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Abstract

Box-supervised instance segmentation has gained much
attention as it requires only simple box annotations instead
of costly mask or polygon annotations. However, exist-
ing box-supervised instance segmentation models mainly
focus on mask-based frameworks. We propose a new end-
to-end training technique, termed BoxSnake, to achieve ef-
fective polygonal instance segmentation using only box an-
notations for the first time. Our method consists of two
loss functions: (1) a point-based unary loss that constrains
the bounding box of predicted polygons to achieve coarse-
grained segmentation; and (2) a distance-aware pairwise
loss that encourages the predicted polygons to fit the ob-
ject boundaries. Compared with the mask-based weakly-
supervised methods, BoxSnake further reduces the perfor-
mance gap between the predicted segmentation and the
bounding box, and shows significant superiority on the
Cityscapes dataset. The source code has been available at
https://github.com/Yangr116/BoxSnake.

1. Introduction
Instance segmentation aims to provide precious and

fine-grained object localization, which plays a fundamen-

tal role in various tasks, such as image understanding, au-

tonomous driving, and robotic grasping. There are two pri-

mary paradigms for advanced instance segmentation: mask-

based [26, 6, 12, 66, 71, 80, 40] and polygon-based [41,

72, 37, 81, 54]. Mask-based instance segmentation employs

pixel-wise masks to represent the objects of interest, while

polygon-based instance segmentation utilizes object con-

tours, consisting of a set of vertices along the object bound-

aries [41, 37, 54] or a center point with a group of rays [72].

Nevertheless, the laborious and costly process of mask or

polygon annotation [34, 19, 4] impedes the widespread and

universal real-world applications of these methods.

Recent research efforts [15, 34, 28, 67, 39] aim to

overcome this obstacle by obtaining instance masks solely
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Figure 1. BoxSnake is a box-supervised instance segmentation

model that predicts the segmentation of the interested object in the

form of polygons. Three terms, involving a point-based unary term

and two pairwise terms, are proposed to constrain the predicted

polygon to fit the object boundary. The grey dotted line indicates

that the proposed losses only work during training.

through box annotations. For example, BoxSup [15]

and Box2Seg [34] employ pseudo mask labels from

GrabCut [56] or MCG [3] to train the networks itera-

tively. BBTP [28] and BoxInst [67] propose an end-to-

end mask-based framework utilizing multi-instance learn-

ing (MIL) and pairwise affinity modeling. Additionally,

BoxLevelSet [39] uses the Chan-Vese level-set energy func-

tion [10] to predict instance-aware mask maps as an implicit

level-set evolution. However, there is no deep-learning-

based method for weakly-supervised polygonal instance

segmentation. Therefore, we attempt to explore a new per-

spective: Can effective polygon-based instance segmenta-
tion be achieved with box annotations only?

To achieve it, we propose a new end-to-end training tech-

nique, termed BoxSnake, with a point-based unary loss and

a distance-aware pairwise loss. First, similar to the mask-

based methods [15, 67, 39], we argue that all vertices of the

expected polygon ought to be tightly enclosed by the bound-

ing box. Thus, we design a point-based unary loss relying

on CIoU [83] to constrain the bounding box of the predicted

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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polygon by maximizing its Intersection-over-Union (IoU)

with the annotation box. As shown in Figure 2 (b), since

the point-based unary loss only optimizes the outermost ver-

tices of the predicted polygon, it can roughly regress to the

object of interest but is hard to fit the boundary well.

To address the above issue, we further introduce a pair-

wise loss based on distance transformation, including a lo-

cal pairwise term and a global pairwise term. Specifically,

as shown in Figure 1, motivated by the weakly-supervised

methods based on masks [28, 67, 39], we propose a local-

pairwise loss to encourage the predicted polygon not to fall

into flat areas. However, compared with mask-based meth-

ods, it is difficult to directly optimize the coordinates of

polygon vertices. Therefore, we attempt to convert the coor-

dinate regression problem into a classification problem. To

approach this, we introduce a hard mapping function based

on the curve evolution method [8, 52] to transform the 2D

polygon into a 3D plane, which maps the pixels in the inte-

rior and exterior of the polygon to two separated level sets.

We further use the distance transformation from pixels to

predicted polygons to relax the discrete process in the map-

ping function, enabling end-to-end training of the network.

Based on it, the local-pairwise loss encourages the consis-

tency between neighboring pixels in a local window, ensur-

ing that two nearby pixels in the 3D planes are likely to

appear on the same level set if they have similar colors. In

addition, we further propose a global-pairwise loss to mini-

mize the variance of pixel colors in the same level set, which

can better fit the predicted polygon to the object boundary.

