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Abstract

The research fields of parametric face model and 3D
face reconstruction have been extensively studied. How-
ever, a critical question remains unanswered: how to tai-
lor the face model for specific reconstruction settings. We
argue that reconstruction with multi-view uncalibrated im-
ages demands a new model with stronger capacity. Our
study shifts attention from data-dependent 3D Morphable
Models (3DMM) to an understudied human-designed skin-
ning model. We propose Adaptive Skinning Model (ASM),
which redefines the skinning model with more compact
and fully tunable parameters. With extensive experiments,
we demonstrate that ASM achieves significantly improved
capacity than 3DMM, with the additional advantage of
model size and easy implementation for new topology. We
achieve state-of-the-art performance with ASM for multi-
view reconstruction on the Florence MICC Coop bench-
mark. Our quantitative analysis demonstrates the impor-
tance of a high-capacity model for fully exploiting abun-
dant information from multi-view input in reconstruction.
Furthermore, our model with physical-semantic parameters
can be directly utilized for real-world applications, such as
in-game avatar creation. As a result, our work opens up
new research direction for parametric face model and facil-
itates future research on multi-view reconstruction.

1. Introduction

A key preliminary decision factor for 3D face mod-
eling is a proper choice of face representation, as there
is no one representation that fits all. For reconstruc-
tion with abundant constraints from multiple calibrated
images (high-end), high capacity in the form of raw 3D
points is essential to achieve high-fidelity scans with fine-
grained details within the Multi-view Stereo (MVS) frame-
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work [5, 6, 12, 13, 20]. For reconstruction with a sin-
gle in-the-wild image (low-end), an intrinsically ill-posed
problem, parametric face models with a strong prior are
indispensable to ensure robust reconstruction with consis-
tent topology [10, 11, 36, 18]. Reconstruction with multi-
view uncalibrated images (middle-end) is a previously less
explored scenario with performance on par with the low-
end setting, and far behind the high-fidelity scans in the
high-end setting. This suggests that the additional con-
straints from multi-view uncalibrated images are not fully
exploited. Previous studies in this category [1, 15, 33, 3, 2]
have used parametric face models interchangeably with the
low-end setting. We contend that parametric face mod-
els with a higher representation capacity should be em-
ployed to accommodate extra constraints from multi-view
images. Consequently, this study investigates the design
of high-capacity parametric face models for reconstruction
with multi-view uncalibrated images. This understudied
scenario is increasingly relevant in real-world applications
due to the widespread use of high-quality camera-equipped
mobile phones and the need for precise reconstruction for
applications such as avatar creation and facial animation.

The parametric face model is an extensively researched
field. The majority of studies are based on the 3D Mor-
phable Model (3DMM), originally introduced in the pio-
neering work of Blanz and Vetter [7]. Subsequent studies
have continued to refine the 3DMM method by either im-
proving the amount and diversity of data [19, 34] or propos-
ing new methods [26, 30, 8] for dimensional reduction given
such data. Simultaneously, a different trend has emerged in
the game and film industries, where parametric face models
are primarily represented in the form of human-designed
skinning models. These models employ a set of control-
lable bones and skinning weights, which determine the de-
gree to which each vertex on the mesh is influenced by the
surrounding bones. This representation has demonstrated
sufficient capability for extensive applications such as fa-
cial animation and avatar customization [16, 28, 29].

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20708



Comparing human-designed skinning models with data-
dependent 3DMMs for 3D face modeling presents an in-
triguing yet understudied topic. These two models are
fundamentally different in terms of constraint mechanism
and capacity scaling. While 3DMMs derive their con-
straints from data, skinning models acquire proper con-
straints through the design process, such as converting em-
pirical knowledge of real faces into the placement of bones
and the definitions of skinning weights. Regarding capac-
ity scaling, 3DMMs heavily rely on the collection of facial
scan data, which is prohibitively expensive to scale. In con-
trast, the capacity of skinning models can be easily scaled
by merely adjusting the number of parameters for bones and
skinning weights, making it a more cost-effective and ideal
candidate for high-capacity parametric face models.

