
Data Augmented Flatness-aware Gradient Projection for Continual Learning

Enneng Yang1 Li Shen2 * Zhenyi Wang3 * Shiwei Liu4 Guibing Guo1* Xingwei Wang1

1Northeastern University, China 2JD Explore Academy, China
3University of Maryland, USA 4The University of Texas at Austin, USA

ennengyang@stumail.neu.edu.cn, {mathshenli,wangzhenyineu}@gmail.com,
shiwei.liu@austin.utexas.edu, {guogb,wangxw}@swc.neu.edu.cn

Abstract

The goal of continual learning (CL) is to continuously
learn new tasks without forgetting previously learned old
tasks. To alleviate catastrophic forgetting, gradient projec-
tion based CL methods require that the gradient updates of
new tasks are orthogonal to the subspace spanned by old
tasks. This limits the learning process and leads to poor
performance on the new task due to the projection constraint
being too strong. In this paper, we first revisit the gradient
projection method from the perspective of flatness of loss
surface, and find that unflatness of the loss surface leads
to catastrophic forgetting of the old tasks when the projec-
tion constraint is reduced to improve the performance of
new tasks. Based on our findings, we propose a Data Aug-
mented Flatness-aware Gradient Projection (DFGP) method
to solve the problem, which consists of three modules: data
and weight perturbation, flatness-aware optimization, and
gradient projection. Specifically, we first perform a flatness-
aware perturbation on the task data and current weights to
find the case that makes the task loss worst. Next, flatness-
aware optimization optimizes both the loss and the flatness
of the loss surface on raw and worst-case perturbed data to
obtain a flatness-aware gradient. Finally, gradient projec-
tion updates the network with the flatness-aware gradient
along directions orthogonal to the subspace of the old tasks.
Extensive experiments on four datasets show that our method
improves the flatness of loss surface and the performance of
new tasks, and achieves state-of-the-art (SOTA) performance
in the average accuracy of all tasks.

1. Introduction
Humans can learn a series of continuously encountered

tasks without forgetting previously learned knowledge. In

recent years, many researches target for making the neu-

ral network achieve continual learning (CL) ability like hu-

*Corresponding author.

Figure 1: New tasks’ accuracy (Higher Better) of GPM,

SGD, and MTL on CIFAR-100 dataset, where a significant

performance gap exists between GPM and SGD/MTL.

mans [38, 47]. One of the main challenge of CL is to mitigate

the catastrophic forgetting [40, 17, 53] of the knowledge of

previous tasks when learning new tasks [51].

To alleviate catastrophic forgetting of old tasks, several

works [57, 15, 8, 27, 43] propose to constrain the gradient

update direction of the new tasks. The new tasks only update

the network along the orthogonal direction to the gradient

subspaces deemed for the old tasks. Compared to other

methods, the recently proposed Gradient Projection Memory

(GPM) [43] shows better performance in CL. However, we

observe poor performance for the new tasks in GPM. As

shown in Fig. 1, by comparing vanilla SGD (which learns

new tasks without any gradient constraints) or MTL (which

learns all tasks simultaneously and can be seen as an upper

bound for CL) with GPM, we find that the performance of

new tasks with GPM has a large gap compared with SGD and

MTL. When learning the 10-th task T10, MTL and SGD can

achieve 85.40% and 83.00% accuracy, respectively, while

GPM can only achieve 74.50%. This vast gap has prompted

us to explore the reasons behind it and devise effective ways

to address this issue.

In this paper, we first revisit the ‘stability-plasticity’

dilemma [33] in GPM from the perspective of the flatness

of loss surface (we provide the formal definition of flatness

in the appendix). We find that the projection threshold in

GPM is a key factor in improving the performance of new

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5630

Figure 2: An illustration of (a) a sharp loss surface and (b) a

flat loss surface. The blue curve represents the loss surface

of task T , and the length of the blue arrow (ΔW) represents

the amount of parameter updates for the new task T + 1.

tasks, as shown in Fig. 3. Specifically, reducing the projec-

tion threshold can improve the performance of new tasks.

However, it leads to catastrophic forgetting of old tasks and

a drop in average performance across all tasks. We suspect

that catastrophic forgetting is because the network’s loss

surface is not flat enough, which is defined as regions on

loss surfaces where the loss changes slowly with the model

parameters [20]. Fig. 2 gives an example, under the same

amount of update ΔW , when the minimum W 3 of a flat

loss surface and the minimum W 1 of a sharp loss surface is

moved to W 4 and W 2, respectively, the loss change F3,4 of

the former is much smaller than the loss change F1,2 of the

latter. In other words, a flat loss surface effectively reduces

the degree of catastrophic forgetting. We verify in Fig. 4

that catastrophic forgetting of old tasks at a low projection

threshold in GPM is indeed due to unflatness loss surfaces.

This inspires us to realize that when the loss surface is flat,

we can reduce the projection threshold in GPM to improve

the performance of new tasks, while simultaneously ensuring

that old tasks are not catastrophically forgotten.

To achieve this goal, we propose a novel Data Augmented

Flatness-aware Gradient Projection (DFGP) method whose

critical insight is to encourage a flat loss surface for the CL

model. DFGP consists of three modules: data and weight

perturbation, flatness-aware optimization, and gradient pro-

jection. Specifically, DFGP first performs a flatness-aware

mixup with raw training data interpolation to cover potential

unseen regions. Data augmentation could be considered a

worst-case perturbation w.r.t. training data, which makes

the model more robust against distribution shifts (which is

the greatest characteristic of CL tasks) and provides a wider

exploration (data) space for the subsequent flatness-aware op-

timization. At the same time, we perturb the current weight

in a fixed-radius neighborhood to explore where the loss

function is worst-case w.r.t. the weight. Then, under the

original training data and the worst-case perturbed data, the

loss and the flatness of loss surface are optimized to obtain a

flatness-aware gradient. Finally, DFGP uses the orthogonal

projection to update the network parameters. Since the loss

surface of old tasks in DFGP is flat, DFGP allows new tasks

to update the network under relatively smaller projection

threshold constraints while keeping the forgetting degree of

old tasks close to GPM, greatly improving the performance

of new tasks and the overall performance of all tasks.

Empirically, on the four widely used CL datasets, PM-

NIST, CIFAR-100, 5-Datasets and MiniImageNet, DFGP

improves the accuracy by 1.46%, 2.28%, 0.97%, and 8.93%,

respectively, compared with GPM. This is significant for

these benchmark datasets. It is worth mentioning that a

byproduct of our DFGP is that it is more robust to adversarial

examples than GPM, since the perturbation of training data

in DFGP increases the chance of covering noisy samples.

