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Abstract

Knowledge Distillation (KD) uses the teacher’s logits as
soft labels to guide the student, while self-KD does not need
a real teacher to require the soft labels. This work uni-
fies the formulations of the two tasks by decomposing and
reorganizing the generic KD loss into a Normalized KD
(NKD) loss and customized soft labels for both target class
(image’s category) and non-target classes named Univer-
sal Self-KD (USKD). We decompose the KD loss and find
the non-target loss from it forces the student’s non-target
logits to match the teacher’s, but the sum of the two non-
target logits is different, preventing them from being identi-
cal. NKD normalizes the non-target logits to equalize their
sum. It can be generally used for KD and self-KD to better
use the soft labels for distillation. USKD generates cus-
tomized soft labels for both target and non-target classes
without a teacher. It smooths the target logit of the student
as the soft target label and uses the rank of the intermedi-
ate feature to generate the soft non-target labels with Zipf’s
law. For KD with teachers, NKD achieves state-of-the-art
performance on CIFAR-100 and ImageNet, boosting the Im-
ageNet Top-1 accuracy of Res-18 from 69.90% to 71.96%
with a Res-34 teacher. For self-KD without teachers, USKD
is the first method that can be effectively applied to both
CNN and ViT models with negligible additional time and
memory cost, resulting in new state-of-the-art results, such
as 1.17% and 0.55% accuracy gains on ImageNet for Mo-
bileNet and DeiT-Tiny, respectively. Code is available at
https://github.com/yzd-v/cls_KD.

1. Introduction
Deep convolutional neural networks (CNNs) have sig-

nificantly advanced the performance in many tasks [8, 9,
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Figure 1. Illustration of the proposed NKD and USKD for distilla-
tion loss calculations. NKD normalizes the non-target logits, using
the soft labels more effectively, and achieves better performance.
Meanwhile, USKD sets customized soft labels for both target and
non-target classes, and can be applied to both CNNs and ViTs.

27, 29]. In general, a larger model performing better needs
more computing resources. On the other hand, smaller
models have lower computation complexity but are less
competitive than larger models. To bridge this gap and
improve the performance of smaller models, knowledge
distillation (KD) has been proposed [11]. The core idea
of KD is to employ the teacher’s prediction logits as soft
labels to guide the student. Self-knowledge distillation
(self-KD) [33, 47] is inspired by the knowledge distillation
method, but it does not require an actual teacher. Instead,
it designs soft labels through auxiliary branches or special
distribution. The similarity between KD and self-KD is that
they utilize soft labels for distillation loss, while the key
difference is in how they obtain the soft labels. This paper
aims to 1) improve the utilization of soft labels for distilla-
tion loss and 2) propose a general and effective method to
obtain customized soft labels for self-KD. The targets make
us obtain the soft labels with a teacher and use our modified
distillation loss for better performance. Alternatively, when
we lack a teacher, we can use the proposed self-KD method
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to obtain the soft labels and then calculate the loss.
The original cross-entropy (CE) loss for classification

calculates the loss on the target class (the image’s category).
While the soft labels from the teacher include target and
non-target class, thus the KD loss also includes both target
and non-target loss. The decoupled method has been proven
effective for KD in DKD [49]. Unlike DKD’s method of ad-
justing hyper-parameters on target and non-target loss, we
present a simple yet effective way to decompose the KD
loss. We decompose the KD loss into a combination of
the target loss (like the original CE loss) and the non-target
loss in CE form. The non-target loss transforms the inter-
nal distribution of the student’s non-target logits to match
the teacher’s distribution. However, we find that the sum of
the student’s and teacher’s non-target logits is changing and
different, which hinders the alignment of their distributions.
To address this issue, we normalize the non-target logits to
equalize their sum, transferring teacher’s non-target knowl-
edge. With this slight modification, we introduce our Nor-
malized Knowledge Distillation (NKD) loss, as depicted in
Fig.1, significantly enhancing KD’s performance.

Our proposed NKD utilizes the teacher’s target logit and
normalized non-target logits to guide the student, resulting
in state-of-the-art performance. This demonstrates the ef-
fectiveness of NKD loss formulation. Also, it can be gen-
erally used for self-KD to calculate the distillation loss, but
how to generate the soft labels without a real teacher gener-
ally and efficiently is also important.