With a closer look into standard skinning models with
the vanilla Linear Blend Skinning (LBS), we find that their
capacity can be further improved. Standard skinning mod-
els, which typically feature hundreds of bones on tens of
thousands of vertices, usually posses tens of parameters for
bone position, hundreds of parameters for transformation,
and millions of parameters for skinning weights. These ex-
tensive skinning weights must be determined beforehand
and remain fixed during subsequent 3D face modeling.
They are usually determined either by professional anima-
tors or through data-driven learning [21, 22], with certain
initial estimations [4]. Since skinning weights depend on
bone position, which also needs to be predefined and fixed,
transformation remains the sole variable in face modeling.
Within this paradigm, improving model capacity relies on
increasing the number of bones or refining predefined skin-
ning weights. We refer to these standard skinning models
as Static Skinning Models (SSM). We argue that the cur-
rent paradigm of SSM fundamentally limits capacity, as the
critical skinning weights are fixed.

A neglected fact is that skinning weights, despite being
defined in the form of a high-dimensional matrix, invariably
result in low-dimensional patterns that are smooth, concen-
trated, and sparse. Given the strong structural nature of the
human face, the movement space of each vertex is highly
correlated and constrained. Consequently, skinning weights
do not necessitate high-dimensional definition initially. We
introduce the Adaptive Skinning Model (ASM), which de-
fines skinning weights in a more compact form using the
Gaussian Mixture Model (GMM). This new design signifi-
cantly reduces the dimension of skinning weights to a level
comparable with the transformation matrix. As a result, all
parameters of skinning weights, transformation, and bone
position can be simultaneously solved during reconstruc-
tion. This eliminates not only the labor-intensive manual
design required in SSM but also the need for training data
as in 3DMMs. Compared to SSM, our model can achieve
a significantly increased capacity with even fewer total pa-

rameters.
The main contributions of this paper are as follows:

• A novel parametric face model is proposed, named ASM,
by redefining skinning model with fully tunable param-
eters via introducing a more compact skinning weights
representation with Gaussian Mixture Model.

• We demonstrate that ASM outperforms existing models
in terms of capacity, model size, ease of implementation
with arbitrary topology, and manual editing with semantic
parameters. Moreover, it eliminates the need for labori-
ous manual design and costly training data collection.

• State-of-the-art performance in 3D face reconstruction
with multi-view uncalibrated images is achieved using
ASM.

2. Related Work
3D Morphable Models was first proposed by Blanz and
Vetter [7] as a parametric face model. They used Princi-
pal Component Analysis (PCA) to reduce a set of topology-
consistent face mesh into a low-dimensional space as a set
of basis representing facial shape and texture. Paysan et
al. [24] introduced Basel Face Model (BFM), which is a
widely used 3DMM in recent years, calculated from reg-
istered 3D scans from 100 male and 100 female faces.
FLAME [19] became popular recently, which used 3,800
face scans to construct a shape basis and 33,000 scans to
construct the expression basis. FaceScape [34] collected
high-quality facial data of 938 individuals and each with 20
expressions to build 3DMM with the bilinear PCA method.

To further improve the representation capacity of
3DMM, increasing attention has been drawn into non-linear
dimensionality reduction methods, especially using neural
networks to train and reduce facial library to latent vec-
tor features [26, 30, 8, 35]. Ranjan et al. [26] introduced
CoMA to extract the latent vector features from the mesh
using an encoder-decoder network structure, resulting in
better representations of the mesh from the training sets.
Zheng et al. [35] proposed ImFace, which used Signed Dis-
tance Function (SDF) and implicit neural representation to
model human faces, achieving impressive results. Never-
theless, either linear or non-linear 3DMM methods are data
dependent, making these methods intrinsically difficult to
generalize and scale, considering collecting a large number
of high-quality 3D facial models is prohibitively expensive.
Skinning Model has a group of bones placed in 3D space,
which can be controlled by the bones’ translation, rota-
tion, and scaling parameters. Once binding the bones with
a mesh by defining the vertex-bone skinning weights ma-
trix, the mesh can be deformed together with the bones via
LBS. Skinning models have human-friendly semantic pa-
rameters, enabling the easy human design of bone place-
ment and skinning weights. Besides, these models do not
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need to store basis and are computationally efficient. With
these advantages, skinning models are widely used in the
game and film industry for character modeling and anima-
tion of whole body and face.

