation. However, with

the surrounding cameras, the perspective-view based design

requires elaborate post-processes to eliminate the redundant

predictions of the overlapping regions. Recently, 3D ob-

ject detection under the BEV has attracted increasing atten-

tion. The BEV representation provides a unified coordinate

to fuse information from multiple camera views. LSS [35],

BEVDet [17] and BEVDepth [24] predict the depth distri-

bution to lift the image features to 3D frustum meshgrid.

Besides, inspired by DETR [4], DETR3D [47] and BEV-

Former [26] project the predefined BEV queries onto im-

ages and then employ the transformer attention to model

18269



the relation of multi-view features. The above methods ex-

plicitly project the local image feature from 2D perspective

view to BEV. Different from them, PETR [29, 30] and Spa-

tialDETR [12] adopt the positional embedding that depends

on the camera poses, allowing the transformer to implicitly

learn the projection from image views to 3D space.

2.2. LiDAR Based 3D Object Detection

LiDAR-based 3D object detection aims to predict 3D ob-

ject bounding boxes using the point clouds captured from

LiDAR. Existing methods process the point cloud into dif-

ferent representations. Point-based methods [36, 37, 38, 39,

25, 53] directly extract features from raw point clouds and

predict 3D bounding boxes. PointNet [37] is the first ar-

chitecture to process the point cloud in an end-to-end man-

ner, which preserves the spatial characteristics of the point

cloud. Other methods project the unordered, irregular Li-

DAR point clouds onto a regular feature space such as 3D

voxels [58, 51, 9, 10], feature pillars [19, 46, 54] and range

images [14, 41]. Then the features are extracted in the BEV

plane using a standard 2D backbone. VoxelNet [58] first di-

vides the raw point clouds into regular voxel grids, and then

uses PointNet network to extract features from the points in

each voxel grid.

2.3. Multimodal 3D Object Detection

Multi-sensor fusion in 3D detection has gained great at-

tention in recent years. State-of-the-art (SoTA) methods

tend to find a unified representation for both modalities, or

define object queries to fuse the features for further predic-

tion. For example, BEVFusion[31, 27] applies a lift-splat-

shoot (LSS) operation to project image feature onto BEV

space and concatenates it with LiDAR feature. UVTR[22]

generates a unified representation in the 3D voxel space by

deformable attention[60]. While for query-based methods,

FUTR3D[8] defines the 3D reference points as queries and

directly samples the features from the coordinates of pro-

jected planes. TransFusion[1] follows a two-stage pipeline.

The proposals are generated by LiDAR features and further

refined by querying the image features.

2.4. Transformerbased Object Detection

The pioneering work DETR [3] proposes a transformer-

based detector paradigm without any hand-craft compo-

nents, and has achieved state-of-the-arts in both 2D and

3D detection [57, 6, 26, 30]. However, DETR-like meth-

ods usually suffer from the slow convergence. To this end,

many works [60, 56, 28, 21, 57, 5, 18] are proposed to im-

prove the training efficiency from various aspects. Other

improvements in 2D detection mainly focus on modifying

the transformer layers[60, 56], designing informative ob-

ject queries[28, 21, 57], or exploring the label assignment

mechanism[5, 18]. Deformable DETR[60] proposes the de-

formable attention, which only attends to sampling points of

local regions. SAM-DETR[56] presents a semantic aligner

between object queries and encoded features to accelerate

the matching process. To alleviate the instability of bipartite

matching, DAB-DETR[28] formulates the object queries as

dynamic anchor boxes, while DN-DETR[21] auxillarily re-

constructs the ground-truths from the noisy ones. Based

on them, DINO[57] further improves the denoising anchor

boxes via a contrastive way.

3. Method

The overall architecture of the proposed CMT is illus-

trated in Fig. 3. Multi-view images and LiDAR points are

fed into two individual backbones to extract multi-modal to-

kens. The 3D coordinates are encoded into the multi-modal

tokens by the coordinates encoding. The queries from the

position-guided query generator are used to interact with

the multi-modal tokens in transformer decoder and then pre-

dict the object class as well as the 3D bounding boxes. The

whole framework is learned in a fully end-to-end manner

and the LiDAR backbone is trained from scratch without

pretraining.

3.1. Coordinates Encoding Module

The coordinates encoding module (CEM) is used to en-

code the 3D position information into multi-modal tokens.

It generates both the camera and BEV position encodings

(PEs), which are added to image tokens and point cloud

tokens respectively. With the help of CEM, multi-modal

tokens can be implicitly aligned in 3D space.