Various self-KD methods have explored using manually
designed soft labels to enhance students with less time than
KD. These methods [14, 38, 44, 47] typically obtain the la-
bels from auxiliary branches or contrastive learning, as de-
picted in Fig. 2 (a), (b), and (c). However, despite requir-
ing less time than KD, they still involve significant over-
head compared to training the model directly. Recently,
state-of-the-art Zipf’s LS [17], as shown in Fig. 2 (d), in-
troduced soft non-target labels based on a special distri-
bution that can significantly reduce resource and time re-
quirements. It classifies the student’s feature in the spatial
dimension and determines the rank of the non-target class
using Zipf’s law [25]. However, it requires the pixel-level
features before average pooling, making it unsuitable for
ViT-like models [6] with patch-wise tokenization.

To address the limitations of existing methods, we pro-
pose a general and effective way to obtain soft labels. We
design customized soft labels available for both CNN and
ViT models. Following the NKD loss formulation, our cus-
tomized soft labels comprise soft target label and soft non-
target labels for corresponding loss. For the soft target la-
bel, we replace the teacher’s target logit with the smoother
label value obtained from the student’s prediction. Since
the student’s predictions vary drastically during training,
especially in the beginning, we smooth the student’s tar-

get output within each training batch to stabilize the label
values. For the soft non-target labels, we need their rank
and distribution. First, for the rank, we get it from the in-
termediate feature, making our method available for both
CNN and ViT models. We take weak supervision on the
intermediate feature to get weak logit. Then, we normal-
ize and combine it with the final logit and sort for the rank,
as shown in Fig. 2 (f). The soft non-target labels’ distribu-
tion follows Zipf’s Law [25]. With the soft target and non-
target labels, we set our customized soft labels and propose
Universal Self-Knowledge Distillation (USKD) as shown in
Fig. 1. Besides, USKD only needs an extra linear layer for
weak supervision. So it just takes a few more computing re-
sources and time than training the model directly. USKD is
a simple and effective method that achieves state-of-the-art
performance on both CNN and ViT models.

As described above, we normalize KD’s non-target logits
and propose NKD, using the soft labels better and improv-
ing KD’s performance significantly. For the generation of
soft labels without a real teacher, we set soft target and non-
target labels, proposing USKD for self-KD. In a nutshell,
the contributions of this paper are:

• We normalize the non-target logits in the classical KD,
making it better to optimize the cross-entropy loss.
With this minor change, we propose Normalized KD
(NKD) loss, using teacher’s soft labels better and im-
proving KD’s performance significantly.

• We propose a novel way to set customized soft labels
without a real teacher, including target and non-target
classes for self-KD. We utilize the weak logit to obtain
soft non-target labels. Besides, we enlarge the differ-
ence between student’s target logit for different images
and soften them for soft target labels.

• We propose a simple and effective self-KD method
USKD with our customized soft labels, which applies
to both CNN and ViT models. Importantly, USKD re-
quires only almost negligible additional time and re-
sources compared to training the model directly.

• We conduct extensive experiments on CIFAR-100 and
ImageNet to verify the effectiveness of NKD and
USKD, achieving state-of-the-art performance. Addi-
tionally, we demonstrate the efficacy of models trained
with our self-KD method on COCO for detection.

2. Related work
2.1. Knowledge Distillation

Knowledge distillation is a method to improve the model
while keeping the network unchanged. It was first proposed
by Hinton et al. [11], where the student is supervised by
the hard and soft labels from the teacher’s output. Many
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Figure 2. Comparison of different self-KD methods with (a) extra blocks and parameters [14], (b) contrastive method [37], (c) image
mixture [38], (d) Zipf’s label smoothing [17], and (e) label smoothing [22, 34]. (f) Self-KD with our customized soft labels including both
target and non-target class for distillation. Note some methods can only be applied to CNN, while ours works for both CNN and ViT.

following works focus on better using soft labels to trans-
fer more knowledge. WSLD [50] analyzes soft labels and
distributes different weights for them from a perspective of
bias-variance trade-off. SRRL [39] forces the output logits
of the teacher’s and student’s features after the teacher’s lin-
ear layer to be the same. DKD [49] decouples the logit and
distributes different weights for the target and non-target
classes. DIST [13] uses the Pearson correlation coefficient
to replace the KL divergence and transfers the inter-relation
and intra-relation together.