Although popular in the game industry, skinning mod-
els receive less attention in 3D face modeling research.
JNR [31] is the closest study to ours, which modeled face
shape entirely by a skinning model with 52 bones and
learned skinning weights. To the best of our knowledge,
JNR is the only previous study that applied skinning mod-
els for face registration and reconstruction. Our study dif-
fers substantially from JNR in terms of design concepts and
experimental findings. Firstly, JNR reduced the skinning
weight matrix using a neural network, while we redesign
the skinning model in a compact form in the first place, so
that further dimension reduction or data-dependent learn-
ing are completely avoided, and all the parameters of skin-
ning weights and bone positions can be freely solved online.
Secondly, JNR demonstrated that skinning models achieved
slightly worse capacity than state-of-the-art (SOTA) meth-
ods, such as FLAME, while our model achieves SOTA per-
formance for both capacity and multi-view reconstruction.

3. Method
In this section, we will begin by providing a brief

overview of LBS, followed by an introduction of our pro-
posed Adaptive Skinning Model (ASM).

3.1. Linear Blend Skinning

LBS is a fundamental algorithm used for skeletal shape
deformation in computer graphics [17]. It requires three
types of input data: vertex data from a polygon mesh, bone
transformation data in the skeleton, and skinning weight
data that defines the influence of each bone on each ver-
tex. Given a vertex v ∈ R3, the LBS algorithm computes
its deformed position v′ as follows:

v′ =

J∑
j=1

wjTjv (1)

where v and v′ are in homogeneous coordinate format, wj

is the skinning weight of bone j on vertex v with the con-
straint

∑J
j=1 wj = 1, Tj ∈ R4×4 is the bone j’s trans-

formation matrix and J is the total number of bones. In
Eq. 1, the deformation is performed by Tj according to the
following formula:

Tj = Ml2w
j Mw2l

j = Ml2w
p Mtrs(τj)B

−1
j (2)

where the vertex v is firstly projected from world space
to local bone space by world-to-local transformation ma-
trix Mw2l

j and then projected back into world space using
Ml2w

j . Ml2w
j can be decomposed into its parent bone’s

transformation matrix Ml2w
p multiply its local transforma-

tion Mtrs(τj), where transformation parameters τ ∈ R9

include the translation, rotation, and scale parameters of the
bone and Mtrs(·) is the composite matrix of these trans-
formation parameters. Mw2l

j is defined as the inverse of
pre-calculated bind-pose matrix Bj ∈ R4×4.

Based on Eq. 1 and Eq. 2, for the vanilla LBS-based
skinning model, only transformation parameters τ can be
adjusted for deformation, while the skinning weights and
initial bone position are fixed, which significantly limits its
capacity.

3.2. Adaptive Skinning Model

To further enlarge the capacity of the vanilla LBS-based
skinning model, we redesign its skinning weights and bind-
ing strategy by introducing GMM skinning weights and dy-
namic binding. The proposed ASM can be written as:

ASM(v|ζ,π,µ,Σ, τ ) =

J∑
j=1

W g(v|ζj ,π,µ,Σ)Ml2w
p Mtrs(τj)Bj(F

′(ζ))−1v
(3)

where W g(·) denotes GMM skinning weight function. B(·)
is no longer the pre-calculated bind-pose matrix, but the
standard bind-pose calculation method which takes posi-
tions and orientation in the world space of all the bones as
inputs and outputs the bind-pose for each bone. F ′(·), ζ,
π, µ, Σ, and τ will be described in detail below. Fig. 1
presents an overview of our proposed model.

GMM Skinning Weights. Observing that skinning weights
painted by human artists resemble a mixture of multiple
Gaussian distributions, we introduce GMM to simulate the
hand-painting process, so that we can build a more compact
representation while maintaining strong capacity. Specifi-
cally, we define skinning weights as 2D-GMM in the un-
wrapped UV space.