In addition, our proposed data-augmented flatness-aware

optimization can be effortlessly combined with other CL

methods (such as regularization-based and memory-based

methods) to further boost their performance.

The main contributions can be summarized as four-fold:

• We revisit the GPM approach from the perspective of

loss surface flatness, and find that when we improve

the performance of new tasks, catastrophic forgetting

of old tasks occurs due to the loss surface unflatness.

• We propose a data augmented flatness-aware gradient

projection (DFGP) method for CL, which simultane-

ously optimizes the loss and the flatness of the loss

surface from both the data and weight levels.

• We compare the proposed DFGP with multiple CL

methods on four widely used benchmark datasets and

verify that DFGP improves the performance of new

tasks and the average performance of all tasks.

• We demonstrate that DFGP is more robust to adversarial

attacks relative to GPM, and our optimization strategy

can be effortlessly combined with other CL methods to

further improve their performance.

2. Rethinking the GPM Method
In this section, we first introduce the problem setup of CL

and the Gradient Projection Memory (GPM) method, and

then revisit the poor performance of the GPM method on the

new arriving task, i.e., the plasticity of GPM.

2.1. Problem Setup

CL [38, 47] is trained with sequential arriving tasks

{D(1), . . . ,D(T)}, where D(t) = {(X(t),Y (t))} is the train-

ing data of task t. When learning the t-th task, we only

have access to the data D(t) for the t-th task. CL expects

that a neural network with L layers f (W , ·) to be capable

of learning these sequentially encountered tasks and not for-

getting previously learned tasks. The weight of the network

is denoted as W = {(W l)Ll=1} and W l is the weight of

l-th layer. Given an input data x
(t)
i ∈ X(t), denote the in-

put and output of the l-th layer of the network as x
(t),l
i and

x
(t),l+1
i = f(W l, x

(t),l
i), respectively, where x

(t),l
i is denoted

as the representations of x
(t)
i of task t at layer l. CL expects

to minimize the loss of all tasks. According to the Empirical

Risk Minimization (ERM) principle [49], we can obtain the

5631

objective of CL as follows:

min
W

1

T

T∑
t=1

1

|D(t)|
∑

(x
(t)
i ,y

(t)
i)∈D(t)

Lt
(
f(W , x

(t)
i), y

(t)
i

)
,

where Lt(·) represents the loss function of the t-th task, e.g.,

mean squared or cross-entropy loss.

2.2. GPM Method

Since CL can only use the data of task t when

learning t-th task, the optimization objective is:

min
W

1

|D(t)|
∑

(x
(t)
i ,y

(t)
i)∈D(t) Lt(f(W , x

(t)
i), y

(t)
i). To avoid

catastrophic forgetting of old tasks, the weight {(W l)Ll=1}
on task t is updated along the direction orthogonal to the

subspace Sl spanned by the previous t− 1 tasks in gradient

projection based CL methods [15, 57, 27, 43]. In particular,

GPM [43] has achieved remarkable results compared to

other approaches. For task t, the update rule of l-th layer

(l ∈ {1, 2, . . . , L}) weight W l in GPM is as follows:

W l = W l − η · (g(t)

W l − ProjSl(g
(t)

W l)), (1)

where g
(t)

W l =∇Lt(f(W l, x
(t)
i), y

(t)
i) represents the gradient

of the training sample (x
(t)
i , y

(t)
i) with respect to the weight

W l, η is the step size, and ProjSl(·) is a projection operator

that projects g
(t)

W l into Core Gradient Space (CGS), i.e., sub-

space Sl spanned by old tasks. The core operation of GPM is

to find and store the basis of the old task’s CGS. Specifically,

when task t is learned, it first randomly samples n samples

to obtain the representation matrix R(t),l = [x
(t),l
1 , . . . , x

(t),l
n]

of l-th layer of the CL network. Then, it performs SVD [11]

on R(t),l = U (t),lΣ(t),lV (t),l and approximates its k-rank

R
(t),l
k according to the following projection criteria for

a given threshold εlth (we call it projection threshold):

‖R(t),l
k ‖2F ≥ εlth‖R(t),l‖2F . Next, GPM defines the feature

vectors corresponding to the top-k maximum singular values

as the basis of the l-th layer, and constitutes bases M l of

the space Sl by them: M l=span{u(t),l
1 , . . . , u

(t),l
k }. Finally,

the calculation rule of the projection operation is as follows:

ProjSl(g
(t),l)=M l(M l)�g(t),l.

2.3. Rethinking the Plasticity in GPM

Regretfully, GPM still performs poorly on new tasks (see

Fig. 1), limiting its overall performance. Below, we try to

explore what limits the performance of GPM.

Which factor influences the performance of new tasks in
GPM? There exist distribution drifts between the tasks en-

countered continuously in CL. When the constraints imposed

by new tasks in CL are too strong, it causes the network to

fail to fit the distribution of the new tasks, resulting in poor

performance. In particular, the factor that determines the

strength of constraints in GPM is the projection threshold
εlth. We show in Fig. 3 (red line) that a relatively lower

projection threshold can achieve better performance on new

tasks. Specifically, when we reduce the projection threshold

Figure 3: The accuracy of an old task (T1, blue line), a new

task (T10, red line) and the average accuracy of all tasks

(purple line) under different projection threshold εlth of GPM

method on CIFAR-100. At,i represents the accuracy of the

model tested on task i after the trained task t.

from 0.99 to 0.80, the performance A10,10 of the new task

T10 improves from 73.30% to 82.16%.

What are the problems with increasing the performance
of new tasks in GPM? Although a relatively small thresh-

old leads to better performance on new tasks, it also leads

to catastrophic forgetting of old tasks, resulting in overall

performance degradation. Specifically, as shown in Fig. 3

(brown line), task T1 can achieve 76.82% accuracy when it

is learned. However, after learning task T10, the accuracy

A10,1 (blue line) of task T1 drops to 76.28%, 57.00% at two

projection thresholds of 0.99 to 0.80.