Besides distillation on logits, some works [1, 31, 40, 42]
aim at transferring knowledge from intermediate features.
FitNet [28] distill the semantic information from the inter-
mediate feature directly. AT [45] transfers the attention of
feature maps to the students. OFD [10] designs the margin
ReLU and modifies the measurement for the distance be-
tween students and teachers. RKD [23] extracts the relation
from the feature map. CRD [35] applies contrastive learn-
ing to distillation successfully. KR [3] transfers knowledge
from multi-level features for distillation. TaT [18] helps
the student to learn the teacher’s every spatial component.
MGD [41] masks the student’s feature and forces it to gen-
erate the teacher’s feature.

2.2. Self-Knowledge Distillation

Self-Knowledge Distillation has been proposed as an al-
ternative approach to Knowledge Distillation that does not
rely on an external teacher model. Self-KD aims to uti-
lize the information within the student model to guide its
learning process. Several self-KD methods have been pro-
posed in recent years. DKS [33] introduces auxiliary super-
vision branches and pairwise knowledge alignments, while
BYOT [47] adds blocks and layers to every stage and uses
shallow and deep features as student and teacher, respec-
tively. KDCL [7] trains two models for online knowledge

distillation, while FRSKD [14] adds a new branch super-
vised by the original feature and uses the logit of the new
branch for self-KD. DDGSD [37] transfers knowledge be-
tween different distorted versions of the same training data.
OLS [46] sets a matrix that is made up of the soft label
for every class, while MixSKD [38] proposes incorporating
self-knowledge distillation with image mixture and aggre-
gates multi-stage feature to produce soft labels. Tf-FD [16]
includes intra-layer and inter-layer distillation, reusing the
channel-wise and layer-wise features to provide knowledge
without an additional model. However, these methods re-
quire auxiliary architecture, adapt layers for alignment, or
data augmentation, consuming much more time and com-
puting resources than training the model directly.

In contrast, some self-KD methods require little extra or
even no more time than training the model directly. For ex-
ample, Label Smoothing [34] sets the labels manually by
distributing the same values to all non-target classes. Tf-
KD [43] revisits KD via label smoothing, using a high tem-
perature to generate the manual logit for distillation. Zipf’s
LS [17] utilizes the student’s linear layer to obtain several
logits for each pixel of the student’s last feature map. The
method uses these logits to vote for the non-target class’s
rank with Zipf distribution [25]. These methods set soft
labels to achieve self-knowledge distillation without con-
trastive learning, data augmentation, or auxiliary branches,
saving much training time and computing resources.

3. Method

3.1. Normalized KD for Better Using Soft Labels

Using t denote the target class, C denote the number of
classes, Vi denote the label value for each class i, and Si

denote the student’s output probability. The original loss
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for image classification can be formulated as follows:

Lori = −
C∑
i

Vilog(Si) = −Vtlog(St) = −log(St). (1)

Using Ti denote the teacher’s soft labels. The classical KD
utilizes them for distillation loss as:

Lkd = −
C∑
i

Tilog(Si) (2)

= −Ttlog(St)−
C∑

i ̸= t

Tilog(Si). (3)

As Lkd shows, the first loss −Ttlog(St) is about the tar-
get class like the original Lori. While for the second non-
target loss −

∑C
i ̸= t Tilog(Si), it has the same form as CE

loss −
∑

p(x)log(q(x)). The CE loss aims at making q(x)

be the same as p(x). However,
∑C

i̸=t Ti = 1 − Tt and∑C
i ̸=t Si = 1 − St. Since the trainable Si is unlikely

to exactly match the fixed Ti during training, the sum of
the two non-target logits is always different, preventing the
two distributions from being the same. Thus we normal-
ize Ti and Si to force the sum of the two distributions to
be the same. With N (·) denoting the normalized opera-
tion, we modify the KD loss and propose our Normalized
Knowledge Distillation (NKD) loss as follows:

Lnkd = −Ttlog(St)− γ · λ2 ·
C∑

i ̸= t

N (Tλ
i )log(N (Sλ

i )),

(4)

where γ is a hyper-parameter to balance the loss and λ is the
temperature for KD [11]. Finally, combining the original
loss Lori, and NKD loss Lnkd, we train the students with:

Lall = Lori + Lnkd. (5)

3.2. Customized Soft Labels for Self-KD

We utilize NKD for better use of the soft labels. Fol-
lowing our NKD loss in Eq. 4, we propose a general and
effective self-KD method, which sets soft labels on target
and non-target classes without teachers.