Let P (u, v) be the 3D points set corresponding to the

feature map F (u, v) of different modalities. Here (u, v) in-

dicates the coordinate in the feature map. Specifically, F is

the image feature for camera while BEV feature for LiDAR.

Suppose the output position embedding of CEM is Γ(u, v),
its calculation can be formulated as:

Γ (u, v) = ψ(P (u, v)) (1)

where ψ is a multi-layer perception (MLP) layer.

CE for Images. Since the image is captured from a per-

spective view, each pixel can be seen as an epipolar line

in 3D space. Inspired by PETR [29], for each image, we

encode a set of points in camera frustum space to per-

form the coordinates encoding. Given the image feature

Fim, each pixel can be formulated as a series of points

{pk(u, v) = (u ∗ dk, v ∗ dk, dk, 1)
T , k = 1, 2, ..., d} in the

camera frustum coordinates. Here, d is the number of points

sampled along the depth axis. The corresponding 3D points

can be calculated by:

pimk (u, v) = T l
ci
K−1

i pk(u, v) (2)

where T l
ci

∈ R4×4 is the transformation matrix from the i-
th camera coordinate to the LiDAR coordinate. Ki ∈ 4× 4
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Figure 3: The architecture of Cross-Modal Transformer (CMT) paradigm. The multi-view images and point clouds are input

to two backbone networks to extract feature tokens. In coordinates encoding module, coordinates of camera rays and BEV

positions are transformed into the image position encoding (Im PE) and point cloud position encoding (PC PE), respectively.

The queries are generated by the position-guided query generator. In query generator, 3D anchor points are projected to

different modalities and the relative coordinates are encoded (see the right part). Multi-modal tokens further interact with

queries in the transformer decoder. The updated queries are further used to predict the 3D bounding boxes.

is the intrinsic matrix of i-th camera. The position encoding

of pixel (u, v) for image is formulated as:

Γim(u, v) = ψim({pimk (u, v), k = 1, 2, ..., d}) (3)

CE for Point Clouds. We choose VoxelNet[51, 58] or

PointPillar[19] as backbone to encode the point cloud to-

kens Fpc. Intuitively, the point set P in Eq. (1) can be

sampled along the Z-axis. Suppose (u, v) is the coordi-

nates in BEV feature map, the sampled point set is then

pk(u, v) = (u, v, hk, 1)
T , where hk indicates the height of

k-th points and h0 = 0 as default. The corresponding 3D

points of BEV feature map can be calculated by:

ppck (u, v) =(u ∗ ud, v ∗ vd, hk, 1) (4)

where (ud, vd) is the size of each BEV feature grid. To

simplify, we only sample one point along the height axis. It

is equivalent to the 2D coordinate encoding in BEV space.

The position embedding of point cloud can be obtained by:

Γpc(u, v) = ψpc({p
pc
k (u, v), k = 1, 2, ..., h}) (5)

3.2. Positionguided Query Generator

Following Anchor-DETR [48] and PETR [29], we firstly

initialize the queries with n anchor points A = {ai =
(ax,i, ay,i, az,i), i = 1, 2, ..., n} sampled from uniform dis-

tribution between [0, 1]. Then these anchor points are trans-

formed into 3D world space by linear transformation:











ax,i = ax,i∗(xmax − xmin) + xmin

ay,i = ay,i∗(ymax − ymin) + ymin

az,i = az,i∗(zmax − zmin) + zmin

(6)

where [xmin, ymin, zmin, xmax, ymax, zmax] is the region

of interest (RoI) of 3D world space. After that, we project

the 3D anchor points A to different modalities and encode

the corresponding point sets by CEM. Then the positional

embedding Γq of object queries can be generated by:

Γq = ψpc(Apc) + ψim(Aim) (7)

where Apc and Aim are the point set projected on BEV

plane and image plane, respectively. The positional embed-

ding Γq are further added with the query content embedding

to generate the initial position-guided queries Q0.

3.3. Decoder and Loss

As for the decoder, we follow the original transformer

decoder in DETR [48] and use L decoder layers. For each

decoder layer, the position-guided queries interact with the

multi-modal tokens and update their representations. Two

feed-forward networks (FFNs) are used to predict the 3D

bounding boxes and the classes using updated queries. We

formulate the prediction process of each decoder layer as

follows:

b̂i = Ψreg(Qi), ĉi = Ψcls(Qi), (8)

where Ψreg and Ψcls respectively represent the FFN for

regression and classification. Qi is the the updated object

queries of the i-th decoder layer.