Besides, it makes the predicted polygon more smooth and

more robust to the noise in a local region of the image.

In summary, our contributions lie in the following:

• We design a novel end-to-end training technique to ap-

proach polygonal instance segmentation with only box

supervision for the first time.

• We introduce a point-based unary loss that regularizes the

predicted polygon to objects using box-based IoU.

• We propose a distanced-based pairwise loss involving lo-

cal and global terms to encourage the predicted polygon

to align with object boundaries. More importantly, we

devise a method that transforms the polygon regression

problem into a classification problem, thereby facilitating

the pairwise loss on polygonal segmentation.

We apply the proposed techniques to the state-of-the-

art polygon-based framework [37] and achieve competitive

performance on COCO [43] and Cityscapes [14] datasets.

Compared with the mask-based weakly-supervised coun-

terparts, our method can further narrow the performance

gap between the predicted segmentation and the bound-

ing box.With ResNet-50 backbone, our method obtains

3.9% absolute gains over the BoxInst [67] on Cityscapes

dataset and shows significant superiority over some fully-

supervised methods on COCO dataset, including Deep-

(a) image (b) w/ (c) w/ and 

Figure 2. Impacts of the different losses. (a) indicates the initial

polygon sampled from an ellipse enclosed by the predicted box.

(b) denotes the predicted polygon supervised by the point-based

unary loss only. (c) is the predicted polygon jointly supervised by

the point-based unary loss and the distance-aware pairwise loss.

Snake [54] and PolarMask [72].

2. Related Work
Mask-based Instance Segmentation aims to represent in-

dividual objects with pixel-level binary masks. The pi-

oneering Mask R-CNN [26] resorted to the foreground-

background segmentation within each pre-detected bound-

ing box (object proposal). Follow-ups focused on exploiting

cascade structure to find more precise boxes [6, 11, 69, 61,

74] or improving the coarse boundaries [32, 13, 31, 58, 62,

79, 29, 24, 23]. Kernel-based methods [66, 5, 71, 53, 82]

generated instance masks from dynamic kernels without de-

pendence on box detection, which achieves sound perfor-

mance with high efficiency. Inspired by an end-to-end set

prediction framework (e.g., DETR [7]), query-based meth-

ods [21, 17, 12] tackled instance segmentation via a fixed

number of learnable embeddings, where each embedding,

the prototype of an instance, can decode a binary mask and

its category from feature maps. In summary, the above

methods group pixels of each instance by a spatially dense

function that performs a pixel-wise classification and bina-

rization (always using a threshold of 0.5).

Polygon-based Instance Segmentation instead represents

each object instance with geometrical contours directly.

This approach dates back to Snakes or active contours

method [30, 73] in the 1980s, which deformed an initial

outline to fit the object silhouette. With the rise of deep

learning, several approaches have been proposed to trace

object boundaries. For instance, Polygon RNN [9, 1] em-

ployed a CNN-RNN architecture to sequentially trace ob-

ject boundaries in a given image patch. Two-stage Deep

Snake [54] created initial octagon contours using a detec-

tor and then iteratively deformed them through a circular

convolution network. PolyTransform [41] generated masks

for each object using an off-the-shelf mask-based segmenta-

tion pipeline and converted the resulting mask contours into

a set of vertices. Subsequently, the Transformer [68, 75]

wrapped these vertices to fit the object silhouette better.

Curve GCN [44] regarded the initial contour as a graph and

used a graph convolutional network to predict vertex-wise
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offsets. It employed a differentiable rendering loss to ensure

that masks rendered from the predicted points agreed with

the ground-truth masks. BoundaryFormer [37], on the other

hand, applied a differentiable rasterization method to gener-

ate masks from polygons, achieving stunning results. Polar-

Mask [72] and its follow-ups [48, 50] adopted a set of rays

in the polar coordinate system to represent object contours,

which enables an efficient calculation of Intersection-over-

Union. However, the deep learning-based methods men-

tioned above require expensive ground-truth masks or poly-

gons, which hinders their practical applicability and exten-

sion. Alternatively, the proposed BoxSnake can produce the

object polygon with only cheap box annotations.