3.2.1 Soft Target Label

First, for the soft target label, the weight Tt in Eq. 4 is ob-
tained from the teacher’s target output probability for the
input image. We wonder if the soft target can be provided
by adjusting the student’s target output St. The differences
between Tt and St mainly focus on two parts. The first is
that Tt is fixed, and St varies gradually during training. The
second part is that the difference between different samples’

St is much smaller than Tt at the beginning of training. To
overcome the problem, we first square St to enlarge the dif-
ference between different samples’ St. Then we propose a
way to adjust St, making it smoother to fit the training set
without teachers. This strategy can be applied directly to
different models, including CNN-liked and ViT-liked mod-
els. In this way, we get the soft target label Pt, which is
detached and zero-grad in training for self-KD:

Pt = S2
t + Vt −mean(S2

t ). (6)

With the Pt, we follow our NKD for the target loss:

Ltarget = −Ptlog(St), (7)

where Vt denote the original target label value, e.g. [0.8,0.2]
for a mixed image. And mean(·) is calculated across dif-
ferent samples in a training batch. We discuss the effects of
the smoothing ways for St in Sec. 5.6.

3.2.2 Soft Non-target Labels

The knowledge from the teacher’s soft non-target labels in-
cludes its rank and distribution. We also need them to set the
soft non-target labels for self-KD. To get the rank, we first
obtain a new weak logit by setting weak supervision on the
intermediate feature. Using F denote the feature of stage
2 of the CNN-liked model or the mid layer’s classification
token of the ViT-liked model, GAP denote the global aver-
age pooling, FC denote a new linear layer, the weak logit
of the CNN-liked model can be formulated as:

Wi = softmax(FC(GAP (F))), (8)

As for the ViT-liked model, the weak logit is as follows:

Wi = softmax(FC(F)).

We aim to obtain another smoother non-target logit dif-
ferent from the original final logit. So we utilize a smooth
label and take weak supervision to get the weak logit. Us-
ing Vi denote the label, which is the original label processed
with label smoothing, the loss for obtaining the weak logit
is as follows:

Lweak = −µ ·
C∑
i

Vilog(Wi), (9)

where µ < 1 is a hyper-parameter to achieve weak super-
vision. With the weak logit, we obtain the soft non-target
labels’ rank by normalizing and combining it with the final
logit. This operation balances the two logits’ effects for the
rank, and the analysis is shown in Sec. 5.7.

Ri =
Wi

1−Wt
+

Si

1− St
. (10)
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The soft non-target labels’ distribution follows Zipf’s
law [25], which has been applied in Zipf’s LS [17]. The
formulation can be formulated as follows:

Zi =
i−1∑C
i=1 i

−1
. (11)

With the distribution, we sort it with the rank of Ri and
obtain the soft non-target labels Zi for self-KD. Following
our NKD loss in Eq. 4, the non-target loss is as follows:

Lnon = −
C∑
i̸=t

N (Zi)log(N (Si)). (12)

3.2.3 Overall for Self-KD

With the proposed soft target label and soft non-target
labels, we calculate the corresponding loss and propose
USKD as shown in Fig. 1. We train all the models with
the total loss for self-KD as follows:

Lall = Lori + α · Ltarget + β · Lnon + Lweak, (13)

where Lori is the original loss for the models among all the
tasks, α and β are two hyper-parameters to balance the loss
scale. Lweak is used to generate the weak logit in Eq. 8.

4. Experiments
4.1. Datasets and Details

We conduct the experiments on CIFAR-100 [15] and Im-
ageNet [5], which contain 100 and 1000 categories, respec-
tively. For CIFAR-100, we use 50k images for training and
10k for validation. For ImageNet, we use 1.2 million im-
ages for training and 50k images for validation. In this pa-
per, we use accuracy to evaluate all the models.