For set prediction, the bipartite matching is applied for

one-to-one assignment between predictions and ground-

truths. We adopt the focal loss for classification and L1
loss for 3D bounding box regression:

L(y, ŷ) = ω1Lcls(c, ĉ) + ω2Lreg(b, b̂) (9)

18271



Table 1: Performance comparison on the nuScenes test set. “L” is LiDAR and “C” is camera.

Methods Modality NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet [17] C 0.488 0.424 0.524 0.242 0.373 0.950 0.148

DETR3D [47] C 0.479 0.412 0.641 0.255 0.394 0.845 0.133

PETR [29] C 0.504 0.441 0.593 0.249 0.383 0.808 0.132

CenterPoint [54] L 0.673 0.603 0.262 0.239 0.361 0.288 0.136

UVTR [22] L 0.697 0.639 0.302 0.246 0.350 0.207 0.123

TransFusion [1] L 0.702 0.655 0.256 0.240 0.351 0.278 0.129

PointPainting[42] LC 0.610 0.541 0.380 0.260 0.541 0.293 0.131

PointAugmenting[43] LC 0.711 0.668 0.253 0.235 0.354 0.266 0.123

MVP[7] LC 0.705 0.664 0.263 0.238 0.321 0.313 0.134

FusionPainting[50] LC 0.716 0.681 0.256 0.236 0.346 0.274 0.132

UVTR [22] LC 0.711 0.671 0.306 0.245 0.351 0.225 0.124

TransFusion [1] LC 0.717 0.689 0.259 0.243 0.359 0.288 0.127

BEVFusion [31] LC 0.729 0.702 0.261 0.239 0.329 0.260 0.134

DeepInteration [52] LC 0.734 0.708 0.257 0.240 0.325 0.245 0.128

CMT-C C 0.481 0.429 0.616 0.248 0.415 0.904 0.147

CMT-L L 0.701 0.653 0.286 0.243 0.356 0.238 0.125

CMT LC 0.741 0.720 0.279 0.235 0.308 0.259 0.112

Table 2: Performance comparison on the nuScenes val set.

“L” is LiDAR and “C” is camera.

Methods modality NDS↑ mAP↑

FUTR3D [8] L 0.655 0.593

UVTR [22] L 0.676 0.608

TransFusion [1] L 0.701 0.651

FUTR3D [8] LC 0.683 0.645

UVTR [22] LC 0.702 0.654

TransFusion [1] LC 0.713 0.675

BEVFusion [31] LC 0.714 0.685

DeepInteration [52] LC 0.726 0.699

CMT-C C 0.460 0.406

CMT-L L 0.686 0.624

CMT LC 0.729 0.703

where ω1 and ω2 are the hyper-parameter to balance the two

loss terms. Note that for positive and negative queries in

query denoising, the loss is calculated in the same way.

3.4. MaskedModal Training for Robustness

Security is the most important concern for autonomous

driving systems. An ideal system requires solid perfor-

mance even if part of them fails, as well as not relying on

any input of a specific modality. Recently, BEVFusion [27]

has explored the robustness of LiDAR sensor failure. How-

ever, the exploration is limited to restricted scan range and

model need be retrained. In this paper, we try more extreme

failures, including single camera miss, camera miss and Li-

DAR miss, as shown in Fig. 4. It is consistent with the

actual scene and ensures the safety of autonomous driving.

Figure 4: We analyze the system robustness of CMT at test

period under three simulated sensor errors: (a) single cam-

era miss, (b) all camera miss and (c) LiDAR miss.

To improve the robustness of the model, we propose a

training strategy, called masked-modal training. In training

process, we randomly use only a single modality for train-

ing, such as camera or LiDAR, with the ratio of η1 and η2.

This strategy ensures that the model are fully trained with

both single modal and multi-modal. Then the model can be

tested with single modal or multi-modal, without modify-

ing the model weight. The experimental results show that

masked-modal training will not affect the performance of

our fusion model. Even if LiDAR is damaged, it can still

achieve similar performance compared to the SoTA vision-

based 3D detectors [29, 17] (see Tab. 3-4).
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Table 3: Quantitative results on the nuScenes val with LiDAR or camera miss. With the masked-modal training, the efficiency

and robustness of our CMT is significantly improved, especially when the LiDAR camera is missed.