Box-supervised Instance Segmentation is a workaround

for fully-supervised methods, which has been explored in

traditional interactive segmentation [56, 64, 38]. In the con-

text of deep learning, many arts [28, 67, 36, 39, 78, 25]

tried to perform mask-based instance segmentation with just

bounding-box annotations. BBTP [28] converted the box

tightness prior [38] as the latent ground truth via multiple

instance learning (MIL) and employed the structural con-

straint to maintain the piece-wise smoothness in predicted

masks. BoxInst [67] achieved stunning instance segmen-

tation results by substituting the mask loss with projection

and pairwise losses in CondInst [66]. DiscoBox [36] fur-

ther leveraged cross-image correspondence to enhance pair-

wise affinity, thus improving segmentation performance.

The above methods can be summarized as a CRF energy

model [33], where the unary potential is responsible for

finding the initial instance mask (seeds) and the pairwise

potential for label propagation. Similar appearance mod-

els [35, 20] are also applied in the partially supervised in-

stance segmentation. Moreover, based on the Chan-Vese

level set energy function [10], BoxLevelSet [39] evolved the

instance mask through low-level image features and tree-

filter [60, 59] refined high-level features within the object

bounding box. By contrast, we in this paper formulate a

method to train the polygon-based instance segmentation

frameworks with only box annotations.

3. BoxSnake
Traditional Snakes or active contours method [30, 73, 8]

can obtain object boundaries by coarsely annotating the ob-

ject region and numerically minimizing a hand-crafted en-

ergy function. However, there is no deep-learning-based

method for polygon-based instance segmentation with just

box annotations. We in this paper propose the BoxSnake,

a novel deep learning-based framework that aims to solve

polygonal instance segmentation with only bounding-box

supervision. To supervise BoxSnake using boxes, we for-

mulate two loss functions, namely the point-based unary

loss and the distance-aware pairwise loss, to guide the pre-

dicted polygon to fit the object boundaries accurately.

3.1. Definition

Given an input image I ∈ RH×W×3 with the resolution

of H ×W and N interested objects, the set of pixels in the

image is denoted by Ω. The BoxSnake predicts a polygon

for each object, where each polygon contains K ordered

vertices, sorted counterclockwise according to their initial

angles. It represents the outline of an object, where each

pair of adjacent vertices can be linked as a segment. For the

n-th interested object, the predicted polygon is denoted as

Cn = {(xn
i , y

n
i )}Ki=1 and its bounding-box annotation is bn.

For simplicity, we will omit n in the following.

3.2. Point-based Unary Loss

The point unary loss is designed to ensure that all the

vertices of the predicted polygon are enclosed within the

ground-truth bounding box. Given a predicted polygon C
and its ground-truth bounding box b, we can easily calculate

the bounding box of C using the max and min operation

along with the x- and y-axis:

(x1, y1) = min(C), (x2, y2) = max(C), (1)

where (x1, y1) and (x2, y2) are the top left and bottom right

coordinates of the bounding box bc, respectively. Then, the

discrepancy between bc and b is minimized by the point-

based unary loss:

Lu = 1− CIoU(bc, b), (2)

where CIoU(·, ·) represents the complete intersection over

union [83]. This loss term encourages the tightest box

covering the predicted polygon matches its ground-truth

bounding box exactly. As reported in the experiments (Ta-

ble 7), with the unary loss only, BoxSnake demonstrates

reasonable instance segmentation performance.

3.3. Distance-aware Pairwise Loss

Nevertheless, as illustrated in Figure 2 (b) and Fig-

ure 5 (b), only the point-based unary loss fails to fit the ob-

ject boundary well. Therefore, we propose a distance-aware

pairwise loss involving local and global pairwise terms.

Local Pairwise Term. Object boundaries are typically lo-

cated in regions with local color variation in the image [22].

According to this hypothesis, we propose a local pairwise

loss based on windows to encourage predicted polygons to

be locally consistent with the positions of the image edges.

However, compared with mask-based methods [67], it is

difficult to directly optimize the coordinates of polygon ver-

tices. Therefore, we attempt to convert the coordinate re-

gression problem into a classification problem.

As shown in Figure 3 (b), we introduce the curve evolu-

tion [8, 52] method to reformulate the predicted polygon C
to a 3D plane, which maps the pixels inside and outside the

polygon into two separate level sets. Specifically, given a
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pixel at location (x, y) in a 2D image, we define the curve

evolution process as a discrete function UC(x, y) ∈ {0, 1}.