Is it possible to improve the performance of new tasks
without catastrophic forgetting of old tasks? According

to previous analysis for GPM, when we want to achieve

high performance for new tasks by setting a relatively small

projection threshold, we need to ensure that old tasks are not

catastrophically forgotten. A flat loss surface [20, 16, 22]

seems to offer a chance that old tasks are not catastrophically

forgotten. An example is given in Fig. 2, after task T is

learned, the weight is W 1 (a minimum of sharp loss surface),

and then the updated amount of new task T+1 is ΔW , and

the weight of the network becomes W 2. When we use

W 2 to predict the old task T , the loss for task T increases

significantly (i.e., a large F1,2). However, if the loss surface

is flat enough, that is, task T converges to W 3 (a minimum

of flat loss surface), and task T +1 updated to W 4, the

loss of old task T does not change significantly (that is,

F3,4<<F1,2), i.e., old tasks are forgotten less.

Is the loss surface not flat in GPM? We are curious about

whether the catastrophic forgetting of GPM at a small pro-

jection threshold is due to the loss surface is not flat. To

answer this question, we quantitatively analyze the flatness

of the loss surface in GPM in Fig. 4. Specifically, we use

the maximum eigenvalue of the Hessian matrix w.r.t the

weight W to measure the flatness of a loss surface, and a

large eigenvalue means a sharp loss surface (The definition

and measurement of flatness are explained in the appendix).

We can observe that when the projection threshold εlth de-

5632

Figure 4: The maximum eigenvalue of task T1 in the GPM

method under different projection thresholds on CIFAR-100.

creases, the loss surface of Task T1 becomes sharper, that

is, the maximum eigenvalue increases. For example, when

the projection threshold is 0.80 and 0.99 respectively, the

maximum eigenvalue of the former is much higher than that

of the latter, that is, 1878.11>> 346.52. Therefore, catas-

trophic forgetting is more likely to occur at a relatively small

projection threshold due to a sharp loss surface in GPM.

Inspired by the above observations, we propose a novel

gradient projection method for CL, namely data augmented

flatness-aware gradient projection (DFGP). DFGP avoids

catastrophic forgetting of old tasks by improving the flatness

of the loss surface, so it allows a relatively small projection

threshold to improve the performance of new tasks.

3. Methodology
In this section, we will first introduce the proposed DFGP

method in Sec. 3.1 and then describe its components in detail

in Sec. 3.2 and Sec. 3.3.

3.1. DFGP Formulation

Since GPM only minimizes empirical risk when learning

task t, i.e., min
W

Lt(W ,X,Y), where (X,Y) is training

data of task t (we omit the superscript for brevity), and

does not consider any flatness-aware optimization objective,

the loss surface in GPM is generally sharp. In this paper,

inspired by sharpness-aware minimization (SAM) [16, 28,

48, 34], we optimize both the loss and the flatness of loss

surface. The key of our method is to find the sharpest case

of the loss surface from two levels of data and parameters

to optimize to obtain a flat loss surface. Specifically, our

proposed data augmented flatness-aware gradient projection

(DFGP) overall optimization objective is as follows:

min
W

{
Lt (W ,X,Y) + λLt

(
W , X̃, Ỹ

)

+ max
‖δ‖2≤ρ

[(Lt (W + δ,X,Y)− Lt (W ,X,Y)
)

+ λ
(Lt(W + δ, X̃, Ỹ)− Lt(W , X̃, Ỹ)

)]}
,

(2)

where (X̃, Ỹ) represents the worst-case perturbation at the

data level in Sec. 3.2(1), and W+δ represents the worst-case

perturbation at the weight level in Sec. 3.2(2). The first row

in Eq. 2 represents the loss minimization on the raw data

(X,Y) and the worst-case perturbed data (X̃, Ỹ), the sec-

ond and third rows represent the flatness of loss surface on

the original data and perturbed data. The goal of both data

perturbation and weight perturbation is to find the worst-

case of the network for optimization to obtain a flatness

loss surface in Sec. 3.2(3). Compared with SAM [16], our

method further performs data-level perturbation in addition

to weight-level perturbation, which can better adapt to distri-

bution drift between tasks and flatness-aware optimization

on a wider exploration (data) space.

The algorithm for solving DFGP is summarized in Alg. 1.

Below, we separately describe the solution process of data

perturbation and weight perturbation to compute the flatness-

aware gradient, respectively.

3.2. Data Augmented Flatness-aware Optimization

Our DFGP in Eq. 2 collaboratively improves the flat-

ness of the loss surface by simultaneously disturbing the

data and weight. Specifically, the goal of data perturba-

tion is to find the worst-case perturbation γ̂ that maximizes

the loss Lt(W , X̃(γ̂), Ỹ (γ̂)) for task t. The perturbed data

(X̃(γ̂), Ỹ (γ̂)) are constructed by interpolating the raw data

(X,Y) according to γ̂. The goal of weight perturbation is

to find a worst-case δ in the neighborhood of the weight W ,

which maximizes the loss of task t. Afterward, DFGP opti-

mizes the task loss and loss surface on the worst-case data

and weight perturbations to obtain a flatness-aware gradient.

(1) Data perturbation. Inspired by Mixup [59, 60], we

perturbed the data and extended the raw training data dis-

tribution. Specifically, we first interpolate any two samples

x
(t)
i and x

(t)
j from X (and the corresponding labels y

(t)
i

and y
(t)
j form Y) in a minibatch from task t to generate

a perturbed training example (x̃(t)(γ), ỹ(t)(γ)): x̃(t)(γ) =

γx
(t)
i + (1 − γ)x

(t)
j , ỹ(t)(γ) = γy

(t)
i + (1 − γ)y

(t)
j , where

γ ∈ [0, 1] represents the weight when the two samples

are mixed. However, unlike the vanilla Mixup, which

γ ∼ Beta(α, α) is directly sampled from a Beta distribu-

tion, we perform a further optimization on γ whose goal is

to maximize the loss corresponding to the samples after in-

terpolation to promote the flatness-aware optimization of the

network. In other words, we will add a perturbation ε to the

sampled γ in the neighborhood of radius ρ, so that the loss

is worst-case on the new image mixed with the perturbed

γ̂(γ̂ := γ + ε). In addition, to ensure that the interpolated

samples still belong to the class corresponding to y
(t)
i and

y
(t)
j , we clip γ̂ to be between [0, 1]. The formal expression

of our gamma’s (i.e., γ̂) goal is as follows:

max
(γ̂:=γ+ε)∈[0,1],‖ε‖2≤ρ

Lt
(
W , X̃(γ + ε), Ỹ (γ + ε)

)
. (3)

However, it is very difficult to exactly find the solution of

5633

Algorithm 1 Algorithm of our DFGP

1: Function Train (W , Dtrain η, εth, ε, ρ, λ, α)

