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Abstract

Recent advances in foundation models present new op-
portunities for interpretable visual recognition – one can
first query Large Language Models (LLMs) to obtain a set
of attributes that describe each class, then apply vision-
language models to classify images via these attributes. Pi-
oneering work shows that querying thousands of attributes
can achieve performance competitive with image features.
However, our further investigation on 8 datasets reveals
that LLM-generated attributes in a large quantity perform
almost the same as random words. This surprising find-
ing suggests that significant noise may be present in these
attributes. We hypothesize that there exist subsets of at-
tributes that can maintain the classification performance
with much smaller sizes, and propose a novel learning-to-
search method to discover those concise sets of attributes.
As a result, on the CUB dataset, our method achieves per-
formance close to that of massive LLM-generated attributes
(e.g., 10k attributes for CUB), yet using only 32 attributes in
total to distinguish 200 bird species. Furthermore, our new
paradigm demonstrates several additional benefits: higher
interpretability and interactivity for humans, and the ability
to summarize knowledge for a recognition task.

1. Introduction
Explaining black-box neural models is a critical research

problem. For visual recognition, one line of research tries
to classify objects with descriptions or attributes [12, 8, 39,
18, 22], which provide additional information beyond vi-
sual cues such as activation maps [41, 40]. However, they
require in-depth human analysis and intensive annotation to
obtain key attributes for a particular recognition task. Such
a paradigm is costly and thus impractical to scale up when
the number of classes and domains grows.

The recent advance of foundation models creates new
⇤ equal contributions.
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Figure 1: Our proposed paradigm for visual recognition via
learning a concise set of descriptive attributes.

opportunities for building interpretable visual recognition
models, as demonstrated by the powerful capabilities of
models such as GPT-3 and ChatGPT in encoding world
knowledge [5, 32, 21]. One can query useful visual at-
tributes from LLMs and classify images via these attributes
by converting visual features from vision-language models
(VLMs) (e.g., CLIP [36]) into attribute scores [56]. One
recent work [52] shows that a large set of attributes from
LLMs (e.g., 50 attributes per class) can achieve compara-
ble performance to image features in a linear probing set-
ting. However, two key observations motivate us to re-think
this formulation: (1) A large number of attributes dramati-
cally hurts the interpretability of a model. It is unrealistic to
manually check thousands of attributes to fully understand
model decisions. (2) We surprisingly find that when the
number of attributes is large enough (e.g., the dimension of
image features), random words drawn from the entire vo-
cabulary can perform equally well as LLM-generated at-
tributes. Moreover, reducing the number of random words
by 25% can still attain competitive performance. This in-
dicates that redundant and noisy information exists in the
massive LLM-generated attributes.

With our findings, we ask the research question: Can we
learn a concise set of representative visual attributes in the
form of natural language to explain how visual recognition
works? For example, can we find a few representative
attributes to distinguish 200 bird species? This is a non-
trivial problem. Even for humans, it is not easy to summa-
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rize what are the representative visual attributes given many
visual classes. To tackle this challenge, we propose a novel
learning-to-search method, which uses image-level labels
to guide the searching of discriminative attributes. Specifi-
cally, we train a learnable dictionary to approximate the em-
bedding space of VLMs, and then find descriptive attributes
in the latent text space via nearest neighbor search.

In summary, we propose a new paradigm for visual
recognition (Figure 1), which seeks to learn a concise set
of visual attributes in the form of natural language. Once
learned, there are several benefits to our new paradigm:
(1) Our discovered attributes are highly descriptive. On
8 visual recognition datasets, our model classifies images
via these attributes and achieves comparable classification
performance as image features, even if the number of at-
tributes is much smaller than the dimension of image fea-
tures. (2) The condensed sets of attributes enable strong
interpretability for the model decision process through a
few human-friendly text descriptions. (3) Additionally, our
framework presents a natural language interface for humans
to interact with. One can correct a wrong prediction dur-
ing model inference, by perturbing the values of attribute
scores where it made mistakes. (4) Lastly, these expressive
attributes can be viewed as a concise form of knowledge
to summarize useful features for a visual recognition task,
without costly human effort.