The UC(x, y) = 1 if the pixel is inside the polygon, and

UC(x, y) = 0 if it is outside the polygon. The curve evo-

lution function can be easily implemented by the point-in-

polygon (PIP) algorithm [57, 63]. With the above tech-

niques, the constraint of consistency between the polygon

and the image is transformed into similarly colored pixel

points located in the same level set. This process can be

formulated as minimizing the local-pairwise energy:

E =
∑

(p,q)∈Ω̊
k
(i,j)

w[(i,j),(p,q)] | UC(i, j)− UC(p, q) |, (3)

where Ω̊
k
(i, j) means the adjacent pixels within a k×k win-

dow at the position (i, j). w[(i,j),(p,q)] measures the affinity

of two pixels by color distance:

w[(i,j),(p,q)] = exp

(
−‖ I(i, j)− I(p, q) ‖2

2σ2
I

)
, (4)

where I(·, ·) indicates the color value at the input coor-

dinate, ‖ · ‖2 is Euclidean distance, and σI is a hyper-

parameter for temperature. Eq. 4 tends to be zeros at the

edges. If two adjacent pixels have a high color similarity

but are assigned to different level sets, Eq. 3 will give them

a high penalty, and vice visa.

However, the mapping function UC(·, ·) in Eq. 3 is a dis-

crete and non-differentiable function, making the energy

can not be trained in an end-to-end manner for deep neu-

ral networks. To solve this issue, we introduce a distance

transformation process to relax the mapping function into a

continuous and differentiable one. Specifically, we calcu-

late the minimum vertical distance from a pixel (x, y) to the

predicted polygon as DC(x, y), which reflects the distance

from the exported object boundary. We further apply the

Sigmoid function to normalize the distance to (0, 1). The

approximate mapping function can be formulated as:

U ′
C(x, y) = σ

(
2 · (UC(x, y)− 0.5) ·DC(x, y)

τ

)
, (5)

where τ denotes the temperature hyper-parameter for

Sigmoid operation σ(·). As illustrated in Figure 3 (c), the

approximate mapping function is continuous at the polygon

boundaries and is differentiable w.r.t. the coordinates of the

vertices. To this end, we propose a local-pairwise loss:

Llp =
∑

(p,q)∈Ω̊
k
(i,j)

w[(i,j),(p,q)] | U ′
C(i, j)− U ′

C(p, q) |, (6)

which encourages similar-colored pixels within a local re-

gion to be located on the same level set and have consistent

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.000

(a) 2D image (b) (c) 

Figure 3. The diagram of distance relaxation. (a) is a predicted

polygon on a 2D image. (b) is the hard mapping function to trans-

form the polygon to a 3D plane with two separate level sets. (c) is

the approximate mapping function.

distances to the object boundary. At the first glance, the lo-

cal pairwise loss could potentially lead the network to have

two trivial results, i.e., the predicted polygon may expand

to the entire image or collapse to a single point. However,

these trivial results can be avoided by integrating the pro-

posed point-based unary loss. The unary loss ensures the

polygon is inside the ground-truth box, thus preventing the

polygon from expanding to the whole image. Additionally,

it encourages the area of the bounding box of the polygon

to match the object annotation box, preventing it from col-

lapsing into a single point.

Global Pairwise Term. Since color variations in a local

region of the image may be noise, training with a local-

pairwise loss may lead to unexpected segmentation bound-

aries. Therefore, we further propose a global pairwise loss

to reduce the influence of local noise. It is designed based

on a hypothesis, i.e., internal or external regions of the ob-

ject should be nearly homogeneous [10], which is formu-

lated as:

Lgp =
∑

(x,y)∈Ω

||I(x, y)− uin||2 · U ′
C(x, y)

+
∑

(x,y)∈Ω

||I(x, y)− uout||2 · (1− U ′
C(x, y)),

(7)

where uin and uout indicate the average image color inside

and outside the predicted polygon, respectively. The uin

and uout are defined as:

uin =

∑
(x,y)∈Ω I(x, y) · U ′

C(x, y)∑
(x,y)∈Ω U ′

C(x, y)
,

uout =

∑
(x,y)∈Ω I(x, y) · (1− U ′

C(x, y))∑
(x,y)∈Ω(1− U ′

C(x, y))
,

(8)

which is modulated by the approximate mapping function.

As shown in Figure 2 (c) and Figure 5 (d), the global-

pairwise loss typically makes the predicted polygon more

smooth and better fit the object boundary.

Clipping Strategy. The Llp and Lgp need to involve the

background information. However, calculating these loss

terms on all the background pixels directly may not be prac-

tical due to potential memory constraints. To address this
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Figure 4. The network architecture of BoxSnake. The multi-

scale features are extracted from the input image by a backbone

network. The box predictor is attached to these features to obtain

bounding boxes. The polygon head predicts the polygon for each

box, which is trained with box annotation only.

issue, we resize the predicted polygon to make the size of

its bounding box to be S × S by using a bilinear interpo-

lation. We further employ the RoIAlign [26] operation to

crop and resize the image to the size of S × S, according

to the coordinates of the ground-truth box. Accordingly, we

use the cropped image as guidance for the pairwise losses.