For KD with teachers, NKD has two hyper-parameters
γ and λ in Eq. 4. For all the experiments, we adopt
{γ = 1.5, λ = 1} on ImageNet. While for CIFAR-100, we
follow the training setting from DKD [49] for a fair com-
parison. And USKD has two hyper-parameters α and β to
balance the loss scale in Eq. 13. Another hyper-parameter
µ is used to achieve the weak supervision in Eq. 9. For all
the experiments, we adopt {α = 1, β = 0.1, µ = 0.005} on
ImageNet and {α = 0.1, β = 0.1, µ = 0.1} on CIFAR-100.
The other training setting for KD and self-KD is the same
as training the students without distillation. We use 8 GPUs
to conduct the experiments with MMClassition [4] based on
Pytorch [24]. More details and experimental results about
the hyper-parameters are shown in the supplement.

4.2. Normalized KD with Teachers

When we get the soft labels from a real teacher, we can
use NKD loss for better performance. To prove this, we

first conduct experiments with various teacher-student dis-
tillation pairs on CIFAR-100, shown in Tab. 1. In this set-
ting, we evaluate our method on several models with dif-
ferent architectures, including VGGNet [32], ResNet [9],
ShuffleNet [48] and MobileNetV2 [30]. We compare our
method with KD [11] and several other state-of-the-art dis-
tillation methods. As the results show, our method brings
the students remarkable accuracy gains over other methods.
Our method achieves the best performance among logit-
based distillation methods and even surpasses the feature-
based distillation methods in some settings.

To further demonstrate the effectiveness and robustness
of our NKD, we test it on a more challenging dataset, Im-
ageNet. We set two popular teacher-student pairs, which
include homogeneous and heterogeneous teacher-student
structures for distillation. The homogeneous distillation is
ResNet34-ResNet18, and the heterogeneous distillation is
ResNet50-MobileNet. The results of different KD methods
on ImageNet are shown in Tab. 1. As the results show, our
method outperforms all the previous methods. It brings con-
sistent and significant improvements to the students for both
distillation settings. The student ResNet18 and MobileNet
achieve 71.96% and 72.58% Top-1 accuracy, getting 2.06%
and 3.37% accuracy gains with the knowledge transferred
from the teacher’s logits, respectively.

As described above, our NKD enhances KD’s perfor-
mance significantly with a slight modification. And in vari-
ous settings, it also surpasses DKD, a method that improves
KD according to a different decoupled way.

4.3. Universal Self-KD without Teachers

When we lack a teacher, we use the proposed self-KD
method USKD to obtain the soft labels and then calcu-
late the loss. To evaluate its effectiveness, we first con-
duct experiments with ResNets [9] and MobileNet [12] on
CIFAR100 and ImageNet datasets. We compare with the
other state-of-the-art methods, which also set manual labels
and only bring little extra time consumption, including la-
bel smoothing [34], Tf-KD [43] and Zipf’s LS [17]. As
shown in Tab. 2, our method surpasses the previous related
self-knowledge distillation methods on various settings and
brings the model remarkable gains. For example, it brings
MobileNet and ResNet-18 1.17% and 0.89% Top-1 accu-
racy gains on ImageNet.

Furthermore, we also test our USKD on more mod-
els, which include lighter models MobileNetV2 [30], Shuf-
fleNetV2 [21] and a deeper ResNet. The results are shown
in Tab. 3. For both the lightweight models, including
MobileNetV2 and ShuffleNetV2, and the stronger model
ResNet-101, our method also achieves considerable im-
provements. Besides, we also compare the time consump-
tion to train the model for an epoch in Tab. 3. Compared
with the baseline, the extra time we need for self-knowledge
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Model
Teacher
Student

VGGNet13
VGGNet8

ResNet32x4
ResNet8x4

VGGNet13
MobileNetV2

ResNet50
MobileNetV2

ResNet34
ResNet18

ResNet50
MobileNet

Accuracy Teacher 74.64 79.42 74.64 79.34 73.62 76.55
Student 70.36 72.50 64.60 64.60 69.90 69.21

