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Abstract

Live commerce is the act of selling products online
through live streaming. The customer’s diverse demands for
online products introduce more challenges to Livestream-
ing Product Recognition. Previous works have primarily
focused on fashion clothing data or utilize single-modal in-
put, which does not reflect the real-world scenario where
multimodal data from various categories are present. In
this paper, we present LPR4M, a large-scale multimodal
dataset that covers 34 categories, comprises 3 modalities
(image, video, and text), and is 50× larger than the largest
publicly available dataset. LPR4M contains diverse videos
and noise modality pairs while exhibiting a long-tailed dis-
tribution, resembling real-world problems. Moreover, a
cRoss-vIew semantiC alignmEnt (RICE) model is proposed
to learn discriminative instance features from the image
and video views of the products. This is achieved through
instance-level contrastive learning and cross-view patch-
level feature propagation. A novel Patch Feature Recon-
struction loss is proposed to penalize the semantic mis-
alignment between cross-view patches. Extensive experi-
ments demonstrate the effectiveness of RICE and provide
insights into the importance of dataset diversity and ex-
pressivity. The dataset and code are available at https:
//github.com/adxcreative/RICE.

1. Introduction
Livestreaming Product Recognition (LPR) [3, 9, 11] is

one of the significant machine learning application in the e-
commerce industry. Its goal is to recognize products a sales-
person presents in a live commerce clip through content-
based video-to-image retrieval. The real-time and accurate
recognition of livestreaming products can facilitate the on-
line product recommendation, and thereby improve the pur-
chasing efficiency of consumers.

The task of LPR involves two fundamental processes:
multimodal-based intended product identification and shop
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time and limited benefit price of 179, free shipping, 
shipping insurance, and free trial for seven days.
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Figure 1. The pipeline of LPR. A livestreaming consists of many
clips introducing different products. We show two clip examples
with ASR text in (a) and (d). In (b), the intended product refers to
the product the salesperson is introducing, and the other products
on the screen are indicated as the distracted background products.
(c) presents a shop with hundreds of images, some with subtle vi-
sual differences called small inter-class variations. The LPR aims
to identify the clip’s intended product using the ASR text prompt,
then retrieve the ground-truth product from the shop images.

product retrieval. This task poses significant challenges in
real-world scenarios, including (1) the need to distinguish
intended products from the cluttered background products
in a livestreaming frame, exemplified in Fig. 1 (b), (2) the
requirement for models to capture sufficient fine-grained
features to match the ground-truth (GT) image accurately
in the shop, where there are many images with subtle visual
nuances, (3) the heterogeneous video-to-image and cross-
domain livestream-to-shop problem, and (4) the appear-
ance changes of products in the livestreaming domain due
to articulated deformations, occlusions, diverse background
clutters, and significant illumination variations, making it
a highly intricate task to match the clip to the GT image in
the shop. Various datasets have emerged in the computer vi-
sion community to study this task, including AsymNet [3],
WAB1, and MovingFashion [9]. However, AsymNet and
MovingFashion lack crucial text modal, which provides es-
sential auxiliary information for identifying intended prod-
ucts. Furthermore, the data scale of WAB is relatively small,
with only 70K pairs, and only provides fashion clothing
data, diverging from the real-world scenario.

In order to narrow the gap between existing datasets

1https://tianchi.aliyun.com/competition/entrance/231772/information
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V: Video     C: Clip      I: Image      T: Text

Figure 2. BAR CHART: Number of clips per category for LPR4M, with a long-tailed distribution resembling most real-world problems.
TABLE: Comparison of LPR4M against other LPR datasets in terms of modal, content, and scale. LPR4M offers significantly broader
coverage of live commerce product categories and several orders of magnitude larger data scales.

and the real-world scenario and advance research in this
challenging task, we present LPR4M, a large-scale multi-
modal live commerce dataset that includes extensive cate-
gories, diverse data modalities of clip, image, and text, as
well as heterogeneous and cross-domain correspondences
of ⟨clip, image⟩ pairs. This dataset offers several signif-
icant advantages. (1) Large-Scale: LPR4M contains over
4M pairs, significantly exceeding its precedents. (2) Ex-
pressivity: LPR4M draws data pairs from 34 commonly
used live commerce categories rather than relying solely
on clothing data. Additionally, LPR4M offers auxiliary
clip ASR text and image title modalities, which are criti-
cal for intended product identification and product feature
representation. (3) Diversity: LPR4M promotes clip diver-
sity while preserving the real-world data distribution, with
a focus on three components: product scale, visible dura-
tion, and the number of products in the clip, as depicted in
Fig. 3. To the best of our knowledge, LPR4M is currently
the largest dataset created explicitly for real-world multi-
modal LPR scenarios.