This strategy reduces the memory requirements during the

training phase, making BoxSnake more practical for users

with limited computational resources.

So far, we have integrated the proposed losses to jointly

supervise the network to predict accurate object polygons

with box supervision only:

Lpolygon = αLu + βLlp + γLgp, (9)

where α, β, and γ are the modulated weights for each loss

term. During training, Lu ensures the polygon is tightly

enclosed by the ground-truth box, while Llp and Lgp further

fit the predicted polygon to the object boundary.

3.4. Network Architecture

The proposed training technique is flexible and easy to

use as a plug-and-play training module. As same as the

BoundaryFormer [37], we apply our method to the Mask

R-CNN [26] framework and use a Transformer as the poly-

gon head, which is shown in Figure 4. A backbone network

and feature pyramid network [42] are used to extract multi-

scale feature maps from the input image. The box regres-

sion and classification head generate object bounding boxes

and corresponding categories from each scale. Different

from the BoundaryFormer, we replace the mask-supervised

loss function with the proposed weakly-supervised losses.

Besides, the polygon head predicts the polygon by regress-

ing the relative coordinates of polygon vertices. It is made

up of L Transformer decoders and each Transformer de-

coder is consisting of vanilla self-attention [68], deformable

cross-attention [84], and feed-forward modules. Following

the previous literature [41, 54, 37], the vertices of initial-

ized polygons are sampled from an ellipse enclosed by the

bounding box. They are further refined by Transformer de-

coders iteratively and generate the final polygon prediction.

4. Experiments
To prove effectiveness of BoxSnake, we conduct exper-

iments on COCO [43] and Cityscapes [14] datasets. For

COCO, the models are trained on train2017 set with 115K

images. The ablation experiments are evaluated on val2017
set with 5K images, and the large-backbone results are re-

ported on test-dev set with 20K images. For Cityscapes,

we train and evaluate the models on the fine part, consisting

of 2, 975 train and 500 validation images with a high res-

olution and annotation quality. Notably, just bounding-box

annotations are enabled during training.

4.1. Implementation Details

We employ Mask R-CNN [26] as the underlying detector

whose FPN [42] features attach the polygon head. We rep-

resent each polygon using 64 vertices and employ 4 Trans-

former decoders to refine the initial vertices. Different from

BoundaryFormer [37], we predict the polygon in the entire

scope instead of within the predicted bounding box. This

eliminates the need for an additional alignment strategy, and

the predicted polygon is not constrained to the predicted

box. To balance the different loss terms, we set the weights

α = 1.0, β = 0.5, and γ = 0.03 in Eq. 9. Regarding

the distance-aware pairwise loss, we use a clipping size of

72× 72, including a 64× 64 grid map with 4 zero padding

on each side and a temperature of 0.1 in Eq 5. For the local

pairwise term (Eq. 6), we compute the pairwise relationship

in 3× 3 windows with a dilation rate of 2 and set σI to 1.0.

In addition, the bounding box classification and regression

losses are the same as those in Mask R-CNN.

Unless otherwise specified, we train and infer models

similar to Mask R-CNN. ResNet [27] and Swin Trans-

former [46] are employed as the backbone, which is initial-

ized with weights pre-trained on ImageNet [16]. The poly-

gon head is initialized as [84], and other new layers are ini-

tialized as in Mask R-CNN. We optimize all models using

AdamW [47]. On COCO, we train the models for 90K (1×)

and 180K (2×) iterations with a batch size of 16 on 8 GPUs.

The initial learning rate is 1 × 10−4, and the weight decay

is 0.1. For the 90K schedule, the learning rate is decreased

by a factor of 10 at steps 60K and 80K, while for the 180K

schedule, it is decreased at steps 120K and 160K. More-

over, we apply random flipping and scale jittering augmen-

tation. For the ResNet and Swin Transformer backbones,

we randomly sample the short side of training images from
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method backbone out AP ↑ AP50 ↑ ΔAPb ↓
fully-supervised methods