Metric
Vanilla training Masked-modal training

CMT only LiDAR only Cams CMT only LiDAR only Cams

NDS ↑ 0.726 0.603 0.073 0.729 (↑0.3%) 0.681 (↑7.8%) 0.447 (↑37.4%)

mAP ↑ 0.691 0.487 0.000 0.703 (↑1.2%) 0.617 (↑13.0%) 0.383 (↑38.3%)

Table 4: NDS/mAP comparison on nuScenes val with sen-

sor miss. BEVFusion is trained with mask-modal strategy.

* means our reproduced result.

Model
Test modal

Both only LiDAR only Cams

TransFusion[1] 0.71/0.67 0.70/0.65 None

BEVFusion[31]* 0.72/0.68 0.68/0.63 0.40/0.32

CMT 0.73/0.70 0.68/0.62 0.45/0.38

3.5. Discussion

CMT shares similar motivation with FUTR3D [8] on the

end-to-end modeling. However, both the method and its

effectiveness are totally different. FUTR3D repeatly sam-

ples the corresponding features from each modal and then

performs the cross-modal fusion. CMT conducts the posi-

tion encoding for both multi-view images and point clouds,

which are simply added with corresponding modal tokens,

removing the repeated projection and sampling processes.

It keeps more end-to-end spirits in original DETR frame-

work. Moreover, CMT achieves much better performance

compared to the FUTR3D (see comparison in Tab. 1), show-

ing its superior effectiveness. We think CMT provides a

better end-to-end solution for multi-modal object detection.

4. Experiments

4.1. Datasets and Metrics

We evaluate our method on open datasets, including

nuScenes [2] and Argoverse 2 [49].

NuScenes [2] is a large-scale multi-modal dataset, which

is composed of data from 6 cameras, 1 LiDAR and 5

radars. The dataset has 1000 scenes totally and is divided

into 700/150/150 scenes as train/validation/test sets, respec-

tively. Each scene has 20s video frames with 12 FPS. 3D

bounding boxes are annotated every 0.5s. We only use these

key frames. In each frame, nuScenes provides images from

six cameras. NuScenes provides a 32-beam LiDAR with

20 FPS. The key frames are also annotated every 0.5s, the

same as cameras. We follow the common practice to trans-

form the points from the past 9 frames to the current frame

for training and evaluation. We follow the nuScenes official

metrics.

Table 5: CDS/AP comparison on Argoverse2 val set. “L”

is LiDAR and “C” is camera.

Model Modality AP CDS

VoxelNeXt[11] L 0.307 -

FSF[23] LC 0.332 0.255

CMT LC 0.361 0.278

We report the nuScenes Detection Score (NDS), mean

Average Precision (mAP), mean Average Translation Error

(mATE), mean Average Scale Error (mASE), mean Aver-

age Orientation Error(mAOE), mean Average Velocity Er-

ror (mAVE) and mean Average Attribute Error (mAAE).

Argoverse 2(AV2) [49] contains 1000 sequences in total,

700/150/150 for train/validation/test similar as nuScenes.

AV2 privides a long perceptron range up to 200 meters, cov-

ering an area of 400m × 400m, which is much larger than

nuScenes. We report mean Average Precision(mAP), Com-

posite Detection Score(CDS).

4.2. Implementation Details

We use ResNet[16] or VoVNet[20] as image backbone to

extract the 2D image features. The C5 feature is upsampled

and fused with C4 feature to produce P4 feature. We use

VoxelNet [58] or PointPillars [19] as the backbone to extract

the point-cloud features. All the feature dimension is set to

256, including the LiDAR feature, image feature and query

embedding. Six decoder layers are adopted in transformer

decoder.

Our model is trained with the batch size of 16 on 8 A100

GPUs. It is trained for total 20 epochs with CBGS[59]. We

adopt the AdamW[32] optimizer for optimization. The ini-

tial learning rate is 1.0×10−4 and we follow the cycle learn-

ing rate policy[40]. The mask ratios η1 and η2 are both set

to 0.25 for masked-modal training. The GT sample aug-

mentation is employed for the first 15 epochs and closed

for the rest epochs. As for the loss weights, we follow the

default setting in DETR3D [47] and set the ω1 and ω2 to

2.0 and 0.25, respectively. For fast convergence, we intro-

duce the point-based query denoising strategy based on DN-

DETR [21]. Different from it, we generate the noisy anchor

points by center shifting since the box scale is not that im-

portant in 3D object detection.
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Figure 5: Some qualitative detection results on the surrounding views and BEV space in the nuScenes test set. Bounding

boxes with different colors represent vehicles(•), pedestrians(•), Bus(•) and Truck(•).