Our work based on LPR4M tackles a realistic problem:
how to achieve fine-grained LPR using large-scale multi-
modal pairwise data? Given image and clip views, we first
utilize Instance-level Contrastive Learning (ICL) to align
global features. However, since instance features of these
two views are extracted independently from the visual en-
coder, it can be challenging to differentiate between prod-
ucts with subtle visual differences without cross-view inter-
actions. Consequently, we propose a patch-level semantic
alignment approach to enable cross-view patch information
propagation. We suggest measuring similarity via a cross-
attention based Pairwise Matching Decoder (PMD), which

treats image patches as Query and video patches as both Key
and Value. In addition, we propose a novel Patch Feature
Reconstruction (PFR) loss to provide patch-level supervi-
sion for pairwise matching, expecting to reconstruct each
feature of an image patch from its paired video patches.

The main contributions of this paper can be summa-
rized as follows. (1) A large-scale live commerce dataset
is collected, offering a significantly broader coverage of
categories and diverse modalities such as video, image,
and text. This dataset is the most extensive one known
to date, tailored explicitly for real-world multimodal LPR
scenarios. (2) The RICE model is introduced to integrate
instance-level contrastive representation learning and patch-
level pairwise matching into a framework. (3) A novel
Patch Feature Reconstruction loss is proposed to penalize
the semantic misalignment between patches of video and
image. (4) The benchmark dataset and evaluation proto-
cols are carefully defined for LPR. Extensive experiments
demonstrate the effectiveness of LPR4M and RICE.

2. Related Works
LPR datasets. As shown in the table of Fig. 2, we

compare LPR4M with others in terms of modality, content,
and scale. In particular, AsymNet [3], WAB, and Moving-
Fashion [9] only provide fashion clothing data, and the text
modality is absent in AsymNet and MovingFashion. There-
fore, We collect LPR4M, which covers 34 widely used cat-
egories and provides visual and text modalities. LPR4M is
50× larger than WAB.

Video Object Detection (VOD). The main focus of re-
cent VOD methods [38, 37, 4, 2, 26, 35] is exploiting tem-
poral information to tackle the video variations, e.g., oc-
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clusion, motion blur and out of focus. The temporal rela-
tionship mining insights in VOD inspire this paper’s design
of the intended product detection module. However, unlike
VOD, where most videos only contain a single object, the
videos in LPR contain many cluttered background products.
This situation suggests that in the absence of prompt text
information, it is more challenging to identify the intended
product by only relying on the visual inputs. Therefore, we
explore the fusion of text and visual modalities and verify
its effectiveness in this paper.

Fine-Grained Vision Recognition (FGVR). Similar to
FGVR [6, 34, 5, 16, 7, 36, 30, 29], the LPR aims to learn
discriminative instance feature to distinguish the subclasses
with large intra-class and small inter-class variations. How-
ever, unlike traditional FGVR, each live commerce category
contains an enormous amount of subclasses in LPR. More-
over, the number of subclasses will increase or decrease dy-
namically as a large number of products are newly added or
taken off the shop every day. It makes it more challenging
to handle the out-of-distribution subclasses.

Video-to-Shop Retrieval. Although fashion retrieval
has made great progress [13, 19, 8, 15], there are few stud-
ies focus on retrieving products that are presented in e-
commerce videos, referred to as video-to-shop. AsymNet
is a one-stage method without detection. It employs LSTM
to exploit temporal continuity in the video, then perform
pair-wise matching by feeding the image and video fea-
ture into a similarity network. DPRNet [33] and SEAM
Match-RCNN [9] adopt a two-stage pipelines. DPRNet
first detects the products in the video and then performs
image-to-image retrieval. SEAM Match-RCNN performs
self-attention among the detected product boxes in a video
to produce a video feature and uses the inner product be-
tween the video and image feature as a similarity. In this
paper, we propose RICE integrates the one-stage and two-
stage methods into a framework and study their advantages.