Overall, our contributions are three-fold:
• Leveraging recent advances in foundation models, we

propose a new paradigm for visual recognition by
learning a concise set of attribute descriptions.

• To find these attributes, we propose a novel learning-
to-search method which prunes the large attribute pool
from large language models to a descriptive subset.

• We conduct extensive experiments across 8 visual
recognition datasets to validate our recognition effec-
tiveness and efficiency with additional benefits.

2. Methodology
In this section, we introduce our key components for a

new paradigm of visual recognition. It mainly consists of
three modules: First, in Section 2.1, given an image do-
main, we query large language models to obtain a large set
of visual attributes for the categories of a task. Second, we
use a semantic transformation (Section 2.2) to project the
image features into attribute features via a vision-language
model, where each dimension in the new space corresponds
to an attribute concept, and a higher value represents higher
correlation between the image and the attribute. Finally,
given the large space of attributes, we propose a novel
learning-to-search method (Section 2.4) to efficiently prune
the attributes into a much smaller subset to obtain a concise
model for classification.

2.1. Generating Attribute Concepts via LLMs

The first step of our framework is to obtain a set of ap-
propriate attribute concepts. Given a dataset with different
categories, (e.g., CUB with 200 bird classes), what are the
distinctive visual attributes to recognize them? Manually la-
beling and designing these attribute concepts can be costly,
and can not scale to large numbers of classes. Large Lan-
guage Models (LLMs), such as GPT-3 [5] and ChatGPT,
provide an alternative solution. We can view these language
models as implicit knowledge bases with exceptional world
knowledge on a variety of tasks and topics, which humans
can easily interact with through natural language to query
knowledge. To this end, prompt engineering, or the ability
to ask good questions to language models, is still important.
To effectively query knowledge from LLMs with regard to
classifying images, we design two types of prompts.
Instance Prompting for Class-level Features. For each
class c in a given task, our first design choice is to query
class-level information from LLMs. We prompt a language
model with the instance prompt:

Q: What are the useful visual features to distinguish Yc

in a photo?
where Yc corresponds to the name of class c in the form of
natural language.
Batch Prompting for Group-level Features. For certain
datasets (e.g., CIFAR-100 and ImageNet), there is inher-
ently a hierarchy that some categories belong to the same
group. For example, in CIFAR-100, there is a superclass
for every five categories. Hence, we propose batch prompt-
ing, where we ask the language model to reason about the
distinctive visual features among a batch of categories:

Q: Here are Ng kinds of Yg: {Yc1 , Yc2 , . . . , YcM }. What
are the useful visual features to distinguish them in a photo?
where Ng is the number of classes in a group g, Yg is the
name of the group, Yci corresponds to the name of each
class ci in the form of natural language.

We present more details regarding our prompt design,
robustness check of different prompts, and examples of the
generated attributes in Appendix A.

2.2. Semantic Projection

After obtaining a pool consisting of N attribute concepts
C = {a1, a2, . . . , aN}, the second challenge is how we
can best leverage these attributes to build interpretable im-
age classifiers. Recent advances of vision-language models
such as CLIP bridge the gap between images and text, by
pre-training models with large scale image-text pairs. In-
tuitively, converting from images to text is a discretization
process that will unavoidably lose rich semantic informa-
tion stored in an image.

To better preserve information, we use a semantic pro-
jection that transforms a visual feature into an attribute
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Figure 2: The framework of our model. (a) Querying attributes from LLMs and finding a concise set of representative
attributes; (b) An example using the attributes for interpretable visual recognition.

concept space. Given an image I , we convert the D-
dimensional image feature V 2 RD into an N-dimensional
attribute concept vector A 2 RN :

V = ⇥V (I),Ti = ⇥T (ai)

si = cos(V,Ti), i = 1, ..., N (1)

A = (s1, . . . , sN )T

where cos(·, ·) is the cosine similarity between two vectors,
si is the cosine similarity between two vectors. ⇥V and
⇥T are the visual and text encoder of a VLM. Ti is the
embedding of the i-th attribute in the attribute concept pool,
i 2 {1, . . . , N}. A is the semantic vector of image I .