Figure 6: Visualization of attention maps on multi-view im-

ages. The blue points (•) are initial anchor points while red

points (•) are the centers of box predictions. It shows that

high response regions of attention maps mainly focus on the

foreground objects, which are close to the anchor points.

On AV2, our model is trained 6 epochs, following com-

mon practice[11, 23].

4.3. StateoftheArt Comparison

As shown in Tab. 1, CMT achieves state-of-the-art per-

formance compared to existing methods on nuScenes test

set. Our LiDAR-only baseline, named CMT-L, achieves

70.1% NDS, which is a nearly SoTA performance among

all existing LiDAR-only methods. Our multi-modal CMT

achieves 74.1% NDS and 72.0% mAP, outperforming all

existing SoTA approaches, such as BEVFusion [31] and

DeepInteration [52]. We also compare the performance

with other SoTA methods on nuScenes val set (see Tab. 2).

It shows that our proposed CMT with multi-modal fu-

sion outperforms the BEVFusion by 1.8% mAP. CMT

introduces large performance improvements compared to

our LiDAR-only CMT-L by 4.0%/6.7% and 4.3%/7.9%

NDS/mAP on test and validation set, respectively. In com-

parison, TransFusion only brings 1.5%/3.4% NDS/mAP on

test set, compared to the LiDAR-only TransFusion. It shows

that the multi-view images bring much more complemen-

tary information to the point clouds in CMT framework.

We think the end-to-end modeling of CMT relatively im-

proves the importance of image tokens. Fig. 5 shows some

qualitative detection results on the nuScenes test set.

On AV2 dataset, CMT also outperforms existing SoTA

methods, including VoxelNeXt[11] and FSF[23], as shown

in Tab. 5.4.4. Strong Robustness

We evaluate the robustness of our framework under var-

ious harsh environments, including LiDAR miss and cam-

era miss. Tab. 3 shows the results when the sensor miss

occurs, by simulating the scenarios of any modality totally

broken. The performance is compared between the vanilla

training and masked-modal training. It validates the effect

of masked-modal training. Note that the model are only

trained with multi-modality and evaluated without any fine-

tune process. With vanilla training, the model fails to pre-

dict anything meaningful (only Cams with mAP=0) when

LiDAR is missing. With masked-modal training, the ab-

sence of LiDAR or camera modalities lead to 4.8% and

28.2% NDS drop compared to CMT, respectively. It is

observed that losing one modality still remains similar re-

sults compared to single-modal training settings. It over-

comes the drawback that multi-modal method usually rely

on one major modality and performance would degrade sig-

nificantly if losing the major modality. Especially, for the

case of LiDAR missing, the performance is still compara-

ble to the SoTA camera-only method PETR [29], validat-

ing the strong robustness of our method. We further eval-

uate the performance of TransFusion and BEVFusion un-

der sensor miss (see Tab. 4). TransFusion fails to work

when LiDAR is missing due to the two-stage design. With

the masked-modal training, BEVFusion achieves the decent

performance (40% NDS and 32% mAP), while showing

large inferiority compared to CMT.

Moreover, we also investigate the case when any one

of cameras fails. Experimental result shows slight perfor-

mance drop, indicating the tolerable to single camera miss
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Table 6: The ablation studies of different components in the proposed CMT.

Im PC NDS mAP mATE mASE mAOE

✓ 0.595 0.554 0.515 0.258 0.429

✓ 0.665 0.626 0.372 0.255 0.347

✓ ✓ 0.669 0.641 0.377 0.254 0.375

(a) Position encoding for query.

PQD NDS mAP mATE mASE mAOE

0.626 0.584 0.429 0.259 0.420

✓ 0.669 0.641 0.377 0.254 0.375

(b) Point-based query denoising.

Voxel size NDS mAP mATE mASE mAOE

0.075 0.669 0.641 0.377 0.254 0.375

0.1 0.671 0.638 0.378 0.252 0.334

0.125 0.655 0.624 0.396 0.255 0.397

(c) Voxel size of LiDAR backbone.

Backbone NDS mAP mATE mASE mAOE

ResNet-50 0.658 0.623 0.376 0.253 0.399

ResNet-101 0.664 0.629 0.383 0.254 0.363

VoV-99 0.669 0.641 0.377 0.254 0.375

(d) Image backbone.