2: Initialize: M ← {(M l)Ll=1}, M l ← [], for all l =
1, 2, . . . , L

3: Initialize: W ← W 0

4: for task t = 1, 2, . . . , T do
5: repeat
6: B

(t)
n ← (X(t),Y (t)) ∼ Dt

train

7: g
(t)
W ← FlatnessAwareGradient (B

(t)
n , W , ρ, ε, λ, α)

8: for layer l = 1, 2, . . . , L do
9: if t > 1 then

10: g
(t),l

W l ← g
(t),l

W l − Proj(g
(t),l

W l ,M
l)

11: end if
12: W l ← W l − η · g(t),l

W l

13: end for
14: until convergence

15: M ← UpdateGradientMemory (W , M , Dt
train, εth, t)

16: end for
17: return W
18: end Function
19:

20: Procedure FlatnessAwareGradient (Bn, W , ρ, ε, λ, α)

21: B′
n ← (X̃, Ỹ) ← Mixup(Bn, γ), γ

′ ← Beta(α, α)

22: ε̂ ← ρ · ∇γLt(B′
n)

‖∇γLt(B′
n)‖+ε

23: δ̂ ← ρ · ∇W Lt(Bn)+λ∇W Lt(B′
n)

‖∇W Lt(Bn)+λ∇W Lt(B′
n)‖+ε

24: γ̂ ← Clamp(γ + ε̂, 0, 1), Ŵ ← W + δ̂
25: B′′

n ← (X̃, Ỹ) ← Mixup(Bn, γ̂)

26: g
(t)
W ← ∇W (Lt(Bn) + λLt(B′′

n))|Ŵ
27: return g

(t)
W , where g

(t)
W = {(g(t)

W l)
L
l=1}

28: end Procedure
29:

30: Procedure UpdateGradientMemory (W , M , Dt
train, εth, t)

31: B
(t)
n ← (X(t),Y (t)) ∼ Dt

train

32: R(t) ← forward(B
(t)
n ,W), where R(t) = {(R(t),l)Ll=1}

33: for layer l = 1, 2, . . . , L do
34: R̂

(t),l
= R(t),l

35: if t > 1 then
36: R̂

(t),l
= R(t),l − ProjSl(R

(t),l)
37: end if
38: Û

(t),l ← SVD(R̂
(t),l

)

39: k ← criteria(R̂
(t),l

,R(t),l, εlth)

40: M l ← [M l, Û
(t),l

[0 : k]]
41: end for
42: return M
43: end Procedure

Eq. 3, so the optimization goal of ε is the following first-

order Taylor approximate problem, and the solution ε̂ is:

ε̂ ≈argmax
‖ε‖2≤ρ

Lt
(
W , X̃, Ỹ

)
+ ε�(∇γLt

(
W , X̃, Ỹ

)

=ρ · ∇γLt
(
W , X̃, Ỹ

)
/‖∇γLt

(
W , X̃, Ỹ

)
‖2

(4)

(2) Weight perturbation. At the same time, we perform

weight perturbation on raw data (X,Y) and Mixup data

(X̃(γ), Ỹ (γ)) for task t. Note that the reason the weight

perturbation is also performed on the augmented data is to

allow the weight perturbation to explore in a wider data

space. Specifically, the objective of the weight perturbation

is to find the δ that causes the worst-case loss of task t in the

neighborhood with W as the center and ρ as the radius, i.e.,

max
‖δ‖2≤ρ

Lt (W + δ,X,Y) + λLt
(
W + δ, X̃, Ỹ

)
. (5)

We obtain the solution of δ̂ by solving the first-order Taylor

approximation problem of problem Eq. 5 as follows:

δ̂ ≈ argmax
‖δ‖2≤ρ

Lt (W ,X,Y) + λLt(W , X̃, Ỹ)

+ δ�
(
∇WLt (W ,X,Y) + λ∇WLt(W , X̃, Ỹ)

)

= ρ · ∇WLt (W ,X,Y) + λ∇WLt(W , X̃, Ỹ)∥∥∥∇WLt (W ,X,Y) + λ∇WLt(W , X̃, Ỹ)
∥∥∥
2

.

(6)

It should be mentioned that, observing the forms of the

two optimization problems of Eq. 6 and Eq. 4, we can find

that the optimal weight perturbation δ̂ and data perturbation ε̂
can be computed together through a single backpropagation,

as opposed to requiring separate backpropagations.

(3) Flatness-aware gradient optimization. The flatness-

aware optimization problem is to optimize the loss in Eq. 2

on the worst-case data and weight perturbation. When Eq. 2

is minimized, the model converges to a minimum W ∗ of

a flat loss surface. Bringing the worst-case perturbed data

(X̃(γ̂), Ỹ (γ̂)) and weight Ŵ into Eq. 2 and removing re-

dundant terms, our flatness-aware minimization objective

function is:

min
W

Lt
(
Ŵ ,X,Y

)
+ λLt

(
Ŵ , X̃, Ỹ

)
, (7)

where γ̂=γ+ε̂, Ŵ =W+δ̂; ε̂ and δ̂ are from Eq. 4 and Eq. 6,

respectively. Therefore, we compute the final flatness-aware

gradient approximation to update parameters W as:

g
(t)
W ≈∇W (Lt (W ,X,Y)+λLt(W , X̃, Ỹ))

∣∣∣
Ŵ

. (8)

So far, we have obtained a flatness-aware gradient (i.e., g(t)
W

in Eq. 8) with respect to W that optimizes both loss and

flatness of loss surface for task t.

3.3. Flatness-aware Gradient Projection

In this subsection, we describe how to combine the gradi-

ent of data augumented flatness-aware optimization with the

orthogonal gradient projection method in CL.

Learning task 1. The learning process of task 1 includes

gradient update and projected memory update. 1) Weight
update: The first task in CL is learned without any con-

straints. Therefore, after obtaining the gradient in Eq. 8

(see line 7 in Alg. 1), we directly perform the following

gradient descent for parameter update of layer l (see line

12 in Alg. 1): W l =W l − η · g(t),l

W l , l ∈ {1, . . . , L}, where

5634

η is the step size. 2) Memory update: After the task 1 has

converged, we need to calculate the core gradient space

(CGS) of task 1 to construct the projection matrix M . We

first select randomly n samples to obtain the representation

R(1),l = [x
(1),l
1 , . . . , x

(1),l
n] of each layer l ∈ {1, . . . , L} (see

line 32 in Alg. 1), and then perform SVD decomposition

on this representation R(1),l=U (1),lΣ(1),lV (1),l to select the

top-k most important basis for task 1 (see lines 38-39 in

Alg. 1). Finally, we take the eigenvectors corresponding to

the top-k maximum eigenvalues as the core gradient space

of task 1, that is, M l=span{u(1),l
1 , . . . , u

(1),l
k } (see line 40 in

Alg. 1). When task 2 updates the parameters, it needs to be

orthogonal to this core gradient space, which can effectively

reduce the interference to task 1.