2.3. The Hypothesis of Attribute Concept Space
Conceptually, our semantic projection resembles prin-

cipal component analysis, where we aim to find a set of
bases in the form of natural language, and by projecting the
images into these bases we obtain a new attribute concept
space where each dimension in the space corresponds to a
visual attribute concept. However, the large bag of attribute
concepts we obtained from large language models is not
the optimal language basis. As of today, LLMs are mod-
els that noisily condense world knowledge from the web,

and are not optimized for visual recognition or visual rea-
soning tasks. We hypothesize that there exist subsets of
attributes that can still achieve high classification perfor-
mance with a much smaller size. Intuitively, most attributes
in the large attribute concept pool are irrelevant to classify a
certain class. For example, attributes that describe dogs are
less likely to be suitable attributes to recognize birds or cars.
Practically, formatting a compact attribute set is also help-
ful for humans to interact with the model and understand
its behavior better. A small number of attributes is much
easier for diagnostic purposes and making decisions with
these neural models, which is the ultimate goal of building
interpretable models.

2.4. Task-Guided Attribute Concept Searching

Finding an expressive set of language bases is non-
trivial. The massive attributes from LLMs are noisy,
and finding a few representative attributes for hundreds of
classes in a task can be challenging and costly, even for hu-
man experts with domain knowledge. An exhaustive search
is also impractical given the large text space.

Inspired by dictionary learning and vector quantization
techniques [43], we present a learning-to-search method
that learns a dictionary to approximate an expressive sub-
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set of attributes given fixed K. Specifically, we first define
an embedding matrix E 2 RK⇥D, where K is a K-way cat-
egorical that equals the number of attributes, and D is the
dimensionality of embedding vectors V and Ti (i.e., the la-
tent dimension of VLMs), where V and Ti is the image em-
bedding and the i-th attribute embedding shown in Eq.(1).
Since our goal is to find K attributes to be expressive, we
propose a task-guided attribute concept searching method to
optimize for a particular task. For visual recognition tasks,
we use a classification head to project the dictionary into
KC classes and guide the learning process with the categor-
ical cross-entropy loss:

Lce = � 1

M

MX

i=1

KCX

c=1

yi,c log(pi,c) (2)

where M is the number of images in a mini-batch, yi,c is
the binary indicator of the i-th image in the mini-batch be-
longing to class c, and pi,c is the predicted probability of the
i-th image belonging to class c.

But simply training with the guidance of the cross-
entropy loss is suboptimal, as the embeddings E are not in
the same space of T. Thus, we use the Mahalanobis distance
as a constraint to encourage the embeddings to be optimized
towards the latent space of vision-language models. Given
a sampled probability distribution T, the Mahalanobis dis-
tance of Ej from T is defined as

Dj
mah =

q
(Ej � µ)S�1(Ej � µ) (3)

where µ = (µ1, ..., µD) is the mean vector and S is the
positive-definite covariance matrix of T. Then the regular-
ization term is defined as:

Lj
mah =

1

K

kX

j=1

Dj
mah (4)

Overall, our model is optimized with a mixture of two
losses:

Lloss = Lce + �
KX

j=1

Lj
mah . (5)

After training, we have the embedding matrix E which
will be used for searching the attributes from the attribute
concept pool C. Note that for E 2 RK⇤D, each row of E is
a D-dimensional vector. We denote the j-th row of E as Ej .
We use greedy search as follows:

T⇤
j = argmax

i2{1,··· ,N}
cos(Ti,Ej),

s.t. T⇤
j 6= T⇤

k, 81  k < j, (6)

where j is from 1 to K,

As j iterates from 1 to K, we can find K attribute embed-
dings T⇤

j , j 2 {1, · · · ,K}, which corresponds to K ex-
pressive attribute concepts and are the condensed features
containing the necessary knowledge for the task. With the
selected attributes, we can calculate the semantic vector of
each image as in Eq. (1), where each dimension of the vec-
tor is a similarity score between the image and an attribute.
We evaluate the performance of these semantic vectors with
linear probes, and the obtained linear model is used for in-
ference and analysis.