Feature

RKD [23] 71.48 71.90 64.52 64.43 71.34 71.32
CRD [35] 73.94 75.51 69.73 69.11 71.17 71.40
OFD [10] 73.95 74.95 69.48 69.04 71.08 71.25

KR [3] 74.84 75.63 70.37 69.89 71.61 72.56

Logit

KD [11] 72.98 73.33 67.37 67.35 71.03 70.68
WSLD [50] 74.36 76.05 69.02 70.15 71.73 72.02
DKD [49] 74.68 76.32 69.71 70.35 71.70 72.05

NKD (ours) 74.86 76.35 70.22 70.67 71.96 72.58

Table 1. Results of different knowledge distillation methods on CIFAR-100 (the left four columns) and ImageNet (the right two columns)
dataset. The data that is underlined denotes the second-best result among all the results. The metric is the Top-1 accuracy (%).

Dataset CIFAR100 ImageNet
Model ResNet18 ResNet18 ResNet50 MobileNet
Baseline 78.58 69.90 76.55 69.21
LS [34] 79.42 69.92 76.64 68.98
Tf-KD [43] 79.53 70.14 76.59 69.20
Zipf’s LS [17] 79.63 70.30 76.96 69.59
USKD (ours) 79.90 70.79 77.07 70.38

Table 2. The comparative results of different self-knowledge distillation
methods on CIFAR100 and ImageNet dataset. We report the models’
performance with Top-1 accuracy (%).

Model Baseline USKD (ours)

Accuracy
(%)

ResNet-101 77.97 78.54 (+0.57)
MobileNet-V2 71.86 72.41 (+0.55)
ShuffleNet-V2 69.55 70.30 (+0.75)

Time
(min)

ResNet-101 13.78 13.95
MobileNet-V2 10.17 10.18
ShuffleNet-V2 8.63 8.68

Table 3. The results of the models’ performance are Top-1
accuracy (%) on ImageNet dataset. The time data are re-
ported with minutes (min) for a training epoch.

Model Baseline USKD (ours)
RegNetX-1.6GF 76.84 77.30 (+0.46)
DeiT-Tiny 74.42 74.97 (+0.55)
DeiT-Small 80.55 80.77 (+0.22)
Swin-Tiny 81.18 81.49 (+0.31)

Table 4. Results of training more models, including ViT-liked
models with our proposed method on ImageNet dataset. All the
results are reported with Top-1 accuracy (%).

distillation is very limited. Specifically, the time of train-
ing MobileNet-V2 with our proposed USKD for an epoch
is 10.18 minutes, which is just 0.01 minutes higher than
training the model directly. Our method brings consider-
able improvements to various models with negligible extra
time consumption.

4.4. Universal Self-KD for More Models

The previous self-KD methods are specially designed for
CNN-liked models. However, some models like ViT [6]
translate the image into different tokens and have a com-
pletely different architecture. Those self-KD methods fail
to benefit ViT-liked models. For ViT-liked models, USKD
can also set customized soft labels and bring remarkable
improvements. As described in Eq. 8, we use an extra

linear layer connected to ViT’s middle layer for classifi-
cation and obtain the weak logit. The rest operations are
the same as CNN-liked models. To show the generaliza-
tion of USKD, we apply it to more models, including Reg-
Net [26], DeiT [36], and Swin-Transformer [20], which can
be seen in Tab. 4. All the models can achieve remarkable
Top-1 accuracy gains. Besides, our method even can bring
0.55% gains for DeiT-Tiny. And it also brings 0.31% Top-1
accuracy gains for the latest state-of-the-art model Swin-
Transformer. The results of more models show our method
is both effective and general.