Given the vertex vi on the polygon mesh, there is a
known unwrapping function ui = F (vi) that maps the
topology of the mesh vertex index to the UV space coor-
dinate ui ∈ R2. The skinning weight of the point on the
UV space influenced by bone j is:

W (v|ζj ,π,µ,Σ) =

K∑
k=1

πkN (F (v)|µk + ζj ,Σk) (4)

where πk ∈ R (
∑K

k=1 πk = 1), µk ∈ R2, Σk ∈ R3 are
the GMM parameters, and K controls the complexity of
GMM. Since Σ is a symmetric matrix, it has only 3 degrees
of freedom. ζj ∈ R2 is the projection of the bone j onto
UV space, and we use this projection as an initial guess of
GMM’s center. To find this projection, we firstly project the
bone j with initial placement positionψ0

j ∈ R3 in 3D space
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Figure 1. Illustration of Adaptive Skinning Model. The bone positions in the UV space are adjusted by the parameters ζ, which also
provide an initial guess for the GMM skinning module. The parameters π,µ,Σ generate personal-specific skinning weights for each bone
in the UV space, which is then wrapped into 3D space to obtain the updated skinning model. The output 3D mesh is deformed using LBS
with the parameters τ . ASM can be used for tasks such as multi-view reconstruction and scan registration.

along with the z-axis (i.e. front-view) and then search the
nearest vertex with index t as a proxy to obtain:

ζj = F (vt) (5)

For the LBS-based skinning model, all the skinning
weights on vertex v have to add up to 1, thus we normalize
2D GMM-based skinning weights as below:

W g(v|ζj ,π,µ,Σ) =
W (v|ζj ,π,µ,Σ)∑J
i=1 W (v|ζi,π,µ,Σ)

(6)

where J is the total number of bones. With this method, we
can compress a large number of skinning weights into a few
2D GMM parameters.
Dynamic Bone Binding. In the previous GMM skin-
ning weights calculation, ζj is the UV position of the pre-
defined bone j. Taking these estimations as the initial-
ization and jointly optimizing ζ with skinning weights is
a straightforward way to further increase model capacity.
During the joint optimization process, the gradient not only
comes from W g(·), but also from the bind-pose calculation
Bj(F

′(ζ)), where F ′(ζj) should be a differentiable wrap-
ping function that maps the given UV space coordinate ζj
to the corresponding 3D position ψj . Here we define this
wrapping function as follows:

ψj = F ′(ζj) = αvA + βvB + γvC − vt +ψ
0
j

α, β, γ = Barycentric(ζj ,uA,uB ,uC)
(7)

where α, β and γ are the barycentric weights of ζj with
respect to the triangle fABC which ζj fall within. The ver-
tices of triangle fABC are uA = F (vA), uB = F (vB),
and uC = F (vC). vt is the same vertex referred in Eq. 5
and ψ0

j is the initial position of bone j.
Once we wrap ζ to the 3D position ψ by vertex inter-

polation, we can use B(ψ) to calculate the updated bind-
pose matrix and evaluate the loss subsequently. As the

whole process is differentiable, ζ can be joint optimized
with GMM skinning weights using backpropagation.

Up to this point, we achieve a fully parameterized rep-
resentation of the LBS-based skinning model. The detailed
proof process and formulas can be found in the supplemen-
tal materials.

3.3. Implementation Details.

To set up the initial placement of the bones, we use
Blender1 and place J = 84 bones with a hierarchical
structure, which provides higher degrees of freedom than
JNR [31]. We use Blender’s automatic skinning weights
generation method to obtain the initial skinning weights and
fit our GMMs for initial parameters ζ, π, µ, and Σ. These
parameters serve as the starting point for optimization when
using ASM in reconstruction tasks. For different scenarios,
we suggest using different K values for the GMM model
(K = 2 ∼ 5). In total, each bone of ASM has (11 +K ∗ 6)
tunable parameters. The dimension counting is shown in
Tab. 1.

Parameters ζ π µ Σ τ

Dimension 2 K K ∗ 2 K ∗ 3 9

Table 1. Dimension of parameters for each bone.