3. Experiments
3.1. Experimental Setup
Datasets We conduct our experiments on 8 different im-
age classification datasets, including: CUB [44], CIFAR-10
and CIFAR-100 [24], Food-101 [4], Flower [31], Oxford-
pets [33], Stanford-cars [23], Imagenet [9]. For Imagenet, it
is not trivial to analyze all 1000 diverse classes. So we nar-
row the scope to 397 animal classes, with 509,230/19,850
samples for train/test. We denote this subset as Imagenet-
Animals. For other datasets, most of them include images
within a specific domain (CUB, Flower, Food, Oxford-pets,
Stanford-cars), while CIFAR-10 and CIFAR-100 contain
broader classes that lie across domains.

Implementation Details Our method involves two stages
of training. The first stage consists of task-guided learning
of a dictionary E to approximate CLIP text embeddings and
using this dictionary to find K attributes for visual recogni-
tion. For the Mahalanobis distance, the parameter � is tuned
with a grid search in {1, 0.1, 0.01, 0.001, 0}. The second
stage is one-layer linear probing to classify semantic vec-
tors. The batchsize is set to 4,096 for all datasets except
32,768 on Imagenet-Animals for faster converging. We set
the number of epochs to 5,000 epochs with early stopping.
The learning rate is set to 0.01 in all experiments with an
Adam optimizer [20]. Unless specified, we use GPT-3 and
CLIP ViT-B/32 for all performance comparison.

Baselines We compare with state-of-the-art works that
leverage attributes either from human annotations or from
LLMs. For a fair comparison, we use linear probes to eval-
uate all methods: (1) CompDL [56] builds semantic vec-
tors using CLIP scores between human-designed attributes
and images. (2) LaBO [52] is a recent work that builds
semantic vectors with a large set of attributes from LLMs.
(3) Human [44, 22]. Attribute labels for each image are an-
notated by humans. We compare with two versions: binary
labels for each attribute, and calibrated labels with confi-
dence scores given by annotators.

To validate the effectiveness of learning-to-search, we
explore other baselines: (1) K-means. Perform K-means
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Datasets CUB CIFAR-10 CIFAR-100 Flower

K 32 200 400 8 10 20 64 100 200 32 102 204

LaBo – 60.93 62.61 – 78.11 84.84 – 75.10 76.94 – 80.98 86.76
Ours 60.27 63.88 64.05 77.47 80.09 87.99 73.31 75.12 77.29 80.88 87.26 89.02

Datasets Food Oxford Pets Stanford cars Imagenet Animals

K 64 101 202 16 37 74 64 196 392 128 397 794

LaBo – 79.95 81.33 – 76.91 84.33 – 72.33 74.39 – 74.88 75.49
Ours 78.41 80.22 81.85 76.29 83.15 85.91 72.07 74.57 75.56 74.48 75.69 75.83

Table 1: Comparison with state-of-the-art. LaBo is designed to use at least as many attributes as classes. We use “–” to
denote non-applicability.

K (# of attributes) 8 16 32 312

Human Binary [44] 4.02 7.31 10.11 47.38
Human Calibration [22] 3.75 7.15 9.78 43.37
CompDL [56] 12.64 26.41 28.69 52.60
Ours 31.67 48.55 60.27 65.17

Table 2: Comparison with human annotations on CUB.

clustering on CLIP attribute embeddings, then find K at-
tributes with nearest distance to each clustering center. In-
tuitively this can be a strong baseline, as K attributes close
to each center can be distinctive. (2) Uniform Sampling
from the large attribute pool. (3) SVD. After obtaining the
attribute embeddings T, we run SVD decomposition of T
to get the top K vectors and find attributes with the largest
similarity with the K important vectors. (4) Similarity. We
calculate the average score of each attribute across all im-
ages and then find the K attributes with the largest average
scores. (5) Img Features. Black-box linear probing on la-
tent image features with two linear layers and an intermedi-
ate dimension K as a reference.

3.2. Main Results

Comparison with previous work We first compare our
method with LaBo [52]. It is designed to use Mc concepts
per class with default number of 50, which corresponds
to 10,000 attributes for CUB. For fair-comparison, we set
Mc as 1 and 2 in the experiments. As shown in Table 1,
our method outperforms LaBo with the same number of at-
tributes on both the full and few-shot setting. Furthermore,
our method can achieve similar accuracy with only a smaller
number of attributes (e.g., 32 attributes for CUB). These re-
sults suggest that our learned attributes are discriminative
enough to classify the images, despite given much fewer at-
tributes.