Image size NDS mAP mATE mASE mAOE

800× 320 0.654 0.609 0.374 0.256 0.389

1600× 640 0.669 0.641 0.377 0.254 0.375

(e) Input size of image backbone.

Backbone NDS mAP mATE mASE mAOE

PointPillars 0.628 0.598 0.430 0.252 0.455

VoxelNet 0.669 0.641 0.377 0.254 0.375

(f) Lidar backbone

of our method. Six sensors brings an average decrease of

0.7% NDS, no more than 1% performance of the oracle ver-

sion. The front and back sensor relatively play the important

role among camera sensors, with 1.1% and 0.8% decrease

respectively, due to their distant or large field of view. Com-

pared to the camera-only setting, our multi-modal frame-

work facilitate the compensation between LiDAR and im-

age domains, thus presenting a robust performance.

4.5. Ablation Study

We present ablation studies in Tab. 6. All experiments

are conducted for 20 epochs without CBGS[34]. We first

ablate the effect of Im PE and PC PE on the generation

of position-guided queries. It shows that removing PC

PE introduces a 7.4%/8.70% NDS/mAP performance drop,

which is much larger than the drop of removing Im PE

0.4%/1.5%. Next, we explore the effectiveness of point-

based query denoising (PQD) introduced in Sec. 4.2. We

can easily find that PQD can greatly improve the over-

all performance by 4.3%/5.7% NDS/mAP. With PQD, the

training convergence can be boosted, which is similar to

the practice in DN-DETR [21]. Further, we also illus-

trate the effect of scaling up the CMT model as well as

the input size. Overall, CMT can benefit from the scal-

ing model size. Interestingly, we find increasing the voxel

number (smaller voxel size) and image size achieves simi-

lar improvements ≈ 1.5% in NDS. While scaling the image

size increases more mAP than the voxel number(+3.2% vs.

+1.7%). When increasing the image size from 800 × 320
to 1600 × 640, we find the performance improvements are

mainly from these small objects, such as pedestrian and mo-

torcycle. We also conduct experiments on replacing image

and LiDAR backbones, we use VoV-99[20] and ResNet[16]

as our image backbones. Experiments show that our pro-

posed CMT can benefit from larger backbones. For image,

VoV-99 backbone achieves the best result and outperforms

the ResNet-50 by 1.1%/1.8% in NDS/mAP. While for Li-

DAR, VoxelNet outperforms the PointPillar by 4.1%/4.3%
in NDS/mAP.

4.6. Analysis

For better understanding on querying from multi-modal

tokens, we visualize the attention map of cross-attention on

the multi-view images (see Fig. 6). We can clearly find that

the attention maps have higher response on the regions that

includes foreground objects. It shows that our method can

implicitly achieve the cross-modal interaction. We visual-

ize the initial anchor points and the center points of predic-

tions. Most anchor points focus on the closest foreground

objects. After the interaction with multi-modal tokens in the

transformer decoder, anchor points are updated and gradu-

ally access the accurate center points.

5. Conclusions

In this paper, we propose a fully end-to-end framework

for multi-modal 3D object detection. It implicitly encodes

the 3D coordinates into the tokens of images and point

clouds. With the coordinates encoding, the simple yet effec-

tive DETR pipeline can be adopted for multi-modal fusion

and end-to-end learning. With masked-modal training, our

multi-modal detector can be learned with strong robustness,

even if one of multi-modalities are missed. We hope such

a simple pipeline design could provide more insights on the

end-to-end 3D object detection.

18275



Acknowledgements: This research was supported

by National Key R&D Program of China (No.

2017YFA0700800) and Beijing Academy of Artificial

Intelligence (BAAI).

References

[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust

lidar-camera fusion for 3d object detection with transform-

ers. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 1090–1099,

2022. 1, 3, 5, 6

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

modal dataset for autonomous driving. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 11621–11631, 2020. 6