Learning task 2 to T. The learning process of task 2 ∼
T includes gradient projection, gradient update, and pro-

jected memory update. 1) Gradient Projection: Similar

to task 1, we use Eq. 8 to compute the flatness-aware

gradient g
(t)
W for task t (see line 7 in Alg. 1). But in-

stead of using the gradient directly for updating, the gra-

dient components parallel to task t − 1 are eliminated

(i.e., ProjSl(g
(t),l

W l) = M l(M l)�g(t),l

W l), and only the gradi-

ent components orthogonal to task t − 1 are retained (i.e.,

g
(t),l

W l−ProjSl(g
(t),l

W l)). 2) Weight update: We update the param-

eters with the remaining gradient (see lines 9-12 in Alg. 1),

that is: W l = W l − η · (g(t),l

W l − ProjSl(g
(t),l

W l)). 3) Mem-
ory update: Since the space of previous t − 1 tasks may

contain significant gradient directions of the task t, when

building the core gradient space of task t, only the impor-

tant basis additionally included in task t is added to the

gradient memory M l. Speficically, we first project the rep-

resentation R(t),l=[x
(t),l
1 , . . . , x

(t),l
n] of task t for each layer l

into the gradient space formed by previous tasks to remove

duplicate representations (see line 36 in Alg. 1): R̂
(t),l

=

R(t),l − ProjSl(R
(t),l) =R(t),l − M l(M l)�R(t),l. Then we

perform SVD decomposition (R̂
(t),l

= Û
(t),l

Σ̂
(t),l

(V̂
(t),l

))

on this part of the representation and require that the fol-

lowing formula be satisfied (see lines 38-39 in Alg. 1):

‖Proj(R(t),l)‖2F + ‖(R̂(t),l

k)‖2F ≥ εlth‖R(t),l‖2F . Finally, we

add the eigenvectors corresponding to the maximum top-

k eigenvalues of task t into the gradient memory, i.e.,

M l←[
M l, Û

(t),l
[0 : k]

]
(see line 40 in Alg. 1).

4. Experiments
In this section, we conduct extensive experiments to

demonstrate the effectiveness of DGFP. The implementation

details and additional experiments are provided Appendix.

4.1. Experimental Setup

Datasets We evaluate our method on four benchmark

datasets for CL [43, 27]: Permuted MNIST, 10-Split CIFAR-

100, 5-Datasets and 20-Spilt miniImageNet.

Figure 5: New tasks’ accuracy of GPM, SGD, MTL, and

DFGP on CIFAR-100.

Baselines. We compare DFGP with four types of CL meth-

ods. Architecture-based method: HAT [44]. Regularization-

based methods: EWC [23], MAS [1]. Memory-based meth-

ods: ER [10], A-GEM [9]. Orthogonal-Projection-based

methods: OWM [57], GPM [43], FS-DGPM [12]. We

also combine GPM with Classifier-Projection Regulariza-

tion(CPR) [6] as a strong baseline (GPM+CPR).

Evaluation metrics. We evaluate the performance by aver-

age accuracy (ACC) and backward transfer (BWT) [43].

Specifically, ACC represents the average test accuracy
of the model trained on all tasks. BWT measures the

forgetting of old tasks. ACC and BWT are defined as:

ACC = 1
T

∑T
i=1AT,i,BWT = 1

T−1

∑T−1
i=1 AT,i−Ai,i, where

At,i is the accuracy of the model tested on task i after the

training of task t is completed. T is the number of tasks.

4.2. Experimental Results

Performance. As shown in Tab. 1, the accuracy of DFGP

is significantly improved over previous work on all datasets.

For example, DFGP achieves the accuracy gains of 1.07%,

1.01%, 0.77%, and 7.78% on the four datasets PMNIST,

CIFAR-100, 5-Datasets, and MiniImageNet, respectively,

compared to the best baseline methods GPM+CPR, FS-

DGPM, HAT, and GPM+CPR. It should be mentioned that

these datasets are widely studied benchmark datasets in CL.

Therefore, the improvement of our method on these datasets

is already significant. In addition, there is a clear trend that

DFGP can achieve more significant benefits compared with

other methods with a larger number of tasks. For exam-

ple, the number of tasks contained in PMNIST, CIFAR-100,

5-Datasets, and MiniImageNet are 10, 10, 5, and 20, respec-

tively, so the accuracy gain shows a trend of MiniImageNet

> PMNIST, CIFAR-100 > 5-Datasets. This is because

old tasks are more likely to be forgotten when the num-

ber of tasks increases. DFGP method obviously alleviates

the forgetting problem, and thus achieves a more signifi-

cant improvement on the dataset with a larger number of

tasks. Specifically, DFGP shows the lowest forgetting degree

(BWT in Tab. 1) compared to other competitive methods.

Stability-Plasticity analysis. As shown in Fig. 6(a-b),

when we reduce εlth (i.e., our DFGP is εlth = 0.95, GPM

is εlth = 0.97), DFGP achieves comparable or even better

5635

Table 1: The averaged accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets. Note that, MTL

learns all tasks simultaneously in a single network by using the entire dataset, which does not belong to the setting of CL, it

can be used as an upper bound for CL learning. SGD means that new tasks are learned without any constraints.

Method
PMNIST (10 Tasks) CIFAR-100 (10 Tasks) 5-Datasets (5 Tasks) MiniImageNet (20 Tasks)

ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

SGD 53.56±2.89 -0.48±0.03 56.39±1.14 -0.22±0.01 80.23±1.16 -0.16±0.01 49.71±1.80 -0.21±0.01

MTL 96.70±0.02 -0.00±0.00 80.67±0.42 -0.00±0.00 93.15±0.16 -0.00±0.00 84.16±1.26 -0.00±0.00

EWC 89.97±0.57 -0.04±0.01 68.80±0.88 -0.02±0.01 88.64±0.26 -0.04±0.01 52.01±2.53 -0.12±0.03

MAS 86.98±0.84 -0.04±0.01 67.96±0.44 -0.05±0.00 88.73±0.79 -0.04±0.01 60.80±2.96 -0.09±0.02

HAT - - 72.06±0.50 -0.00±0.00 91.32±0.18 -0.01±0.00 59.78±0.57 -0.03±0.00

A-GEM 83.56±0.16 -0.14±0.00 63.98±1.22 -0.15±0.02 84.04±0.33 -0.12±0.01 57.24±0.72 -0.12±0.01

ER 87.24±0.53 -0.11±0.01 71.73±0.63 -0.06±0.01 88.31±0.22 -0.04±0.00 58.94±0.85 -0.07±0.01

OWM 90.71±0.11 -0.01±0.00 50.94±0.60 -0.30±0.01 - - - -

GPM 93.18±0.14 -0.03±0.00 72.31±0.20 -0.00±0.00 91.12±0.00 -0.01±0.00 60.99±2.01 -0.05±0.01

FS-DGPM 92.89±0.18 -0.36±0.01 73.58±0.14 -0.30±0.00 - - - -

GPM+CPR 93.57±0.15 -0.03±0.00 72.21±0.43 -0.00±0.00 89.72±0.48 -0.01±0.00 62.14±1.89 -0.04±0.01

DFGP 94.64±0.17 -0.01±0.00 74.59±0.33 -0.00±0.00 92.09±0.18 -0.01±0.00 69.92±0.90 -0.01±0.00

Figure 6: The accuracy (Higher Better) and the maximum eigenvalue (Lower Better) on the CIFAR-100 dataset. (a) Acc of

GPM: best εlth=0.97; (b) Acc of our DFGP: best εlth=0.95; (c) Maximum eigenvalue of GPM; (d) Maximum eigenvalue of

our DFGP. t-th row represents the accuracy of the network tested on tasks 1−t after task t is learned.

than GPM on the old tasks. For example, when task T10
is learned, the accuracy of GPM on tasks T2, T4, and T6
is 67.9%, 69.5%, and 72.4%, respectively. DFGP is 68.9%,

71.8%, and 75.2%, respectively. These evidences suggest

that our method flattening the loss surface really helps alle-

viate catastrophic forgetting. In addition, we highlight the

improved performance that our method brings to new tasks.

As shown in Fig. 5, GPM can only achieve the accuracy of

69.66% and 74.50% when learning new task T8 and new

task T10, while DFGP achieves the accuracy of 74.90% and

79.30% respectively. In conclusion, our method greatly im-

proves the performance of new tasks while maintaining that

old tasks are not catastrophically forgotten.

4.3. Ablation Study

Effectiveness of each component. Compared with GPM,

DFGP perturbs both data and weight to perform flatness-

aware optimization. As shown in Tab. 2, when we perform

perturbation on only one level, it suffers from a certain accu-

racy drop, proving the effectiveness of both components in

DFGP. For example, when using only weight perturbation

(w/ W(δ̂)) or data perturbation (w/ D(γ̂)) on CIFAR-100,

the ACC drops from 74.59% to 73.46% and 73.19%. After

we replace the flatness-aware data perturbation (w/ D(γ̂))

Table 2: Effectiveness of each component.

Method
PMNIST CIFAR-100

ACC(%) BWT ACC(%) BWT

GPM 93.18 -0.03 72.31 -0.00

w/ W(δ̂) 94.49 -0.02 73.46 -0.01

w/ D(γ̂) 94.04 -0.03 73.19 -0.02

w/ D(γ) 93.81 -0.03 72.94 -0.02

DFGP 94.64 -0.01 74.59 -0.00

with vanilla Mixup (w/ D(γ)), the accuracy will be further

reduced. For example, on PMNIST(CIFAR-100), it has

dropped from 94.04%(73.19%) to 93.81%(72.94%).

Flatness visualization. We verify that DFGP shows a flatter

loss surface compared to GPM. We measure the flatness of

loss surface via the maximum eigenvalue of the network’s

Hessian matrix in Fig. 6(c-d). The maximum eigenvalue

corresponding to DFGP is much smaller than that of GPM,

e.g., the maximum eigenvalues of the former and the latter

in task T10 are 61.8 and 308.3, respectively.

Combined with other CL methods. We further combine

Data augmented Flatness-aware optimization (abbreviated

as DF) with other three kinds of CL algorithms, including

orthogonal projection based (TRGP [27]), memory-based

(ER [10]), and regularization-based (MAS [1]) methods.

5636

Table 3: Data augmented flatness-aware optimization on

more CL methods for accuracy and BWT testing.

Method
PMNIST CIFAR-100

ACC(%) BWT ACC(%) BWT

TRGP 96.34 -0.01 72.67 -0.19

DF-TRGP (ours) 96.90 -0.01 73.63 -0.01

ER 87.24 -0.11 71.73 -0.06

DF-ER (ours) 89.99 -0.08 73.62 -0.07

MAS 86.98 -0.04 67.96 -0.05

DF-MAS (ours) 88.90 -0.03 70.44 -0.02

Table 4: The averaged accuracy (ACC) of GPM and DFGP

when tested on adversarial examples (Xadv,Y).

PMNIST CIFAR-100

GPM DFGP GPM DFGP

μ=0.0 93.56(-0.00) 94.64(-0.00) 72.31(-0.00) 74.59(-0.00)

μ=0.0001 93.51(-0.05) 94.60(-0.04) 71.91(-0.40) 74.50(-0.09)

μ=0.001 93.07(-0.49) 94.31(-0.34) 71.43(-0.88) 73.92(-0.67)

μ=0.01 87.81(-5.75) 90.80(-4.05) 66.33(-5.97) 68.91(-5.68)

Specifically, we use the flatness-aware gradient proposed

in this paper instead of the vanilla gradient for parameter

updates of three approaches. As shown in Tab. 3, on the PM-

NIST, DF-ER and DF-MAS achieve absolute accuracy gains

of 2.75% and 1.92% over ER and MAS, respectively. On

the CIFAR-100, DF-TRGP, DF-ER and DF-MAS achieve

absolute accuracy gains of 0.96%, 1.89% and 2.48% over

TRGP, ER and MAS, respectively.

Robustness analysis. We verify that DFGP is more ad-

versarial robust than GPM. To test the robustness, we refer

to the popular FGSM [18] method for adversarial pertur-

bation of the input image, and the detailed attack rule is:

Xadv = X + μ · sign (∇XLt(W ,X,Y)
)
, where μ is a hy-

perparameter of adversarial strength, and X represents the

samples of the test set. As shown in Tab. 4, we find that

the larger μ is, the greater the performance degrades of both

methods. In addition, the performance drop of DFGP on both

datasets is smaller than that of GPM. For example, when

μ is 0.01, on CIFAR100 dataset, the former and the latter

decrease by −5.97 and −5.68; on PMNIST dataset, GPM

and DFGP decrease by −5.75 and −4.05, respectively.