We then further compare with human annotations from
CUB. For K < 312, we select attributes based on their

Figure 3: Performance com-
parison with random or sim-
ilar words on CUB.

Examples

R
boy champagne

allied whose acrobat

eight centered lobby heads

S
red,gray,snow wings

orange wings

lime,navy wings

G
sloping forehead

distinctive white throat

bright red head and breast

Table 3: Examples from
Random (R), Silimlar (S),
GPT-3 (G) attributes

accumulated confidence score for all samples. As shown
in Table 2, human annotated attributes are more noisy than
CLIP similarities. With the same attributes, CLIP scores
from CompDL build more expressive features. Further-
more, our LLM-suggested attributes significantly outper-
form human designs, e.g. by using 16 attributes we achieve
similar performance as 312 attributes defined by humans.

Large-scale attributes behave like random words We
present our finding that LLM-generated attributes in a large
quantity behave like random words. Specifically, we com-
pare our method of using GPT-3 attributes with random or
similar words. Here, we constructed random words by ran-
domly choosing 1-5 words from the entire English vocabu-
lary, and semantically similar words by combining 1-3 ran-
dom colors with the noun “wings” as suffix. As shown
in Figure 3, when K = 512, random words perform as
well as GPT-3 attributes in terms of classification accuracy.
Even reducing K from 512 to 256 does not significantly
hurt its performance. But when K is small (e.g., 64), the
performance of random words drops dramatically. We con-
jecture that it is because text embeddings randomly drawn
from CLIP are nearly orthogonal bases [45]. Given an im-
age feature 2 RD, projection with a set of K=D orthogo-
nal bases can perfectly preserve its information. We further
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(a) CUB (b) CIFAR10 (c) CIFAR-100 (d) Flower

(e) Food (f) Oxford pets (g) Stanford cars (h) Imagenet Animals

Figure 4: Overall Performance on all datasets. X-axis: number of attributes, Y-axis: Accuracy (%), “(f)” means “full”, i.e.,
all attributes in the pool are used. Uniform refers to uniform sampling.

explore how similar words (e.g., red wings, yellow wings)
behave. Embeddings of similar words in a trained language
model are not orthogonal bases hence the projection will
lose information when K is large (e.g., intuitively it is hard
to classify 200 bird species using only the color combina-
tion of wings). But as K gets smaller, since those similar
words have close semantic meanings, they start to outper-
form random words. Overall, these findings motivate us to
find a concise set of meaningful attributes while maintain-
ing competitive performance.

Number of attributes and selection methods Finally,
we study performance change under different number of at-
tributes in Figure 4. First, our method is competitive with
image features when K is large. Reducing number of at-
tributes K to the number of classes C (e.g., 512 to 128
for CUB) does not significantly hurt performance, even for
baseline methods. This validates our hypothesis that there is
plenty of redundant information in the semantic space when
the number of attributes is large (as used in LaBO [52]). It
is possible to find a subset of expressive attributes for visual
recognition. Second, we also consistently outperform other
methods such as K-means clustering and uniform sampling,
demonstrating the effectiveness of our task-guided search-
ing method. Third, a heuristic design such as K-means
performs similar as uniform selection. Note that though
there is a performance gap between image features and us-
ing attributes, the gap can be minimized by using a stronger
VLM, as the classification accuracy of attributes relies on
the accurate estimation of the correlation between images
and attributes ( see more results in appendix D ).

Datasets CUB CIFAR-100

K 8 16 32 8 16 32

GPT-3 31.67 48.55 60.27 34.77 52.24 66.30
GPT-3-Imagenet 30.81 49.29 60.41 33.80 51.01 65.61

Table 4: Ablation study w.r.t. different concept pools.

3.3. Ablation Study
Robustness to the attribute pool First, we aim to explore
the effects of different initialized attribute concept pools
generated by LLMs. On CUB and CIFAR-100, we com-
pare two attribute pools, attributes generated from classes
in each dataset, and attributes generated from the full set of
ImageNet classes. As shown in Table 4, even with the large
and noisy attributes from ImageNet, our method can still ef-
ficiently find a small number of representative attributes for
a task, and obtains competitive classification performance.