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European confer-

ence on computer vision, pages 213–229. Springer, 2020. 1,

3

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European confer-

ence on computer vision, pages 213–229. Springer, 2020. 2

[5] Qiang Chen, Xiaokang Chen, Gang Zeng, and Jingdong

Wang. Group detr: Fast training convergence with de-

coupled one-to-many label assignment. arXiv preprint

arXiv:2207.13085, 2022. 3

[6] Qiang Chen, Jian Wang, Chuchu Han, Shangang Zhang,

Zexian Li, Xiaokang Chen, Jiahui Chen, Xiaodi Wang,

Shumin Han, Gang Zhang, Haocheng Feng, Kun Yao, Junyu

Han, Errui Ding, and Jingdong Wang. Group detr v2: Strong

object detector with encoder-decoder pretraining. 2022. 3

[7] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 1907–1915, 2017. 5

[8] Xuanyao Chen, Tianyuan Zhang, Yue Wang, Yilun Wang,

and Hang Zhao. Futr3d: A unified sensor fusion framework

for 3d detection. arXiv preprint arXiv:2203.10642, 2022. 1,

3, 5, 6

[9] Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and

Jiaya Jia. Focal sparse convolutional networks for 3d ob-

ject detection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5428–

5437, 2022. 3

[10] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and

Jiaya Jia. Largekernel3d: Scaling up kernels in 3d sparse

cnns. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 13488–13498,

2023. 3

[11] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and

Jiaya Jia. Voxelnext: Fully sparse voxelnet for 3d object de-

tection and tracking. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

21674–21683, 2023. 6, 7

[12] Simon Doll, Richard Schulz, Lukas Schneider, Viviane Ben-

zin, Markus Enzweiler, and Hendrik Lensch. Spatialdetr:

Robust scalable transformer-based 3d object detection from

multi-view camera images with global cross-sensor atten-

tion. In European Conference on Computer Vision, pages

230–245. Springer, 2022. 3

[13] Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang,

and Yichen Wei. Solq: Segmenting objects by learning

queries. Advances in Neural Information Processing Sys-

tems, 34, 2021. 1

[14] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and

Zhaoxiang Zhang. Rangedet: In defense of range view

for lidar-based 3d object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 2918–2927, 2021. 3

[15] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen

Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as

queries. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2021. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6, 8

[17] Junjie Huang, Guan Huang, Zheng Zhu, and Dalong Du.

Bevdet: High-performance multi-camera 3d object detection

in bird-eye-view. arXiv preprint arXiv:2112.11790, 2021. 2,

5

[18] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu,

Weihong Lin, Lei Sun, Chao Zhang, and Han Hu. Detrs with

hybrid matching. arXiv preprint arXiv:2207.13080, 2022. 3

[19] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 12697–12705, 2019. 3, 4, 6

[20] Youngwan Lee and Jongyoul Park. Centermask: Real-

time anchor-free instance segmentation. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 13906–13915, 2020. 6, 8

[21] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni,

and Lei Zhang. Dn-detr: Accelerate detr training by intro-

ducing query denoising. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 13619–13627, 2022. 3, 6, 8

[22] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian

Sun, and Jiaya Jia. Unifying voxel-based representation

with transformer for 3d object detection. arXiv preprint

arXiv:2206.00630, 2022. 1, 3, 5

[23] Yingyan Li, Lue Fan, Yang Liu, Zehao Huang, Yuntao

Chen, Naiyan Wang, Zhaoxiang Zhang, and Tieniu Tan.

Fully sparse fusion for 3d object detection. arXiv preprint

arXiv:2304.12310, 2023. 6, 7

[24] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran

Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:

Acquisition of reliable depth for multi-view 3d object detec-

tion. arXiv preprint arXiv:2206.10092, 2022. 2

18276



[25] Zhichao Li, Feng Wang, and Naiyan Wang. Lidar r-cnn: An

efficient and universal 3d object detector. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7546–7555, 2021. 3

[26] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-

hao Sima, Tong Lu, Qiao Yu, and Jifeng Dai. Bevformer:

Learning bird’s-eye-view representation from multi-camera

images via spatiotemporal transformers. arXiv preprint

arXiv:2203.17270, 2022. 2, 3

[27] Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia,

Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi

Tang. Bevfusion: A simple and robust lidar-camera fusion

framework. arXiv preprint arXiv:2205.13790, 2022. 1, 3, 5

[28] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,

Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dynamic

anchor boxes are better queries for detr. arXiv preprint

arXiv:2201.12329, 2022. 3

[29] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.