3. Dataset and Benchmark
In this section, we present the construction, characteris-

tics, and benchmark of LPR4M.
Overview. Compared with other existing LPR datasets,

LPR4M has several appealing properties, which are sum-
marized in the following. (1) Large-Scale. As illustrated
in the table of Fig. 2, LPR4M is the largest LPR dataset to
date. It contains 4M exactly matched ⟨clip, image⟩ pairs
of 4M live clips, and 332k shop images. Each image has
14.5 clips with different product variations, e.g., viewpoint,
scale, and occlusion. The example of image-to-clips and
the number of clips per image are shown in Fig. 4 (d) and
(b), respectively. Specifically, most of the images (80%)
have ten matched clips and the number of clips per image
range from 10 to 150. (2) Expressivity. The expressivity of
LPR4M is mainly reflected in two aspects. Firstly, unlike

other LPR datasets that only contain fashion clothing data,
our data is more affluent, coming from 34 categories cover-
ing most of the daily necessities. This makes it closer to the
real scenario. Secondly, the data of LPR4M is multimodal.
We provide live clip ASR texts and shop image titles as aux-
iliary information to facilitate the intended product identifi-
cation and form a full-scale characteristic of each product.
(3) Diversity. Firstly, we collect clips according to the clip
duration distribution of real livestreaming scenarios and ob-
tain the clips with various durations, as shown in Fig. 4 (a).
Secondly, the clips are further sampled by controlling the
variation in terms of three properties, i.e., product scale, in-
tended product visible duration, and the number of products
in the clip. It makes LPR4M a challenging benchmark. As
illustrated in Fig. 3, we pick two categories to represent a
variation. For each category row, the clip shows three dif-
ferent levels of difficulty progressively.

3.1. Data Collection and Cleaning

The basic unit of the dataset is a ⟨clip, image⟩ pair.
All the clips are cut from hours of sequential livestream-
ing data crawled from Kuaishou2. A livesteaming has a
unique online shop, which lists all the products to be in-
troduced in this livestreaming. Firstly, we removed near-
and exact-duplicate images in the shops by comparing the
global average pooled layer4 features after feeding them
into ResNet [12]. Secondly, the human annotators cleaned
the clips that contain the target product with short visible
duration, small scales, and severe background clutters. Fi-
nally, given a clip, the matched product image is picked
from the shop via the human annotator. In total, 4,033,696
clips and 398,796 images are kept to construct the training
and test set of LPR4M.

Variations. The proportion of the number of clips in
each variation is depicted in Fig. 4 (c). (1) Scale. Accord-
ing to the proportion (p) of the product box area to the en-
tire frame area, the clips are classified into three subsets.
The area is measured as the number of pixels in the prod-
uct box. In LPR4M, there are more small products than
large products. Specifically, approximately 54.5% of prod-
ucts are small (p≤0.2), 30.5% are medium (0.2<p≤0.4),
and 15% are large (p>0.4). As shown in the first row of
Fig. 3, the coat in the first clip is displayed in a zoom-in
view, where the coat is large and overflows the frame. How-
ever, the physical size of the shoes in the third clip is rel-
atively small. Because the considerable distance between
the shoes and the camera, the scale is visually small. (2)
Visible duration. Due to occlusions and changes in camera
perspective, the target product is not always visible in the
clip. Here, each clip is categorized by the proportion of vis-
ible duration to the entire clip duration, including 48.5% of
long (0.7<p), 29.6% of medium (0.4<p≤0.7) and 21.9% of

2https://live.kuaishou.com
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Figure 3. The < clip, image > pairs of LPR4M. As shown on the left of the orange box, we extract five evenly spaced frames from the
clip, with the shop image on the right. We choose two categories to illustrate one of the clip product variations of scale, visible duration,
and number of products. Each row shows 3 data pairs for different degrees of difficulty of the corresponding variation, including (a) large,
medium and small product scale, (b) long, medium and short visible duration, (c) abundant, medium and few products in the clip.