Effectiveness of learning-to-search Then, we discuss
possible choices for selection out of the large attribute pool.
Results are shown in Table 5 with the following observa-
tions: heuristic methods such as K-means and SVD are
not optimal choices for identifying the most distinctive at-
tributes. In fact, they are sometimes less effective than uni-
form sampling. This is likely because we need to iden-
tify the most distinguishing attributes for visual recognition,
rather than the most diverse ones based on text embeddings.
Overall, our method significantly outperforms other base-
line selection methods, showing its efficacy.
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[0.2134, 0.2089, 0.2355, 0.2090, 0.2402, 0.2121] ⟹

Least Auklet (Correct)

are classified as Least Auklet because:

• bright yellow throat, breast, and flanks with black bars

• medium-sized sea bird with a white head and black cap

• large, round eyes with an orange ring around them

• dark gray and white mottled feathers

• overall yellowish coloration

Rhinoceros Auklet(Wrong)

• iridescent black body with blue and purple highlights

Intervention

Overall yellowish coloration

[0.2134, 0.1789, 0.2355, 0.2090, 0.2402, 0.2121] ⟹

(a) Least Auklet

are classified as yellow billed cuckoo because:

• brownish head with yellow supercilium 
(eyebrow) and white throat

[0.2782, 0.2810, 0.2334, 0.2318, 0.2242, 0.2405] ⟹

• distinctive large white wing patches edged 
in bold black stripes

• white neck with a black collar and 
chestnut red head and breast

• pinkish red breast patch with white edges 

• dark slate gray crown, back and wings with 
white throat and yellowish belly

• gray and white streaked head, back, and chest

Mangrove cuckoo (Wrong)

Intervention

yellow billed cuckoo (Correct)

White neck with a black collar and 
chestnut red head and breast

[0.2782, 0.2810, 0.2334, 0.2618, 0.2242, 0.2405] ⟹

(b) Yellow Billed Cuckoo

Figure 5: Examples on interpretability and interactivity. (1) The upper half of each figure show important attributes for two
classes of birds. We choose 6 out of 32 attributes with highest importance scores, which are computed by multiplication
between clip scores and weights in the linear probe, defined in Eq. (7). (2) The lower half of each figure demonstrates the
intervention on the semantic vector (i.e., CLIP scores) to correct the prediction, we use �=0.03 for all interventions on clip
scores as an empirical value. The array of 6 scores are of the same order as the attributes.

Datasets CUB CIFAR-100

K 8 16 32 8 16 32

K-means 16.83 21.02 32.76 25.39 45.26 64.41
Uniform 7.02 25.98 40.58 28.07 47.14 64.34

SVD 6.52 20.02 35.83 29.06 50.00 64.99
Similarity 4.73 9.72 18.00 26.75 45.61 62.79

Ours 31.67 48.55 60.27 34.77 52.24 66.30

Table 5: Ablation study w.r.t. different attribute selection
strategies.

Effectiveness of regularization We compare the Maha-
lanobis distance (MAH) with two variations: (1) COS: For
each vector Ej and Ti (of the i-th attribute) in the concept
pool, we computed averaged cosine distance as follows:

Lcos =
1

K2

KX

j=1

KX

i=1

T>
i Ej

||Ti||||Ej ||

(2) CE: Learning with Eq. (2) only. Results are in Table 6.
Overall, Mahalanobis distance is an effective constraint to
encourage the dictionary E to be close to the distribution of
CLIP embeddings.

3.4. Analysis of Interpretability and Interactivity
We perform analysis and visualizations to show that:
(1) Our learned attributes provide interpretability. As
shown in Figure 5, the upper half presents the images in
a class c and high relevant attributes to recognize them.
Specifically, we denote W 2 RKC⇤K as the weight of the

Dataset CUB

K 8 16 32 64

MAH 30.76 47.87 60.27 64.25
COS 28.96 47.35 58.27 63.25
CE 31.67 48.55 55.88 60.73

Dataset CIFAR-100

K 8 16 32 64

MAH 34.77 52.24 65.91 73.31
COS 31.98 51.15 65.02 72.80
CE 32.45 50.83 66.29 73.25

Table 6: Ablation study w.r.t. different regularization.