Petr: Position embedding transformation for multi-view 3d

object detection. arXiv preprint arXiv:2203.05625, 2022. 1,

2, 3, 4, 5, 7

[30] Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Qi Gao, Tian-

cai Wang, Xiangyu Zhang, and Jian Sun. Petrv2: A uni-

fied framework for 3d perception from multi-camera images.

arXiv preprint arXiv:2206.01256, 2022. 1, 3

[31] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,

Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-

task multi-sensor fusion with unified bird’s-eye view repre-

sentation. arXiv preprint arXiv2205.13542, 2022. 1, 3, 5, 6,

7

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[33] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and

Christoph Feichtenhofer. Trackformer: Multi-object track-

ing with transformers. arXiv preprint arXiv:2101.02702,

2021. 1

[34] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

6181–6189, 2018. 8

[35] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding

images from arbitrary camera rigs by implicitly unprojecting

to 3d. In European Conference on Computer Vision, pages

194–210. Springer, 2020. 2

[36] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-

d data. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 918–927, 2018. 3

[37] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017. 3

[38] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. Advances in neural information

processing systems, 30, 2017. 3

[39] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 770–779, 2019.

3

[40] Leslie N Smith. Cyclical learning rates for training neural

networks. In 2017 IEEE winter conference on applications

of computer vision (WACV), pages 464–472. IEEE, 2017. 6

[41] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin El-

sayed, Alex Bewley, Xiao Zhang, Cristian Sminchisescu,

and Dragomir Anguelov. Rsn: Range sparse net for effi-

cient, accurate lidar 3d object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5725–5734, 2021. 3

[42] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-

jbom. Pointpainting: Sequential fusion for 3d object de-

tection. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 4604–4612,

2020. 5

[43] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang.

Pointaugmenting: Cross-modal augmentation for 3d object

detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 11794–

11803, 2021. 5

[44] Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin.

Probabilistic and geometric depth: Detecting objects in per-

spective. In Conference on Robot Learning, pages 1475–

1485. PMLR, 2022. 2

[45] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.

Fcos3d: Fully convolutional one-stage monocular 3d object

detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 913–922, 2021. 2

[46] Yue Wang, Alireza Fathi, Abhijit Kundu, David A Ross,

Caroline Pantofaru, Tom Funkhouser, and Justin Solomon.

Pillar-based object detection for autonomous driving. In

European Conference on Computer Vision, pages 18–34.

Springer, 2020. 3

[47] Yue Wang, Guizilini Vitor Campagnolo, Tianyuan Zhang,

Hang Zhao, and Justin Solomon. Detr3d: 3d object detection

from multi-view images via 3d-to-2d queries. In In Confer-

ence on Robot Learning, pages 180–191, 2022. 1, 2, 5, 6

[48] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.

Anchor detr: Query design for transformer-based detector.

arXiv preprint arXiv:2109.07107, 2021. 4

[49] Benjamin Wilson, William Qi, Tanmay Agarwal, John

Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen

Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel

Pontes, et al. Argoverse 2: Next generation datasets for

self-driving perception and forecasting. arXiv preprint

arXiv:2301.00493, 2023. 6

[50] Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Zhou Bin,

and Liangjun Zhang. Fusionpainting: Multimodal fusion

with adaptive attention for 3d object detection. In 2021 IEEE

International Intelligent Transportation Systems Conference

(ITSC), pages 3047–3054. IEEE, 2021. 5

[51] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 18(10):3337, 2018. 3,

4

18277



[52] Zeyu Yang, Jiaqi Chen, Zhenwei Miao, Wei Li, Xiatian

Zhu, and Li Zhang. Deepinteraction: 3d object detection

via modality interaction. arXiv preprint arXiv:2208.11112,

2022. 5, 7

[53] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:

Point-based 3d single stage object detector. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 11040–11048, 2020. 3

[54] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-

based 3d object detection and tracking. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 11784–11793, 2021. 3, 5

[55] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xi-

angyu Zhang, and Yichen Wei. Motr: End-to-end multiple-

object tracking with transformer. In European Conference

on Computer Vision, pages 659–675. Springer, 2022. 1

[56] Gongjie Zhang, Zhipeng Luo, Yingchen Yu, Kaiwen Cui,

and Shijian Lu. Accelerating detr convergence via semantic-

aligned matching. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 949–958, June 2022. 3

[57] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun

Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr

with improved denoising anchor boxes for end-to-end object

detection. arXiv preprint arXiv:2203.03605, 2022. 3

[58] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4490–4499, 2018. 3, 4, 6

[59] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and

Gang Yu. Class-balanced grouping and sampling for point

cloud 3d object detection. arXiv preprint arXiv:1908.09492,

2019. 6

[60] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang

Wang, and Jifeng Dai. Deformable detr: Deformable trans-

formers for end-to-end object detection. arXiv preprint

arXiv:2010.04159, 2020. 1, 3

18278