Mask R-CNN [26] R50-FPN M 35.2 56.3 -

CondInst [66] R50-FPN M 35.6 56.4 -

PolarMask [72] R50-FPN C 29.1 49.5 -

Deep Snake [54] DLA-34 C 30.5 – -

DANCE [45] R50-FPN C 34.5 55.3 -

BoundaryFormer [37] R50-FPN C 36.1 56.7 -

box-supervised methods
DiscoBox [36] R50-FPN M 30.7 52.6 10.7

BoxInst [67] R50-FPN M 30.7 52.2 8.7

BoxSnake R50-FPN C 31.1 53.4 7.8
BBTP [28] R101-FPN M 21.1 45.5 19.3

BoxCaseg [70] R101-FPN M 30.9 53.7 9.1

BoxInst [67] R101-FPN M 31.6 54.0 9.8

BoxSnake R101-FPN C 31.6 54.0 8.3
Table 1. Comparisons with classical instance segmentation meth-

ods on COCO val2017 set. All models are trained with the 1×
schedule. ΔAPb indicates the accuracy gap between the predicted

bounding box and segmentation. M and C denote the segmenta-

tion formats being mask and polygon, respectively.

method backbone out AP AP50

fully-supervised methods
Mask R-CNN [26] R50-FPN M 31.5 –

CondInst [66] R50-FPN M 33.1 –

E2EC [81] DLA-34 C 34.0 –

BoundaryFormer [37] R50-FPN C 34.7 60.8

box-supervised methods
BoxInst [67] R50-FPN M 22.4 49.0

AsyInst [77] R50-FPN M 24.7 53.0

BoxSnake R50-FPN C 26.3 54.2
Table 2. Results on Cityscapes validation set. M and C denote

the segmentation formats being mask and polygon, respectively.

DLA-34 refers to the backbone used in [18]. The reported results

of BoxInst are obtained from the official repository [65].

[640, 800] and [480, 800], respectively. During inference,

the short side is set to 800 pixels. On Cityscapes, our mod-

els are trained for 24K iterations using a batch size of 8 on

8 GPUs. The initial learning rate is set to 1 × 10−4 and is

subsequently reduced to 1 × 10−5 at 18K iterations. The

short size of the training images is randomly resized within

the range of [800, 1024], while the long size is kept at most

2048. During inference, the short size is set to 1024 pix-

els. The performance is evaluated using the COCO-format

mask AP on two benchmarks.

4.2. Main Results

To demonstrate the effectiveness of our BoxSnake, we

compare our BoxSnake with fully-supervised and box-

supervised instance segmentation approaches on COCO

val2017 set and Cityscapes validation set.

Results on COCO. As reported in Table 1, BoxSnake

achieves results better than or comparable to those of mask-

based instance segmentation methods using only box an-

notations. Specifically, BoxSnake attains 31.1% mask AP

with the ResNet-50 backbone and 1× schedule, outper-

forming both BoxInst [67] and DiscoBox [36] by 0.4%
mask AP. When combined with the ResNet-101 backbone,

our BoxSnake achieves 31.6% AP, which significantly sur-

passes BBTP [28] by 10.5% mask AP. Notably, BoxSnake

greatly reduces the accuracy gap between the predicted box

and polygon. This gap is ∼ 8% AP for our method but

∼ 10% AP for BoxInst and DiscoBox. Additionally, with-

out mask or polygon annotations, BoxSnake even achieves

better performance than a few fully supervised polygonal

instance segmentation methods. For example, when using

ResNet-50, BoxSnake surpasses PolarMask [72] and Deep

Snake [54] by 2.0% and 0.6% mask AP, respectively. Some

qualitative results are shown in Figure 5 (e), where the poly-

gon is aligned with the object boundaries well. This result

demonstrates the great potential of the polygonal instance

segmentation with box annotations.

Results on Cityscapes. To demonstrate our BoxSnake

can generalize beyond the COCO dataset, we conduct ex-

periments on Cityscapes benchmark [14]. As presented

in Table 2, our BoxSnake outperforms BoxInst [67] and

AsyInst [77] by a significant margin. Specifically, BoxS-

nake achieves 26.3% mask AP, which surpasses the BoxInst

and AsyInst by 3.9% and 1.6% mask AP, respectively. This

superiority could be derived from a fact, i.e., Cityscapes

dataset has more vehicle instances without holes. As shown

in Figure 6, BoxInst has an ambiguous boundary at the

shadow. By contrast, our BoxSnake presents a fine and

clear boundary between the vehicle and the road since

the polygon-based framework could learn some shape pri-

ors [41]. This excellent performance reveals the tremendous

potential of the box-based polygonal instance segmentation.

4.3. Ablation Studies

We conduct ablation experiments on COCO val2017 set

to verify the effectiveness of BoxSnake. All models use

the ResNet-50 backbone and 1× schedule in default, except

exploring the upper bound with the large backbone.