5. Related Work

Continual learning. CL can be divided into two types: On-

line CL [3, 24] models process the data in a single pass,

while offline CL models process the data in multiple passes.

This paper mainly focuses on offline CL, we leave online

CL for future work. Existing offline CL methods can be

roughly divided into four categories: 1) Architecture-based
methods [44, 31, 42, 35] add a new set of learnable parame-

ters for each new task. However, these approaches cause the

number of parameters to grow linearly with the number of

tasks. 2) Regularization-based methods [23, 6, 58, 2, 7, 30]

calculate the importance of network parameters for each

old task and reduce the updating of important parameters

for the old tasks. However, these methods need to store

the importance of each parameter for the old tasks, which

results in huge memory overhead. In addition, calculating

the importance of parameters also requires a time cost. 3)

Memory-based methods [10, 9, 41, 46, 52] use a fixed mem-

ory to store a small number of training samples from old

tasks and replay these samples when learning new tasks.

However, in some privacy-strict cases, caching of arbitrary

historical samples is not allowed. 4) Orthogonal projection
based methods [57, 15, 12, 27, 25, 43] restrict the gradi-

ent directions of new tasks to alleviate interference with old

tasks. In particular, Gradient Projection Memory (GPM) [43]

performs better than other methods.

Flatness in deep learning. Recently, many machine learn-

ing works have attempted to improve the flatness of the loss

surface by sharpness-aware minimization [22, 16, 4, 48, 34].

Stochastic weight average [21, 54] is also a approach for

achieving flatness. Flatness has also been explored in the CL.

StableSGD [36] empirically analyzes how the learning rate,

mini-batch size, and dropout affect the flatness in CL. [32]

focuses on explaining the effect of pre-training on improv-

ing the performance of CL from the perspective of flatness.

CPR [6] improves model generalization by maximizing the

entropy of classifier output probabilities [39]. Whereas our

DFGP directly optimizes the flatness of loss surface. F2M

improves flatness when training basic tasks in incremental

few-shot learning scenarios [45]. Unlike F2M, our DFGP

focuses on the standard CL scenario. A related work is FS-

DGPM [12], which scales the basis in GPM and performs

flat optimization with adversarial weight perturbations [55].

However, our method is fundamentally different from FS-

DGPM: 1) Our framework is more general. We introduce

flatness-aware optimization from both data and weight lev-

els, while FS-DGPM merely considers the weight level. 2)

Our method is substantially more efficient and effective than

FS-DGPM. We solve weight perturbation by first-order Tay-

lor approximation, while FS-DGPM uses gradient ascent

iteration. 3) We provide a deeper insight into how flatness

affects the performance of old and new tasks in GPM, i.e.,

we establish a connection between flatness and projection

criteria in GPM, while FS-DGPM ignores this relation.

6. Conclusion and Future Work
In this work, we first revisit the problem of poor perfor-

mance for new tasks in GPM from a flat loss surface per-

spective. Then, we propose a data augmented flatness-aware

gradient projection (named DFGP) algorithm to improve

the flatness of loss surface. Our proposed DFGP helps to

maintain the stability of old tasks and improve the perfor-

mance of new tasks. Next, we demonstrate that the proposed

5637

data augmented flatness-aware optimization strategy can

also be combined with other CL methods to help allevi-

ate catastrophic forgetting. Finally, extensive experiments

demonstrate that our proposed DFGP can help to improve

flatness and robustness for the CL problem. In the future,

we intend to directly use the degree of flatness to guide the

design of projection criteria for each layer of the CL network.

In addition, we also intend to explore the effectiveness of

flatness-aware optimization for online CL.

Acknowledgements

Enneng Yang, Guibing Guo are supported by the Na-

tional Natural Science Foundation of China under Grants

No. 62032013 and No. 61972078, and the Fundamental

Research Funds for the Central Universities under Grants

No. N2217004 and No. N2317002. Li Shen is supported by

the STI 2030—Major Projects (No. 2021ZD0201405).

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware

synapses: Learning what (not) to forget. In ECCV, volume

11207, pages 144–161, 2018. 6, 7, 11, 12, 13

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware

synapses: Learning what (not) to forget. In ECCV, volume

11207, pages 144–161, 2018. 8

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-

gio. Gradient based sample selection for online continual

learning. In NeurIPS, pages 11816–11825, 2019. 8

[4] Maksym Andriushchenko and Nicolas Flammarion. Towards

understanding sharpness-aware minimization. In ICML, vol-

ume 162, pages 639–668, 2022. 8

[5] Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR),
Tech. Rep.[Online], 2, 2011. 11

[6] Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flávio P. Cal-

mon, and Taesup Moon. CPR: classifier-projection regular-

ization for continual learning. In ICLR, 2021. 6, 8, 12

[7] Arslan Chaudhry, Puneet Kumar Dokania, Thalaiyasingam

Ajanthan, and Philip H. S. Torr. Riemannian walk for incre-

mental learning: Understanding forgetting and intransigence.

In ECCV, volume 11215, pages 556–572, 2018. 8

[8] Arslan Chaudhry, Naeemullah Khan, Puneet K. Dokania, and

Philip H. S. Torr. Continual learning in low-rank orthogonal

subspaces. In NeurIPS, 2020. 1

[9] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with

A-GEM. In ICLR, 2019. 6, 8, 11

[10] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,

Thalaiyasingam Ajanthan, Puneet Kumar Dokania, Philip

H. S. Torr, and Marc’Aurelio Ranzato. Continual learning

with tiny episodic memories. CoRR, abs/1902.10486, 2019.

6, 7, 8, 11, 13

[11] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong.

Mathematics for machine learning. Cambridge University

Press, 2020. 3

[12] Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang,

and Pheng-Ann Heng. Flattening sharpness for dynamic

gradient projection memory benefits continual learning. In

NeurIPS, pages 18710–18721, 2021. 6, 8, 12, 13

[13] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and

Marcus Rohrbach. Uncertainty-guided continual learning

with bayesian neural networks. In ICLR, 2020. 11

[14] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor

Darrell, and Marcus Rohrbach. Adversarial continual learning.

In ECCV, volume 12356, pages 386–402, 2020. 11

[15] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.