5. Analysis

5.1. Effects of Normalizing the Non-target Logits

In this paper, we proposed normalizing the non-target
logits in the original KD to help the student perform better.
In this subsection, we conduct experiments to demonstrate
the effectiveness of our modification. As shown in Tab. 5,
using the target loss alone leads to a 1.16% increase in accu-
racy. Combining the knowledge from both target and non-
target classes allows us to better use the teacher’s knowl-
edge, resulting in a significant improvement of 2.06% Top-
1 accuracy for the student. Furthermore, we normalize the
non-target logits in the KD loss for distillation and compare
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Loss ResNet34 - ResNet18
Target ✗ ✓ ✓ ✓

KD’s Non-target ✗ ✗ ✓ ✗
NKD’s Non-target ✗ ✗ ✗ ✓

Top-1 Acc. (%) 69.90 71.06 71.33 71.96
Top-5 Acc. (%) 89.43 89.51 90.25 90.48

Table 5. Effects of our normalized non-target loss on ImageNet
dataset. The teacher is ResNet34 and the student is ResNet18.

the non-target loss from both KD and NKD. Our non-target
loss brings much greater gains than KD’s non-target loss, as
shown in the comparison. These results demonstrate the ef-
fectiveness of our proposed modification in improving KD’s
performance.

5.2. Difference between Our NKD and DKD

To better use the soft labels, we decompose KD loss and
normalize the non-target logits for a better performance.
The decoupled method is inspired by DKD [49]. However,
this paper presented a more straightforward and efficient de-
composition method. DKD decouples KD loss as:

Lkd =− Ttlog(St)− (1− Tt)log(1− St) (14)

− (1− Tt)

C∑
i ̸= t

T̂ilog(Ŝi) (15)

T̂i =
Ti

1− Tt
, Ŝi =

Si

1− St
.

DKD analyzed the effects of KD’s components and set
hyper-parameters for a new formulation:

Ldkd =α ·
(
− Ttlog(St)− (1− Tt)log(1− St)

)
(16)

− β ·
( C∑
i ̸= t

T̂ilog(Ŝi)
)

(17)

While we decompose KD loss into the target loss (like the
original CE loss) and non-target loss in CE form:

Lkd = −Ttlog(St)−
C∑

i ̸= t

Tilog(Si) (18)

Then we find the sum of student’s and teacher’s non-target
logits is different, making them hard to be the same. So we
normalize them to equalize the sum as follows:

Lnkd = −Ttlog(St)− γ ·
C∑

i ̸= t

N (Ti)log(N (Si)) (19)

With this slight modification, we present our NKD loss and
achieve better performance than DKD, as shown in Tab. 1.

Loss Top-1 Accuracy (%)
Target ✗ ✓ ✗ ✓

Non-target ✗ ✗ ✓ ✓

MobileNet 69.21 70.18 69.43 70.38
RegNetX-1.6GF 76.84 76.87 77.25 77.30

Table 6. Ablation study of USKD’s target and non-target loss. The
experiments are conducted on the ImageNet dataset. All the results
are the Top-1 accuracy (%).

Method ImageNet COCO
Top-1 Acc. (%) APbox ARbox

Baseline (Res50) 76.55 38.0 52.4
USKD (ours) 77.07 38.3 52.9

Table 7. The detection results on the COCO dataset. We pre-train
the backbone with USKD and use Mask-RCNN as the detector.

5.3. Effects of USKD’s Target and Non-target Loss

We propose a novel self-KD method called USKD,
which utilizes customized soft labels that incorporate infor-
mation from both target and non-target classes. To eval-
uate the impact of each type of information, we conduct
experiments on MobileNet and RegNetX-1.6GF in Tab. 6.
The experimental findings demonstrate that both types of
information are beneficial and important for the two mod-
els, and their combination leads to further improvements
in performance. For instance, by combining the target and
non-target class distillation together, MobileNet achieves
70.38%, which surpasses the accuracy achieved by using
distillation on either the target or non-target class alone.

5.4. Models with USKD for Downstream Task

Our self-KD method yields remarkable accuracy gains
for the classification task on CIFAR-100 and ImageNet
datasets. To further evaluate its effectiveness and general-
ization, we also apply the pre-trained model to object detec-
tion using Mask R-CNN [8] as the detector and evaluate the
model’s performance with AP box and ARbox on the COCO
val2017 dataset [19]. We conduct the detection experiments
for 12 epochs using MMDetection [2]. As shown in Tab. 7,
the ResNet-50 backbone trained with our method improves
the detector’s performance by 0.3 mAP and 0.5 mAR. The
results demonstrate that our self-KD method not only im-
proves the model’s classification performance but also gen-
eralizes well to downstream tasks like object detection.