Different unary loss. As mentation before, the unary loss

plays a crucial role in ensuring that all vertices of the pre-

dicted polygon lie within the ground-truth box, thereby

avoiding potential trivial solutions from the distance-aware

pairwise loss. We conduct experiments to investigate the

efficacy of different unary losses, as presented in Table 3.

‘Dice on P3’ represents the approach as BoxInst [67] that

minimizes the discrepancy between the projected level-set

map U ′
C(x, y) and projected box mask using Dice loss [49],

where the size of the level-set map is same as P3. This

method obtains 19.3% mask AP since the max projection

on the level-set map selects the points that fall in the sat-

urated zone of the Sigmoid operation (the gradient could

vanish). By contrast, GIoU [55] and CIoU [83] loss works

for vertices directly by maximizing the IoU between the cir-
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(a) ground truth (b) w/ (c) w/ and (d) w/ and (e) w/ , and 

Figure 5. Qualitative results of different loss terms on COCO val2017 set. Lu, Llp and Lgp refer to the unary loss (Eq. 2), the local

pairwise loss (Eq. 6) and the global pairwise loss (Eq.7), respectively. The pairwise losses can enable predictions to align with boundaries.

cumscribed boxes of polygons and their ground-truth boxes.

As a result, they yield ∼ 4% AP gains over ‘Dice on P3’.

Varying the window size. Local pairwise term encourages

two nearby pixels with a similar color to lie in the same

level set. The window size determines the number of neigh-

boring pixels to compute the local pairwise loss with each

pixel. Inspired by [2], the receptive field of the kernel can

be expanded by the dilation trick. As reported in Table 6,

varying the window size brings minor fluctuations in per-

formance (∼ 0.4% mask AP).

Effectiveness of clipping strategy. The resolution of

U ′
C(x, y) influences distance-aware pairwise loss since this

loss builds the relationship between each pixel and its

neighboring pixels. As shown in Table 4, increasing the

resolution from P3’s size to P2’s size, the performance is

boosted from 29.6% to 29.8% mask AP. Nevertheless, the

distance-aware pairwise loss is mainly contingent on the

background pixels surrounding the ground-truth box be-

cause background pixels can propagate zero-level set sig-

nals into the box. In light of this, a clipping strategy is em-

ployed, which brings considerable improvement by 1.5%
mask AP. Notably, this strategy is greatly beneficial for

small instances, as presented in the fifth column.

Different initial methods. The polygon head evolves a set

of initial vertices by predicting 2D offsets for each vertex

(§ 3.4). An appropriate initial status could impact the evo-

lutionary process, as demonstrated by [45, 41]. As detailed

in Table 5, we initialize the polygon with the square or ellip-

tical format, where the latter outperforms the former 0.4%
mask AP. Additionally, as reported in Table 7, taking the

inscribed ellipse as the prediction can obtain 15.5 mask AP.

The effect of each loss term. We ablate the effect of each

loss in Table 7. By using the point-based unary loss alone,

BoxSnake is capable of obtaining a basic result (23.9%
mask AP), demonstrating a much finer location than boxes

(10.6% mask AP) and ellipses (15.5% mask AP). As shown

in Figure 5 (b), the predicted polygon fits the object bound-

aries coarsely. Integration of the pairwise loss can further

enhance the quality of predicted polygons, indicating that

the pairwise loss indeed attracts the predicted polygon to the

object boundaries. Specifically, the local and global pair-

wise terms bring 9.6% and 8.6% mask AP75 gains. Their

related qualitative results are shown in Figure 5 (c) and (d),

respectively, where the predicted polygons are attracted to

the object boundaries. The integration of point-based unary

loss and distance-aware pairwise loss elevates the perfor-

mance of BoxSnake to 31.1% mask AP.

Large Backbone. To explore the upper bound of BoxS-

nake, we adopt larger backbones and evaluate their results

on COCO test-dev set. BoxSnake attains 32.2% mask AP

with ResNet-101 and 2× training schedule. When equipped

with Swin-B [46], the performance can be promoted to
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(a) BoxInst (b) BoxSnake (ours)

Figure 6. Qualitative comparisons on Cityscapes validation set.