4. Experiments
4.1. Model Characteristics

Representation capacity of parametric face models was
assessed by fitting the models to 3D face scans and measur-
ing the scan-to-mesh error. We utilized the Adam optimizer
in PyTorch [23] with a learning rate of 1e-3 and 300 iter-
ations to solve the transformation parameters of rigid ICP

1https://www.blender.org
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and the model parameters as an optimization problem. Our
error measurement adhered to the NoW-benchmark [27]
prototype and was confined to the same facial region for
fair comparison among models with different face cover-
age. We used two publicly available datasets: the LYHM
dataset [9], which includes 1,212 scanned meshes of neu-
tral faces with inconsistent topology, and a dataset from
FaceScape [34], with the same setting as ImFace [35], con-
taining 10 individuals with 20 different expressions per per-
son, resulting in 200 total meshes with consistent topology.
Note that FaceScape is not in a metrical space, hence the
units of measurements on FaceScape are not in millimeters.

Methods LYHM FaceScape

BFM [24] 0.372±0.163 0.462±0.052

FLAME [19] 0.246±0.072 0.341±0.039

CoMA [26] 0.756±0.186 1.088±0.162

FaceScape [34] 0.341±0.185 0.216±0.048

ImFace [35] 0.339±0.119 0.257±0.061

MetaHuman [14] 0.234±0.089 0.269±0.063

Ours 0.228±0.072 0.210±0.025

Table 2. Scan-to-fitting error with the metric of 3D-Normalized
Mean Error (NME) (mm for LYHM). (Lower is better)
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Figure 2. Scan-to-fitting cumulative error curve.

The proposed ASM was compared to widely used and
SOTA parametric face models, including BFM [24] with
entire 199 parameters of identity and 79 parameters of ex-
pression, FLAME [19] with entire 300 parameters of iden-
tity and 100 parameters of expression, FaceScape [34],
CoMA [26], and ImFace [35]. For CoMA, we used a 64-
dimensional latent vector and retrained on its datasets, con-
sidering the original 8-dimensional latent vector would limit
its performance. For nonlinear 3DMM (CoMA, ImFace)
the latent vector served as parameters during fitting while
the weights of the decoder network were fixed. Addition-
ally, the state-of-the-art human-designed skinning model
from MetaHuman Creator [14] was also compared, which
included 887 bones, far more than our model. JNR [31]
was not compared as its implementation and data were not

GT ScanBFM FLAME CoMA FaceScape ImFace MetaHuman Ours

FaceScape Dataset

0mm >3mm LYHM Dataset

Figure 3. Exemplar fitting result. GT Scans stands for the ground
truth scan used for fitting.

open sourced.
Results in the form of mean error with standard deviation

and cumulative error curve were shown in Tab. 2 and Fig.2
respectively, with some examples shown in Fig. 3. Within
the group of linear 3DMM, FLAME had the highest capac-
ity and stable performance on both datasets. The extraor-
dinary performance of FaceScape on its own dataset was
illusive. When tested on a new dataset of LYHM, its perfor-
mance dropped significantly, which illustrated the difficulty
of generalization, a shared problem for all data-dependent
methods. For non-linear 3DMM methods, CoMA had diffi-
culty fitting these two datasets. ImFace behaved well on
FaceScape datasets, but degraded on the LYHM dataset,
similarly to FaceScape. Noted that both ImFace and
FaceScape were trained using the FaceScape datasets, and
both suffered from the generalization issue. Skinning mod-
els, including MetaHuman and our proposed ASM, though
less studied previously, outperformed all data-dependent
models. The intrinsic design of skinning models made it
very cost-effective to increase capacity by simply adding
more parameters. Compared to MetaHuman, the proposed
ASM further improved capacity on both datasets with fewer
tunable parameters, demonstrating the contribution of con-
verting fixed skinning weights into compact and tunable
skinning weights. Besides, skinning models avoided train-
ing data and the derived generalization issue, thus, leading
to consistently excellent performance on both datasets.
Implementation cost is a practical consideration when
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adapting a face model to a new topology. It is common
that different topologies are used by different groups in
various applications. Off-the-shelf 3DMMs bring certain
topologies, which may not be the desired ones in some ap-
plications. Adapting 3DMM to a new topology requires
re-topologizing its data library and replicating the dimen-
sion reduction process, which is cumbersome for large-
scale data as shown in Tab. 4. It is even impossible if the
data library is not accessible considering the risk of privacy.
On the other hand, MetaHuman is a sophisticated human-
designed SSM with 887 bones. Adapting MetaHuman to
a new topology requires tremendous domain expertise and
time-consuming painting of skinning weights.