(a) Clips per duration (b) Clips per image

(c) Clip variations

(d) Example of shop image and the paired live-streaming clips

Figure 4. LPR4M statistics of clips. (a) The distribution of clip duration. (b) The number of clips per image. Approximately 80% of the
images have ten paired clips. (c) The statistics of three clip variations. (d) The shop image, the paired clips, and the products in the clips
suffer from different variations, e.g., scale, viewpoint, and occlusion.

short (p≤0.4). For example, in the third clip of the fourth
row in Fig. 3, the watch is occluded at the beginning and
end of the clip, which significantly increases the difficulty
of LPR. Note that the visible duration of the intended prod-
uct is evaluated by the annotators. (3) Background distrac-
tor. In the livestreaming of beauty makeup, handbags, and
jewelry, etc., there are abundant products displayed on the
screen. For example, the first clip in the last row of Fig. 3
contains more than two dozen perfumes. However, there
is only one intended product in a clip, and it is challeng-
ing to distinguish the intended product from the distracted
background products. Therefore, we asked the annotators to
assess the number (n) of products in the clip (or background

distractor) and accordingly classify the clips into three sub-
sets, including 13.6% of abundant (n>7), 45.8% of medium
(3<n≤7) and 40.6% of few (n≤3).

Clip Description and Image Title. In the case of a clip
containing multiple products, it is ambiguous for the model
to predict whether the clip and an image match based on
visual information only. Therefore, we additionally provide
clip descriptions and image titles to enrich the dataset. On
the one hand, benefiting from promising results achieved
by the Transformer and Convolution Neural Network based
models in ASR [10, 32, 31], we adopt Conformer [10],
a SOTA method on the widely used LibriSpeech bench-
mark [23], to extract text description from the clip voices.
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Figure 5. Overview of RICE framework. Given two views of the same product, i.e., image and video, the patch features are extracted
with the transformer encoder. In (a), RICE first performs contrastive loss on the global image and video features. Then, in (b), RICE
employs transformer-based fusion model to perform patch-level feature interaction between the two views. The optimization of PMD aims
to decrease the similarity of the two views from different products and increase that from the same product. Furthermore, in (c), RICE
exploits reconstruction loss to penalize the misalignment between the semantic patches in the two views, which expects each patch feature
of the image to be reconstructed from the patch features of the paired video. Best viewed in color.

On the other hand, the titles of product images are provided
by the merchant and are available on the video website.

3.2. Livestreaming Product Recognition

As shown in Fig. 1, this task is to retrieve the GT images
from the shop (gallery) for each livestreaming clip (query)
and has been considered by several previous works [13,
11, 19, 8, 3, 9]. It emphasizes the retrieval performance
and considers the impact of intended product identification.
Specifically, a query clip is counted as missed if the in-
tended product fails to be identified. Rank-k retrieval ac-
curacy is used to measure retrieval performance, such that
a successful retrieval is counted if the GT image has been
retrieved in the rank-k results.

Splitting training and test set. In order to evaluate dif-
ferent methods, we split the training and test set and ensure
the products in the training and test set are non-overlapping.
The training and test sets contain 4,013,617/332,438 and
20,079/66,358 clips/images, respectively.

Intended product box annotation. To enable effective
supervision of the detector training and evaluation of the de-
tection accuracy, we annotate the intended product box for
both the training and test set. For the training set, we sample
2% of the clips for intended box annotation and extract 10

frames at even intervals. For each test clip, we extract one
frame every 3 seconds. The detection training/test set con-
tains 1,120,410 /501,656 frames with 1,115,629/669,374 in-
tended product boxes, respectively.

4. Method
This section presents the technical details of RICE. As

shown in Fig. 5, the RICE first performs instance-level con-
trastive learning to learn discriminative feature for the prod-
uct (Sec. 4.1). Then, we introduce PMD that pursues fine-
grained similarity measurement by conducting patch-level
feature propagation (Sec. 4.2). The PMD is further guided
by the novel PFR loss to promote patch-level semantic
alignment (Sec. 4.2). Finally, we study the impact of prod-
uct location by replacing the input patches with the product
boxes produced by intended product detector (Sec. 4.3).

4.1. Instance-level Contrastive Learning (ICL)

Let V be a set of livestreaming clips (or videos). Let
I be a set of shop images. The objective of RICE is to
learn a function to measure the similarity between the clip
Vi ∈ V and the image Ii ∈ I. Formally, taking Vi and Ii
as input, the image encoder first splits the image into non-
overlapping patches, which are projected into 1D tokens via
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a linear projection. Then the transformer layers are used
to extract the patch features, denoted as {icls, i1, ..., iN}.
Likewise, the video encoder processes each video frame Vj

i

independently and outputs a sequence of video patch fea-
tures {vcls, v1, ..., vM}, where j is the index of frame num-
ber |Vi| and M = N × |Vi|. Given an image with a res-
olution of 224 × 224 and patch size of 32 × 32, we have
N = 49. Note that the image and video encoder share pa-
rameters. Following ViT and CLIP, we extract the global
representation from the [CLS] token. In order to pull the clip
and image of the same product while pushing away that of
different products in the feature space, we perform InfoNCE
loss [22] on the global representation, defined as:

Lnce = −Ep(I,V)

[
log

exp(gθ(Ii,Vi))∑
Ṽk∈Ṽ exp(gθ(Ii, Ṽk))

]
, (1)

where gθ(Ii,Vi) = gI(icls)
⊤gV(vcls)/τ and Ṽ consists of

a positive sample Vi and |Ṽ| − 1 negative samples. gI and
gV are transformations that map the [CLS] embedding of
image and clip, i.e., icls and vcls, to the normalized lower-
dimensional features. τ is a temperature parameter, and we
use τ = 0.01. The final contrastive loss between the image
and clip is a symmetric version of Lnce, given by:

Lc = −1

2
Ep(I,V)[log

exp(gθ(Ii,Vi))∑
Ṽk∈Ṽ exp(gθ(Ii, Ṽk))

+

log
exp(gθ(Ii,Vi))∑

Ĩk∈Ĩ exp(gθ(Ĩk,Vi))
], (2)

where |Ĩ| = |Ṽ| is the batch size.

4.2. Patch-level Semantic Alignment

Pairwise Matching Decoder (PMD). It is straightfor-
ward to exploit gθ(Ii,Vi) in Eq. (1) as a measure of the
similarity. However, the features of the clip and image are
extracted independently from the visual encoder, without
information propagation between Ii and Vi. To this end, we
perform patch-wise feature attention via a transformer de-
coder layer, named pairwise matching decoder, which con-
sists of a self-attention and a cross-attention layer in this
paper. As illustrated in Fig. 5 (b), the self-attention layer
takes the image patch features as the Query, Key and Value,
and the cross-attention layer takes the image patch features
as Query while takes the video patch features as Key and
Value. The matching loss of the similarity calculator is de-
fined as follows:

Lm = −1

2
Ep(I,V)[log

exp(fθ(Ii,Vi))∑
V̂k∈V̂ exp(fθ(Ii, V̂k))

+

log
exp(fθ(Ii,Vi))∑

Îk∈Î exp(fθ(Îk,Vi))
], (3)

…

Video
Fram

es

𝑉!

SD

Temporal Transformer

Bounding 
box results

SD SD SD

……

…
𝑉" 𝑉# 𝑉$

Figure 6. Illustration of the Single-Frame Detector (SD) and Multi-
Frame Detector (MD). The MD exploits a temporal transformer to
fuse the results from the SD.

where fθ(Ii,Vi) = v⊤xcls(Ii,Vi), xcls(Ii,Vi) is the [CLS]
embedding of the decoder layer and v is a parametric vector.
Here, we only sample Nneg negative instances for each GT
(Ii,Vi) pair, i.e., V̂ consists of a positive sample Vi and
Nneg negative samples.

Patch Feature Reconstruction (PFR). Furthermore, we
pursue cross-view semantic alignment by searching similar
patches in the clip to reconstruct the coupled image in the
feature space. Here, we introduce how to perform patch fea-
ture reconstruction given a positive data point of two views
of clip Vi and image Ii. As shown in Fig. 5 (b), let

X = {v1, ..., vM} ∈ Rd×M

be the patch features of the clip, where vm ∈ Rd×1. Like-
wise, the patch features of the image are denoted as:

Y = {i1, ..., iN} ∈ Rd×N .

Then, the in can be represented by a linear combination of
X . The insight behind this is that the image can be recon-
structed from the clip if the clip contains the product in the
image. Therefore, we solve for the coefficients wn ∈ RM×1

of in with respect to X . Finally, the reconstruction loss is
defined as:

Lr = ||Y −XW ||2F . (4)

Since the attention weights a in the cross-attention layer
indicate the correspondences between patches of the two
views, it is intuitive to learn the reconstruction coefficients
W from a. Specifically, the a ∈ R8×N×M is fed into two
consecutive sets of convolution and ReLU layers to output
the coefficients W ∈ RN×M .