5.5. Customized Soft Labels for USKD

Our self-KD method, USKD, leverages customized soft
labels for every image during training. Fig.3 shows several
samples’ soft labels, including the value for the target class
and the top-3 non-target classes. For the target class, the
value may be larger than 1 due to the smoothing method
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Figure 3. The visualization of the target and top-3 non-target class
values of our customized soft labels. The target class value is ob-
tained by squaring and smoothing. The non-target class value is
obtained by Zipf’s law.

described in Eq. 6. For the non-target classes, USKD dis-
tributes larger values to the categories that are similar to
the target class. For instance, the labels for the second
image not only include the target ‘linnet,’ but also assign
higher values to similar non-target classes like ‘brambling’,
‘goldfinch’, and ‘bulbul’. This approach ensures that each
image receives an appropriate customized soft label, which
enables successful self-KD. The visualization also demon-
strates how our USKD helps the model to perform better.

5.6. Different Smooth Ways for Soft Target Label

Our USKD utilizes customized soft labels that include
target and non-target classes for all the images during train-
ing. To create the soft labels, we replace the weights of
NKD’s target loss with a smoothed version of the student’s
target output St, as shown in Eq. 6. In this subsection, we
investigate the impact of different methods for smoothing
the student’s target output St on the performance of the
model. We conduct experiments on ResNet18 trained on
ImageNet to compare these methods, as shown in Tab. 8.
The experiments show that all the methods significantly im-
prove the student model. Notably, using St+Vt−mean(St)
as the weights for smoothing the student’s target output
achieves 0.86% improvement, even outperforming using the
teacher ResNet18’s output as the soft target label. Based on
this observation, we choose this method for smoothing the
student’s target output and use it as our soft target label.

5.7. Different Ranks for Soft Non-target Labels

In Eq. 10, we combine the normalized weak and final
logit to obtain the soft non-target labels’ rank. In this sub-
section, we explore the effects of different ways for the
rank, as shown in Tab. 9. Specifically, we compare the
performance when using the weak logit’s rank alone, the
final logit’s rank alone, or a combination of both but with-
out normalization. Interestingly, our results show that all
these methods help improve the model’s accuracy, with the
combination of the two normalized logits achieving the best
performance. It is also noteworthy that even directly using

Smooth Ways Teacher Top-1 Acc. (%)
Baseline - 69.90
St + Vt −mean(St) ✗ 70.76
softmax(St) ∗ sum(Vt) ✗ 70.57√
St −min(St) ✗ 70.57

St/max(St) ✗ 70.53
St/mean(St) ✗ 70.50
Trained ResNet-18 ✓ 70.75

Table 8. Results of training ResNet18 with target loss on ImageNet
dataset. All the operations are calculated with different samples in
a training batch. Because the trained Res-18’s output is St, we
drop the square operation for different smoothing ways.

Model ResNet-18 RegNetX-1.6GF
Baseline 69.90 76.84
Weak Logit 70.65 77.28
Final Logit 70.72 77.15
Combination 70.71 77.25
Normalization 70.79 77.30

Table 9. Results of different ranks for soft non-target labels. Nor-
malization and Combination mean combining weak and final
logit with normalization and without normalization, respectively.

the final logit to obtain the rank can satisfy accuracy gains.
These findings provide insights into the effectiveness of var-
ious approaches for the rank of the non-target labels.

6. Conclusion

In this paper, we decompose KD loss into the target loss
like original CE loss and non-target loss in a CE form. We
then normalize the non-target logits to enhance the student’s
learning from the teacher. With this normalization, we in-
troduce Normalized KD (NKD), which helps students to
achieve state-of-the-art performance. Building on our NKD
loss formulation, we further propose a new self-KD method,
USKD, that works for both CNN-like and ViT-like models.
USKD uses customized soft labels that include target and
non-target classes for self-KD. We first square and smooth
the student’s target output logit as the soft target label. For
the soft non-target labels, we use weak supervision to ob-
tain the rank and utilize Zipf’s law to generate the labels. In
this way, USKD needs negligible extra time and resources
than training the model directly. Extensive experiments on
various models with different datasets demonstrate that both
our NKD and USKD are simple and efficient.
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