Orthogonal gradient descent for continual learning. In AIS-
TATS, volume 108, pages 3762–3773, 2020. 1, 3, 8

[16] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam

Neyshabur. Sharpness-aware minimization for efficiently

improving generalization. In ICLR, 2021. 3, 4, 8, 13, 14

[17] Robert M. French. Catastrophic interference in connection-

ist networks: Can it be predicted, can it be prevented? In

NeurIPS, pages 1176–1177, 1993. 1

[18] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Yoshua

Bengio and Yann LeCun, editors, ICLR, 2015. 8

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages

770–778, 2016. 11

[20] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neu-
ral Computation, 9(1):1–42, 1997. 2, 3, 13

[21] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,

Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging

weights leads to wider optima and better generalization. In

UAI, pages 876–885, 2018. 8

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,

Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-

batch training for deep learning: Generalization gap and sharp

minima. In ICLR, 2017. 3, 8, 13

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,

et al. Overcoming catastrophic forgetting in neural net-

works. Proceedings of the national academy of sciences,

114(13):3521–3526, 2017. 6, 8, 11

[24] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun

Choi. Online continual learning on class incremental blurry

task configuration with anytime inference. In ICLR, 2022. 8

[25] Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. Bal-

ancing stability and plasticity through advanced null space in

continual learning. In ECCV, pages 219–236. Springer, 2022.

8

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Im-

agenet classification with deep convolutional neural networks.

In NeurIPS, pages 1106–1114, 2012. 11

[27] Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. TRGP:

trust region gradient projection for continual learning. In

ICLR, 2022. 1, 3, 6, 7, 8, 13

5638

[28] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and

Yang You. Towards efficient and scalable sharpness-aware

minimization. In CVPR, pages 12350–12360, 2022. 4, 14

[29] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In NeurIPS, pages

6467–6476, 2017. 11

[30] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu,

and Sung Ju Hwang. Representational continuity for unsuper-

vised continual learning. In ICLR, 2022. 8

[31] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multi-

ple tasks to a single network by iterative pruning. In CVPR,

pages 7765–7773, 2018. 8

[32] Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and

Emma Strubell. An empirical investigation of the role of

pre-training in lifelong learning. Arxiv, 2021. 8

[33] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin.

The stability-plasticity dilemma: Investigating the continuum

from catastrophic forgetting to age-limited learning effects,

2013. 1

[34] Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun,

Rongrong Ji, and Dacheng Tao. Make sharpness-aware

minimization stronger: A sparsified perturbation approach.

NeurIPS, 35:30950–30962, 2022. 4, 8

[35] Zichen Miao, Ze Wang, Wei Chen, and Qiang Qiu. Continual

learning with filter atom swapping. In ICLR 2022, 2022. 8

[36] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu,

and Hassan Ghasemzadeh. Understanding the role of training

regimes in continual learning. In NeurIPS, 2020. 8

[37] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

Bo Wu, and Andrew Y Ng. Reading digits in natural images

with unsupervised feature learning. 2011. 11

[38] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christo-

pher Kanan, and Stefan Wermter. Continual lifelong learning

with neural networks: A review. Neural Networks, 113:54–71,

2019. 1, 2

[39] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz

Kaiser, and Geoffrey E. Hinton. Regularizing neural net-

works by penalizing confident output distributions. In ICLR,
Workshop Track Proceedings, 2017. 8, 12

[40] Roger Ratcliff. Connectionist models of recognition mem-

ory: constraints imposed by learning and forgetting functions.

Psychological review, 97(2):285, 1990. 1

[41] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,

Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn

without forgetting by maximizing transfer and minimizing

interference. In ICLR, 2019. 8

[42] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

CoRR, abs/1606.04671, 2016. 8

[43] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projec-

tion memory for continual learning. In ICLR, 2021. 1, 3, 6, 8,

11, 12

[44] Joan Serrà, Didac Suris, Marius Miron, and Alexandros Karat-

zoglou. Overcoming catastrophic forgetting with hard atten-

tion to the task. In ICML, volume 80, pages 4555–4564, 2018.

6, 8, 11

[45] Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan,

and Xiao-Ming Wu. Overcoming catastrophic forgetting in

incremental few-shot learning by finding flat minima. In

NeurIPS, pages 6747–6761, 2021. 8

[46] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In NeurIPS,

pages 2990–2999, 2017. 8

[47] Shagun Sodhani, Mojtaba Faramarzi, Sanket Vaibhav Mehta,

Pranshu Malviya, Mohamed Abdelsalam, Janarthanan Ra-

jendran, and Sarath Chandar. An introduction to lifelong

supervised learning. CoRR, abs/2207.04354, 2022. 1, 2

[48] Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang

Chen, Jingwei Sun, Jing Li, Guangzhong Sun, and Dacheng

Tao. Adasam: Boosting sharpness-aware minimization with

adaptive learning rate and momentum for training deep neural

networks. arXiv preprint arXiv:2303.00565, 2023. 4, 8

[49] Vladimir Vapnik. Statistical learning theory. Wiley, 1998. 2

[50] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray

Kavukcuoglu, and Daan Wierstra. Matching networks for one

shot learning. In NeurIPS, pages 3630–3638, 2016. 11

[51] Zhenyi Wang, Li Shen, Tiehang Duan, Donglin Zhan, Le

Fang, and Mingchen Gao. Learning to learn and remember

super long multi-domain task sequence. In CVPR, pages

7982–7992, 2022. 1

[52] Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan,

and Mingchen Gao. Improving task-free continual learning

by distributionally robust memory evolution. In ICML, pages

22985–22998. PMLR, 2022. 8

[53] Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A

comprehensive survey of forgetting in deep learning beyond

continual learning. arXiv preprint arXiv:2307.09218, 2023. 1

[54] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Re-

becca Roelofs, Raphael Gontijo Lopes, Ari S. Morcos,

Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon

Kornblith, and Ludwig Schmidt. Model soups: averaging

weights of multiple fine-tuned models improves accuracy

without increasing inference time. In ICML, volume 162,

pages 23965–23998, 2022. 8

[55] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial

weight perturbation helps robust generalization. NeurIPS,

33:2958–2969, 2020. 8, 12, 14

[56] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:

a novel image dataset for benchmarking machine learning

algorithms. CoRR, abs/1708.07747, 2017. 11

[57] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual

learning of context-dependent processing in neural networks.

Nature Machine Intelligence, 1(8):364–372, 2019. 1, 3, 6, 8,

12

[58] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual

learning through synaptic intelligence. In ICML, volume 70,

pages 3987–3995, 2017. 8

[59] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR. OpenReview.net, 2018. 4

[60] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghor-

bani, and James Zou. How does mixup help with robustness

and generalization? In ICLR, 2021. 4

5639

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