The final objective function for the RICE model is the
weighted summation of Lc, Lm and Lr, given by:

L = Lc + Lm + αLr, (5)

where α is the trade-off weight and we use α = 0.1 in the
following experiments.
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Methods overall scale visible duration number of product
small medium large short medium long abundant medium few

ICLpatch 27.1 23.9 34.4 30.0 23.6 28.8 36.3 20.2 25.0 27.5
ICLbox 30.0 30.1 35.8 31.1 26.6 30.1 37.1 17.2 29.2 30.6
RICEpatch 31.2 28.9 37.0 32.7 28.1 32.9 39.6 21.0 34.6 31.5
RICEbox 33.0 32.7 39.0 33.8 29.6 34.8 42.0 17.6 31.9 33.4

Table 1. The R1 performances of the ICL and RICE model. Results of evaluation on different input types, i.e., patch and detected box,
are shown in each row. The columns show the results on different test subsets split by video variations, i.e., product scale, visible duration,
number of products. The best performance for each subset is in bold.

4.3. Intended Product Detection (IPD)

In order to highlight the intended products in video and
suppress the background products, we propose replacing
patch inputs with the detected intended product boxes for
the videos. As shown in Fig. 6, we adopt DAB-DETR [18]
and TransVOD Lite [35] as the SD and MD, respectively.
The SD detects products frame-by-frame. Given the T
frames and one box label per frame, the SD is trained to
predict an intended product box for each frame. However,
detecting products with significant appearance changes us-
ing only a single frame can be challenging, as exemplified
by the shoe with small scale in VT in Fig. 6. Therefore, MD
leverages a temporal transformer to capture product inter-
actions in the temporal context and predict a more accurate
box for each frame. For more details about the IPD, please
refer to the supplementary material.

5. Experiment

5.1. Dataset and Evaluation Metrics

Experiments are performed on the LPR4M testset, which
contains 20,079 livestreaming clips as query set and 66,358
shop images as gallery set, as described in Sec. 3.2. We
adopt rank-k accuracy as the retrieval performance metrics.

5.2. Implementation Details

Model. The image and video encoder share parameters and
are initialized with ViT-B/32 from CLIP [25], where the
number of layers is 12 and the patch size is 32. Likewise,
we initialize PMD with the similar parameters from CLIP.
Preprocessing. We extract 10 evenly spaced frames from
each clip as the video input. The images and video frames
are resized to 224 × 224. For data augmentation, we ran-
domly mask video frames with a percentage ranging from 0
to 0.9 and a probability of 0.5. Optimization. We use Py-
torch [24] to implement the RICE model. The Adam [14]
optimizer is used with a batch size of 256. For the learn-
ing rate, we decay it using a cosine schedule [21] following
CLIP. The initial learning rate is 1e-7 for the image encoder
and video encoder and 1e-4 for the newly introduced mod-
ules. All the experiments are carried out on 8 NVIDIA Tesla
V100 GPUs, which takes about 90 hours for 3 epochs.

Dataset Methods R1 R5 R10

LPR4M

FashionNet [19] 13.4 33.8 50.4
AsymNet [3] 22.0 46.7 63.8

SEAM [9] 23.3 49.5 61.4
NVAN [17] 21.4 45.2 62.7

TimeSFormer [1] 28.6 56.8 69.0
SwinB [20] 29.1 60.1 73.9

RICE (Ours) 33.0 65.5 77.3

MF

NVAN [17] 38.0 62.0 70.0
MGH [27] 40.0 59.0 66.0

AsymNet [3] 42.0 73.0 86.0
SEAM [9] 49.0 80.0 89.0

RICE (Ours) 76.1 89.7 92.6

Table 2. The LPR4M and MovingFashion (MF) evaluation.

5.3. Impact of Video Variations

In this section, we carry out experiments to study the im-
pact of video variations, i.e., product scale, visible duration,
number of products, as shown in Fig. 3. We evaluate two in-
put types, i.e., patch and detected box, for each model. The
results are reported in Table. 1. As we can see, the per-
formance declines when small scale, short visible duration,
and abundant products are presented. (1) Compared to the
patch input, the box input significantly improves the accu-
racy. For example, ICLbox outperforms ICLpatch by 6.2%
on small split. Besides, ICLbox significantly reduces the
performance gap between small and medium split. It indi-
cates the IPD improves the robustness to scale variation. (2)
As the performances on abundant split shows, the model
with box input achieves lower accuracy than patch input,
because it is challenging for the detector to distinguish the
indent product from the abundant background products.