In contrast, the implementation of our model is simply
determining the number of bones and placing them on a fa-
cial mesh, which can be easily replicated on any new topol-
ogy. For example, 84 bones were used in this work, which
took around 20 minutes in total to go through the making
process. As a demonstration, our original model with the
topology from BFM was duplicated twice with the topol-
ogy of FLAME and topology of a game character 2. Note
the number and initial location of bones were kept the same
among these three models. The representation capacity of
these three models was tested on the LYHM datasets, with
results shown in Tab. 3 and some examples shown in Fig. 4.
Our method was robust for all different topologies.

Topology BFM FLAME GAME
3D-NME↓ 0.228±0.072 0.236±0.029 0.235±0.063

Table 3. Representation capacity of ASM with different topology.

Figure 4. Exemplar fitting results of ASM with different topolo-
gies. BFM-T, FLAME-T, and GAME-T stand for the topology of
BFM, FLAME, and a game character respectively.

Model size refers to the disk space required to store the
model, which is divided into the fixed part and headcount
proportional part. The fixed part comes from the 3DMM
basis, weights of neural networks, and predefined skin-
ning weights. The headcount proportional part comes from
3DMM parameters, feature vectors of the neural networks,
and skinning model tunable parameters. As shown in Fig. 5,
our model size is significantly lower than all other models,
especially within the range of 100 faces, which is a common

2We obtain the mesh file from the open game mods community:
https://steamcommunity.com/sharedfiles/filedetails/?id=2326367687

range for real-world applications. This makes our model
advantageous for mobile device applications.

0 10 100 1K 3K
Number of Face

500KB
1MB

10MB

100MB

1GB

BFM
FLAME
CoMA
JNR
FaceScape
ImFace
Metahuman
Ours

Figure 5. Model size as a function for storing the number of faces.

Methods CPU GPU Dim. Data

BFM [24] 0.082s 0.007s 278 200
FLAME [19] 0.028s 0.002s 406 3,800
CoMA [26] 1.880s 0.012s 64 12
FaceScape [34] 30.661s 0.034s 351 938
ImFace [35] 94.660s 20.816s 256 355
MetaHuman [14] 0.489s 0.007s 7,983 -

Ours 2.658s 0.066s 1,932 1

Table 4. Statistics of different face models. CPU and GPU refer
to inference time measured on CPU or GPU. Dim refers to the
dimension of parameters. Data refers to the number of individuals
used to construct the face model.

Inference time refers to the time it takes to generate a face
mesh given the input parameters. Inference time measure-
ment was conducted with a batch size of 32 and averaged
over 1,000 repetitions. It was measured on either CPU of
Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz or the GPU
of NVIDIA Tesla V100 32G. As shown in Tab. 4, ASM
was slower compared to linear 3DMM (BFM and FLAME)
and SSM (Metahuman), but still within an acceptable range.
ImFace with a much longer inference time increases the dif-
ficulty of being used.

4.2. Model Application

3D face reconstruction with multi-view uncalibrated im-
ages was evaluated. The Florence MICC benchmark is
widely used for multi-view 3D face reconstruction with
three subsets (Coop, indoor, and Outdoor). The Coop and
Indoor subsets have video segments of 53 individuals with
stable indoor lighting, differing by camera distance, por-
trait distance for Coop, and roof camera for Indoor. Coop
is closer to our targeted setting with high-quality images,
and both were used in our evaluation. For each video seg-
ment, we manually selected 15 frames at different angles
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with close expressions. Reconstruction was solved as an op-
timization problem with our proposed face model and pho-
tometric consistency constraints [1, 15]. A learning-based
method [10] was used to serve as initialization to accelerate
the convergence of optimization. For detailed experimen-
tal settings and energy function, please refer to the supple-
mentary materials. As shown in the Tab. 5, We achieved
SOTA performance on the Florence MICC Coop bench-
mark. For the Indoor benchmark with video taken in the
distance, which is out of our targeted setting, methods with
the advantage of robustness behave better, such as [32].

Methods Coop↓ Indoor↓

Piotraschke and Blanz [25] 1.68 1.67
Deng et al. [10] 1.60 1.61
Wood et al. [32] 1.43 1.42
Ours 1.34 1.53

Table 5. Multi-view reconstruction error with metric of 3D-
RMSE(mm) on Florence MICC benchmark. (↓Lower is better.)