FC layer in linear probing, where KC , K are the number
of classes and attributes. Then for each image i and its
semantic vector A 2 RK , we multiply the corresponding
score vector of image i with the corresponding row of the
FC layer Wc to compute Importance Score IS 2 RK :

IS = Wc ⌦ A (7)

where ⌦ means element-wise multiplication. Then we
present attributes with the top absolute values of IS av-
eraged over all samples in a class from the test set, with
blue/orange bars indicating the positive/negative impor-
tance. Higher absolute values denote greater significance.
Since all CLIP scores are positive [16], the positivity or neg-
ativity of high IS signifies their relevance to the class.
(2) Our concise set of attributes enables simple inter-
activity. As shown in the lower half of Figure 5, we can
correct the model’s wrong predictions during inference by
changing only a single similarity score between an image
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C
U

B

• distinctive white throat
• bright red head and breast
• pinkish red breast patch with white edges 
• bright yellow, green and blue plumage
• Red face with a black cap and bib
• Short legs for perching on reeds 
• white and black spotted breast
• sloping forehead 

C
IF

A
R

10

• antlers (in males)
• pointed bow and stern
• propellers or jet engines
• moist slimy skin
• long head with a mane and tail
• landing gear
• portholes along the hull
• four wheels

C
IF

A
R

10
0

• a seat for the rider
• catkins (flowers) in spring
• many windows in the façade
• five pairs of walking legs
• smooth oval shaped sepals
• four-limbed primate
• headboard and footboard
• towers with conical roofs

Fl
ow

er

• Shiny wax coating on the spathe 
• large, yellow or orange flower head
• bright pink color 
• large, white petals with a yellow center
• pink to purple colored petals with red lips
• bright red and yellow petals
• pink, white, or lavender flowers with five petals
• deep purple or blue flowers

Fo
od

• elbow macaroni noodles
• Shredded pork meat in the middle of the sandwich 
• large pieces of clams visible in the chowder
• usually served in a warm wrap or burrito shell 
• sliced into thin wedges or cubes 
• thinly sliced raw fish
• tender squid rings inside 
• a crisp, fried pastry dough exterior

O
xf

or
d

 P
et

s • black and tan coloring
• short coat of glossy black fur
• Long legs and neck
• Shade of red or wheaten color
• large, round eyes
• Pointed ears
• white blaze on face and chest
• greyish blue fur with silver tips

Im
ag

en
et

A
ni

m
al

s

St
an

fo
rd

 C
ar

s • signature Lincoln split headlamps
• large front grille with the signature BMW kidney 

shape
• large size with a wheelbase of 149.4 inches
• “4Runner” badge on the rear liftgate
• signature SRT8 grille with crosshair pattern
• Porsche logo on front grille and trunk lid
• S6 badge on the trunk lid
• unique HUMMER H2 logo on front grille

• male finches have a bright red breast
• brownish-yellow fur
• small, four-limbed canid
• long, black, shiny body
• the carapace is rough and bumpy
• white spots on the crab's shell
• English setters are bred in England
• long, wirehaired coat

Figure 6: A concise set of 8 descriptive attributes learned for each dataset with sampled images.

and the attribute that the CLIP model made a mistake on.
This is a significant simplification compared with previous
work [22] where they need to manipulate scores from a
group of concepts for the CUB dataset. We present more
user studies in appendix E.

3.5. Visualization of Our Discovered Attributes
We show our learned descriptive attributes with K = 8

in Figure 6. Intuitively, we can observe these attributes are
distinctive for each domain. Take birds recognition (CUB)
as an example, the eight attributes covered most of the body
parts of a bird (head, breast, legs, etc.). As we are con-
densing knowledge from hundreds of bird classes, each at-
tribute broadly covers many categories. A bright red head
and breast can be a noticeable visual attribute for many bird
species, such as the Northern Cardinal and the Vermilion
Flycatcher. Overall, explaining a domain with a few de-
scriptive attributes is challenging, even for an expert with
sufficient domain knowledge. But our model is able to au-
tomatically provide a level of knowledge to help humans
understand how visual recognition works.