5.4. Comparison with state-of-the-art methods

In this section, we compare our RICE with state-of-the-
art (SOTA) methods on LPR4M and MovingFashion (MF),
except AsymNet [3] and WAB because AsymNet is not
public available and WAB is a competition dataset with only
Chinese introduction. The results are shown in Table 2. 1)
On LPR4M, the FashionNet, AsymNet and SEAM are LPR
methods and the others are video understanding methods.
As we can see, our RICE surpasses not only the LPR meth-
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Figure 7. Per-category rank-1 performance on the 34 categories.

# ICL PMD PFR IPD Txt R1 R5 R10
a ✓ 27.1 56.4 68.3
b ✓ ✓ 28.5 58.9 71.5
c ✓ ✓ 29.4 62.0 73.7
d ✓ ✓ ✓ 30.3 62.7 74.0
e ✓ ✓ ✓ ✓ 31.3 63.2 74.3
f ✓ ✓ ✓ ✓ ✓ 33.0 65.5 77.3

Table 3. Ablation study on the key components, i.e., ICL: instance-
level contrastive learning, PMD: pairwise matching decoder, PFR:
patch feature reconstruction, IPD: intended product detection, Txt:
text modality. The rank-k accuracy is reported.

ods but also the strong video understanding methods. 2) On
MF, the NVAN and MGH are video understanding methods.
Our approach achieves the best accuracy.

5.5. Ablation Study

In this section, we investigate the impact of each compo-
nent of our approach by conducting ablation experiments.
The results are reported in Table. 3. (c) Compared to the
baseline ICL, the PMD obtains the R1 performance gains
of 2.3% (29.4 to 27.1), which demonstrates the superiority
of patch-level (local) over instance-level (global) similarity
measurement. (d) The patch-level supervision provided by
PFR facilitates semantic alignment and results in a consid-
erable improvement of 0.9% for R1. (e) Our IPD replacing
patch inputs with detected intended boxes significantly out-
performs ICL by 1.0% R1 as it enables the model to focus
on informative regions while suppressing distractions. In
(b) and (f), the addition of text modality increases the R1
from 27.1% to 28.5% and 31.3% to 33.0%, respectively. It
is because the text helps suppress the distracted background
products. Here, the ChineseCLIP [28] is used to extract the
embeddings of video ASR and image titles. The text simi-
larity is computed as the dot product of normalized features.
Then we combine the text and visual similarities to obtain
the final ⟨clip, image⟩ similarity via addition.

5.6. Per-category performance

As shown in Fig. 7, we compare the rank-1 accuracy of
FashionNet [19], SwinB [20] and our RICE on all 34 cate-

(a)

(b)

Figure 8. Attention map visualization of RICE on the LPR4M test-
set. The first column displays the shop images. We show the raw
frames and the corresponding attention maps for each video.

gories. Our RICE consistently outperforms FashionNet on
all categories, and outperforms SwinB on most of the cat-
egories. Due to RICE of averaging the features of frames
as video features, temporal information is not effectively
utilized. But SwinB introduces 3D shifted windows to pre-
serve temporal dynamics. As a result, SwinB performs well
on certain categories with occlusions or view changes, e.g.,
Suitcase&bag, as shown in the 5-th row of Fig. 3. The
SwinB provides a promising way to enhance our model.

5.7. Attention Region Visualization

To provide insight into PMD, we conduct further visual-
ization. In Fig. 8, we show the attention map of RICEpatch

between shop image and video patches, where an image is
regarded as the query, and attention weights on all spatial
patches are visualized. We use the attention weights in the
cross-attention layer of PMD for visualization. We make
the following observations. (1) For the complex scenarios
like (a) in Fig. 8, our approach can distinguish the target
Chinese liquor from the nearby background liquors. (2) In-
terestingly, as shown in (b) of Fig. 8, even the target product
is not always visible in the video, our approach still focuses
on the corresponding regions accurately while pays less at-
tention to the occluded regions.

6. Conclusions

In this paper, we present a large-scale dataset that of-
fers broader coverage of categories and more sufficient data
modalities named LPR4M. Moreover, the RICE model is
proposed to integrate instance-level contrastive learning and
patch-level cross-view semantic alignment mechanism into
a framework. The extensive experiments demonstrate the
effectiveness of the proposals clearly and show that addi-
tional performance gains can be achieved via integrating in-
tended product detection and text modality. In this work, we
show that it is a promising way to enhance the LPR model
from the aspect of large-scale multimodal training. We hope
the proposed LPR4M and the RICE baseline can spur fur-
ther investigation into the LPR task.
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