The MICC benchmark does not accurately represent our
intended setting due to the allowance of speech and fa-
cial expression changes during video collection. To ad-
dress this limitation, we conducted further evaluations on
the FaceScape dataset, which captured a large number of
high-definition images synchronously using a camera rig.
Calibration information of this dataset was not used, and we
randomly selected 3, 5, 10, and 20 images from 10 subjects
to conduct multi-view 3D face reconstruction using vari-
ous models, including BFM, FLAME, ASM-K2, ASM-K5,
and MetaHuman, while maintaining consistent settings as
previously stated. ASM-K2 and ASM-K5 referred to our
model with different parameter K settings, with ASM-K2
being the default setting used in all other experiments. Ad-
ditionally, we also compared with MVS implemented by
commercial software MetashapePro3.

Tab. 6 and Fig. 6 demonstrated that skinning models, in-
cluding ours and MetaHuman, outperform 3DMM (BFM
and FLAME) in the multi-view setting. Skinning models
can continuously improve results with more views, while
3DMM exhibited a less noticeable improvement. This high-
lighted the importance of using skinning models with higher
capacity to accommodate more constraints from multi-view
input. MVS failed with only 3 or 5 images, but achieved
high-fidelity results with 20 images, as expected. While
MetaHuman results exhibited bizarre shapes, our model
achieved natural and high-fidelity results. This can be at-
tributed to the fact that MetaHuman adds extra bones, far
beyond the physical number of joints on human face. As a
result, the added capacity may not align well with the actual
human face, resulting in an unnatural appearance. In con-

3https://www.agisoft.com

trast, our proposed model increases capacity in a more bal-
anced manner by allowing all skinning model parameters to
be tuned simultaneously, leading to a better representation
of human face.

Images BFM FLAME ASM-K2 ASM-K5 MetaHuman MVS
3 1.64 1.56 1.30 1.29 1.47 -
5 1.56 1.54 1.06 1.06 1.34 -

10 1.52 1.48 0.94 0.92 1.15 0.88
20 1.50 1.33 0.86 0.84 1.04 0.55

Table 6. Multi-view reconstruction error with metric of 3D-RMSE
on selected FaceScape dataset. (↓Lower is better.)

GT Scan
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Figure 6. Multi-view reconstruction result on FaceScape.

We also obtained in-house data by capturing 6 images
with a high-quality mobile camera and requesting partici-
pants to remain stationary. Using the same set-up, we per-
formed multi-view 3D face reconstruction and compared
our model to FLAME and MVS. Our model outperformed
FLAME with more identifiable results, as shown in Fig. 7,
while MVS failed. These findings demonstrate that our
model is the proper choice for reconstruction with multi-
view uncalibrated images, especially when the number of
images is not adequate for successful MVS.
In-game avatar creation is another application benefiting
from the proposed model, which is to customize in-game
avatars given input images. Character’s face is mostly rep-
resented in the form of skinning models with certain topol-
ogy in games [28, 29]. Our model belongs to skinning mod-
els and can be easily adapted to new topology, therefore, the
reconstruction results of our model can be directly trans-
ferred into the game system without a performance drop.
The implementation of reconstruction had the same setting
as above, except the model was based on the topology from
the game, as previously illustrated in Fig. 4. As shown
in Fig. 8, in-game avatar from reconstruction result was

20714



Input Images FLAME Ours MVS

Figure 7. Multi-view reconstruction result on in-house data.

achieved, and post-editing was allowed, due to the advan-
tage of skinning models with physical-semantic parameters.

(a) (b) (c) (d)

Figure 8. (a) exemplar image out of 5; (b) customized avatar with
reconstruction result; (c) avatar with further manual edit, for ex-
ample, adjusting the bone of the nose wing; (d) the original avatar.