We then present case studies on CIFAR-10 with 4 at-
tributes and CLIP scores of 10 random images from each
class in Figure 7. In general, each image is activated in an
distinguishable way in the heat map. Some attributes can
distinguish a few classes, for example, cat and dog have

fur coat of 
varying colors 
and patterns

antlers (in males)

crests on heads

large body with 
a cab and a bed

deerautomobile bird cat dogairplane frog horse ship truck

Figure 7: Case study on CIFAR-10. The numbers are CLIP
similarity scores between each image and attributes.

higher activation on “fur coat” compared to automobile or
truck. Thus “fur coat” may be an important feature to dif-
ferentiate animals and vehicles.

4. Related work
Interpretable Deep Learning Interpretability is a critical
research problem for deep learning with black-box mod-
els [11, 34, 37, 38, 13, 2, 50]. Some works study model
behavior and explore if deep models could encode concepts
for understanding [19, 28, 49, 29]. For image classifica-
tion, preliminary attempts aim to describe objects with at-
tributes [12, 26, 25] or building concept bottleneck mod-
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els [22, 56, 55, 6]. These methods require in-depth hu-
man analysis and intensive labeling, which are impractical
to scale to more classes and domains.

Recent works [30, 35, 52] tackle this problem by using
GPT-3 as a knowledge base to query visual attributes or
concepts. Specifically, [30, 35] generate descriptions with
LLMs, and use them for knowledge-aware prompting for
each class to improve zero-shot performance of CLIP [36].
For example, given the class name “bee”, it will augment it
with attributes such as “A bee with black and yellow body”.
Our work differs in that our goal is to learn representative
attributes for visual recognition without using class names.
LABO [52] extends the idea of concept bottleneck mod-
els by generating thousands of concepts from LLMs. In-
spired by our finding that there is great redundancy in the
large-scale attributes, we aim to learn a concise set of at-
tributes that are initially generated from LLMs for each task,
while maintaining the classification performance as possi-
ble. Concise attributes also enable stronger interpretability
and interactivity, and can help humans to summarize critical
knowledge for visual recognition in an automatic way.

Foundation Models Recently, foundation models [3],
which are pre-trained with a large amount of data and
large model sizes, have revolutionalized machine learn-
ing research and many fields. These models are shown
to be adaptable to a wide range of downstream tasks for
computer vision [15, 46, 58], natural language process-
ing [10, 7, 57, 48] and cross-modal research [27, 42, 17, 14].
One direction is to train LLMs such as GPT3 [5] and Chat-
GPT with massive text to serve as a powerful knowledge
base with high interactivity and beyond. Another direc-
tion is to build VLMs [36, 51, 54, 53, 1], which connect
vision and language by pre-training with image-text pairs
and learning a joint embedding space for both. In this work,
we use LLMs as a knowledge base for querying visual re-
lated knowledge, and use VLMs to bridge vision and text,
presenting a new paradigm for interpretable visual recogni-
tion in the era of foundation models.

5. Discussion
There are many interesting topics to explore with our

new paradigm. First, our framework is a plug-and-play
model that can be readily applied to many other vision tasks,
by simply changing the task-guided learning objective to a
particular task, e.g., classification losses for object detec-
tion, video understanding, and 3D classification. Further-
more, a concise set of descriptive attributes enables interac-
tivity for vision models and empowers human-machine co-
operation in a user-friendly way through natural language
interfaces. Lastly, we show the potential of summarizing
knowledge for challenging vision tasks in the new era of
LLMs, which could have broad impact for various domains.

6. Conclusion
In this work, we propose a new paradigm for visual

recognition that leverages a concise set of descriptive at-
tributes. Motivated by our insightful finding that significant
redundancy exists in massive LLMs-generated attributes,
we design a simple yet effective searching method guided
by image-level labels, to identify an informative subset.
Our new paradigm is validated across 8 datasets to achieve
strong classification accuracy with multiple benefits and
broad impacts, including efficiency, interpretability, human
interactivity, and knowledge summarization.
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