The major difference is marked by the green rectangle.

unary loss AP AP50 AP75 APS APM APL

Dice on P3 19.3 43.6 14.5 7.3 19.9 30.6

GIoU [55] 23.7 48.6 20.7 11.9 24.4 33.7

CIoU [83] 23.9 48.8 21.3 12.4 24.6 34.4

Table 3. Ablation study for different unary losses on COCO

val2017 set. Only the unary loss is employed for training. ’Dice

on P3’ refers to the method proposed by BoxInst [67], which uses

the Dice loss [49] to minimize the discrepancy between the pro-

jected level-set map and annotation box.

method AP AP50 AP75 APS APM APL

full-supervised methods
P3 33.2 53.6 34.8 12.1 36.2 52.8

P2 34.8 54.9 36.7 14.3 37.4 53.0

Clipping Strategy 36.4 57.2 39.0 19.6 38.6 47.9

box-supervised methods
P3 29.6 52.3 29.4 13.2 31.5 44.6

P2 29.8 52.7 29.2 13.6 31.8 44.7

Clipping Strategy 31.1 53.4 31.3 14.6 33.5 46.7

Table 4. Ablation study for clipping strategy (§ 3.3) on COCO

val2017 set. ’P3’ and ’P2’ denote that the predicted polygon is

scaled to the size of P3 and P2, respectively.

initial method AP AP50 AP75 APS APM APL

square 30.7 53.5 30.6 14.1 32.9 46.2

ellipse 31.1 53.4 31.3 14.6 33.5 46.7

Table 5. Ablation study for initial polygon on COCO val2017 set.

38.5% mask AP. Moreover, with Swin-L [46], the upper

bound can be pushed further to 39.5% mask AP. This re-

sult demonstrates a bright prospect of the polygon-based

instance segmentation using just box supervision.

size dilation AP AP50 AP75 APS APM APL

3× 3 1 30.8 53.3 30.8 13.4 33.0 46.5

3× 3 2 31.1 53.4 31.3 14.6 33.5 46.7

5× 5 1 30.9 53.2 30.9 14.4 33.0 46.3

Table 6. Ablation study for the window size in Eq. 6 on COCO

val2017 set. The different window size in the local-pairwise loss

brings marginal fluctuations.

Lu Llp Lgp AP AP50 AP75 APS APM APL

box mask 10.6 32.2 4.6 5.7 11.3 15.6

ellipse mask 15.5 39.4 10.1 9.5 16.3 21.5

� 23.9 48.8 21.3 12.4 24.6 34.4

� � 30.8 52.8 30.7 13.7 33.1 46.3

� � 29.8 53.2 29.9 13.9 31.5 44.8

� � � 31.1 53.4 31.3 14.6 33.5 46.7

Table 7. Ablation study for different loss terms on COCO val2017
set. ’box mask’ and ’ellipse mask’ denote the results from square

and ellipse initialization, respectively. The unary loss improves

the recognition of objects, and the pairwise losses greatly improve

the boundary accuracy.

method backbone architecture out AP AP50 AP75

BoxInst [67] R50 CondInst [66] M 32.1 55.1 32.4

DiscoBox [36] R50 SOLOv2 [71] M 32.0 53.3 32.6

BoxInst [67] R101 CondInst [66] M 32.5 55.3 33.0

BoxLevelSet [39] R101 SOLOv2 [71] M 33.4 56.8 34.1

BoxCaseg [70] R101 M-RCNN [26] M 30.9 54.3 30.8

BoxSnake R50 M-RCNN [26] C 31.6 54.8 31.5

BoxSnake R101 M-RCNN [26] C 32.2 55.8 32.1

BoxSnake Swin-B M-RCNN [26] C 38.5 65.3 38.9

BoxSnake Swin-L M-RCNN [26] C 39.5 66.8 39.9
Table 8. Comparisons with state-of-the-art methods on COCO

test-dev set. M and C denote the formats being mask and poly-

gon, respectively. BoxSnake predicts polygon with box supervi-

sion, achieving comparable performance to mask-based methods.

5. Conclusion
This paper introduces a new end-to-end training tech-

nique for weakly-supervised instance segmentation based

on polygons, utilizing only box annotations. Our method

integrates a point-based unary loss and a distance-aware

pairwise loss. The former maximizes the Intersection-over-

Union between the circumscribed box of the predicted poly-

gon and its ground-truth box, thereby making the predicted

polygons around the target objects. The latter one, leverag-

ing pixel affinities, encourages that the predicted polygons

are better to fit the object boundary and are robust to the

local noise. The proposed BoxSnake achieves competitive

performance on both COCO and Cityscapes datasets, mak-

ing an effective polygon-based instance segmentation with

solely box supervision for the first time. In the future, it

can be used as a tool in the AI system [51, 76] or a type of

condition in the diffusion model.
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