4.3. Ablation Studies

A quantitative ablation study was conducted to investi-
gate the key design components for fitting and reconstruc-
tion performance using the LYHM and MICC datasets, re-
spectively. The study compared the following methods.
SSM referred to a static skinning model with fixed bone
binding and skinning weights provided by Blender. DBB
referred to dynamic bone binding with the bone position
as tunable variable. GSW referred to tunable GMM based
skinning weights. RD referred to replacing the initial skin-
ning weights provided by Blender with random ones. In
Tab. 7, the last row represented the default setting as in pre-
vious evaluations. Results indicated that SSM had a higher
representation capacity than most 3DMM models, except
FLAME, leading to improve multi-view reconstruction per-
formance. Converting bone location and skinning weights
into tunable parameters further improved capacity. Careful
consideration was required for the initialization of GMM
skinning weight.

Additionally, a qualitative ablation study was conducted

SSM DBB GSW RD Registration Reconstruction

✓ 0.322±0.118 1.36±0.48

✓ ✓ 0.282±0.094 1.36±0.46

✓ ✓ ✓ ✓ 0.416±0.107 1.47±0.45

✓ ✓ ✓ 0.228±0.072 1.34±0.51

Table 7. Ablation study on registration (with metric of 3D-NME)
and reconstruction (with metric of 3D-RMSE).

to illustrate the facial prior of ASM. Unlike 3DMMs learn-
ing constraints from data, ASM, as well as skinning mod-
els in general, encodes proper constraints within the design
of initial bone placement and skinning weights. Therefore,
random bone placement or skinning weights lead to failed
modeling, as shown in Fig. 9(a) and Fig. 9(b) respectively.
Besides, regularization terms can be used to provide ad-
ditional constraints for local facial regions, thanks to the
explicit semantics of skinning model parameters. For in-
stance, enlarging the regularization weight for bones near
the eyebrows can reduce the impact of noise for that region,
as shown in Fig. 9(c).

(a) (b) (c) (d) (e)

Figure 9. Illustration of fitting results. (a) random bones place-
ment; (b) random skinning weights; (c) enlarged regularization
weight on the eyebrow area; (d) default setting of ASM; (e) GT
scans.

5. Discussion

This study demonstrated that parametric face models
have varying characteristics and should be tailored for spe-
cific applications. When dealing with low-quality input,
such as the MICC Indoor benchmark, 3DMM with strong
prior achieved robust and SOTA performance. For high-
quality calibrated input captured within a camera rig, para-
metric face models were unnecessary, and MVS with raw
3D points achieved high-quality facial scans, considered
as the ground truth. For intermediate-level input of high-
quality multi-view but uncalibrated images, skinning mod-
els based ASM with higher capacity achieved SOTA per-
formance on MICC Coop benchmark, FaceScape (without
calibration), and our in-house data. Compared to a sophis-
ticated human-designed static skinning model, ASM with
fully tunable parameters can further improve capacity in a
more natural and effective way.

20715



GT ScanBFM FLAME CoMA FaceScape ImFace MetaHuman Ours

0mm >3mm

Figure 10. Exemplar failed fitting results. GT Scans stands for the
ground truth scan used for fitting.

This study did not cover other aspects of multi-view re-
construction, such as the design of constraints or optimiza-
tion process. We believe that our proposed model with
higher capacity will facilitate future research on multi-view
reconstruction, enabling better use of increased capacity
to improve reconstruction performance. Another potential
future work is to explore decoupling the identity and ex-
pression of the skinning parameters to enable expression
transfer between different individuals and customization of
personal-specific expressions. It would be interesting to
combine data dependent decoupling techniques as used in
3DMMs with skinning models. Moreover, note that this
study did not fully investigate the unique case of faces with
beards. Given that beards are not part of the facial topol-
ogy, they pose a significant challenge for all parametric face
models. This is particularly true for models with higher ca-
pacity, such as ASM, which is more prone to artifacts, as
illustrated in Fig. 10.

6. Conclusion

We proposed ASM, a high-capacity parametric face
model, to be used for reconstruction with multi-view un-
calibrated images. ASM offers stronger capacity than data-
dependent 3DMMs with compact and fully tunable param-
eters. Our experiments demonstrated that ASM achieved
SOTA performance for multi-view reconstruction on the
MICC Coop benchmark, and its high capacity was cru-
cial to exploit abundant information from multi-view in-
put. Furthermore, the semantic parameters of ASM made
it suitable for real-world applications like in-game avatar
creation. The study opens up new research direction for
the parametric face model and facilitates future research on
multi-view reconstruction.
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