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Abstract

Fisheye image rectification is hindered by synthetic mod-
els producing poor results for real-world correction. To ad-
dress this, we propose a Dual Diffusion Architecture (DDA)
for fisheye rectification that offers better practicality. The
DDA leverages Denoising Diffusion Probabilistic Model-
s (DDPMs) to gradually introduce bidirectional noise, al-
lowing the synthesized and real images to develop into a
consistent noise distribution. As a result, our network can
perceive the distribution of unlabelled real fisheye images
without relying on a transfer network, thus improving the
performance of real fisheye correction. Additionally, we
design an unsupervised one-pass network that generates a
plausible new condition to strengthen guidance and address
the non-negligible indeterminacy between the prior condi-
tion and the target. It can significantly affect the rectifica-
tion task, especially in cases where radial distortion causes
significant artifacts. This network can be regarded as an
alternate scheme for fast producing reliable results without
iterative inference. Compared to the state-of-the-art meth-
ods, our approach achieves superior performance in both
synthetic and real fisheye image corrections.

1. Introduction

Many applications [1][2][3] have significant demands

for large field-of-view environment information. Therefore,

the fisheye camera is naturally taken into account. Howev-

er, the images captured by fisheye cameras have structure

distortion, which can significantly impact the performance

of subsequent vision algorithms [4][5][6]. To retain the per-

formance of downstream tasks, one can consider correct-

ing distorted images or redesigning subsequent algorithms.

Many individuals prefer the simple former.

Most existing methods determined distortion parameter-

s by identifying relevant features. Non-automatic calibra-

tion methods [7][8][9][10] detect corners artificially using
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Figure 1. Most CNNs and GANs need labels for training. Without

corresponding labels, DDPMs can perceive the real fisheye distri-

bution during the training process by only supervising the noise.

a checkerboard, while automatic methods [11][12] use an

algorithm that recognizes distinctive curves automatical-

ly. However, faulty detecting characteristics significantly

impact these methods. As a result, neural networks are

utilized to extract features based on their stable proper-

ties. [13][14][15][16] use deep regression models to predict

distortion parameters. [17][18][19] consider it simpler to

transform the correction into an image-to-image generation

solution. By learning the empirical distributions, they can

obtain the corrected results directly. Despite deep learning

methods achieving significant advances in distortion correc-

tion, their training heavily depends on synthetic datasets. It

leads to poor performance on real-world fisheye correction.

One potential reason for poor results is due to the lack

of labels, the real fisheye images cannot be used in train-

ing. Most convolutional neural networks (CNNs) and gen-

erative adversarial networks (GANs) require paired images

for training, as illustrated in Figure 1. However, denois-

ing diffusion probabilistic models (DDPMs) can be trained

by supervising noise, which enables them to perceive the

distribution of real fisheye images during training without

requiring corresponding labels. Therefore, we utilize D-

DPMs [20][21] to explore real-world distortion correction

and design a dual diffusion architecture (DDA) to handle

the two available datasets. One part of our dual diffusion
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architecture is a conditional diffusion module, which learns

the fundamental distribution of distortion from paired syn-

thetic datasets in a supervised manner. The other part is an

unconditional diffusion module, which leverages an unsu-

pervised manner to perceive unlabeled real fisheye images

during training. By gradually introducing noise in DDA,

both synthetic and real fisheye images can gradually devel-

op into a consistent noise distribution, as demonstrated in

Figure 2. We can simultaneously train two modules by su-

pervising the consistent noise. This approach eliminates the

need for a specific network, like CycleGAN [22], to trans-

form unlabeled real fisheye images explicitly for supervi-

sion. Our implicit transformation achieves good alignment

for different datasets, allowing the knowledge learned from

paired synthetic images to be utilized to enhance the per-

ception of real fisheye images. As a result, the correction

performance of real fisheye gains improvement. Due to the

alignment in noise space, the trained model can be directly

used for real fisheye correction.

As fisheye correction differs from other generation tasks,

structural distortion causes notable disparities between the

prior condition and target, which severely affects the gener-

ation quality of DDPMs. Therefore, we design a one-pass

network embedded in the conditional diffusion module. It

reduces the disparities by pre-correcting fisheye images, as

illustrated in Figure 3. The corrected image can be used as a

more plausible condition for DDPMs. Benefiting from the

DDA, our embedded one-pass network learns in an unsu-

pervised manner. After training, the one-pass network can

be independently employed to rectify fisheye images with-

out time-consuming inference.

Our contributions are summarized as follows:

• We propose a novel dual diffusion architecture that can

simultaneously learn both synthetic and real image dis-

tributions through noise-space equivalence, thus im-

proving the performance of real fisheye correction.

• To reduce the disparities between the prior condition

and target, we design an unsupervised one-pass net-

work to generate a plausible new condition. It can be

used as an additional efficient correction approach.

• Distinguishing from previous methods, our approach

pioneers to leverage unlabeled real fisheye images for

training, achieving satisfactory results in both synthet-

ic and real fisheye correction.

2. Related Work
The target of distortion correction is to restore the struc-

ture of the image before using downstream algorithms

[23][24][25][26][5]. Early researchers [27][12][28] [29]

noticed that straight lines captured with conventional lenses
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Figure 2. Dual diffusion architecture. Due to a consistent noise

distribution, the knowledge learned from paired synthetic images

improves the perception of unlabeled real fisheye images. Besides,

the trained model can be directly used for real fisheye correction.
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Figure 3. OPN pre-corrects the prior condition to alleviate the

disparities and provide a new plausible condition.

appear curved in fisheye perspective. Therefore, it is neces-

sary to locate the feature corners or lines. Mei et al. [27]

developed a flexible calibration approach that uses corner

points to calculate distortion parameters. However, it re-

quired additional standard planar grids and manual search-

ing. Melo et al. [12] designed an unsupervised calibra-

tion method that employs an automatic detection algorith-

m to find ’a minimum of three lines’ for calibration. Al-

though the automatic method [12][29] is more flexible than

the manual method [27], feature detection was susceptible

to image content, thereby hampering accurate calculation.

Many researchers employed reliable neural networks to

tackle the problem of distortion. Rong et al. [13] first pre-

dicted multiple distortion intervals using convolutional neu-

ral networks (CNNs). However, the initial correction is in-

complete due to the limitations of the network and quan-

tization intervals. [15][16] enhanced the regression net-

work and integrated prior information such as semantics and

edges for guidance. These methods significantly improved

correction performance, but the image-parameters disparity

limits the accurate prediction of all parameters. Therefore,

[17][30][31] introduced generation-based methods to gen-
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erate corrected images with learned empirical distribution-

s. Liao et al. [17] utilized generative adversarial networks

(GANs) to generate rectified results, but they noticed visible

artifacts when using naive GANs. To enhance the quality of

the corrected image further, [18][30][31] proposed a multi-

stage generation to separate the structure correction from

the content reconstruction. By learning the corresponding

relationship between two explicit distributions, the correc-

tion performance was boosted.

Access to a large number of real fisheye images and cor-

responding labels can be challenging in practice. As a re-

sult, the aforementioned deep-learning methods only lever-

aged synthetic datasets for training. However, there is a dis-

crepancy between the synthetic and the real datasets, the

model trained on the synthetic images produces unaccept-

able results on the real images. Therefore, we propose a

dual diffusion architecture. With the help of DDPMs, we

can train with both paired synthetic datasets and unlabeled

real fisheye datasets. The distribution of the real fisheye im-

ages is perceived in the training stage, thus improving the

real image correction performance.

3. Preliminaries
3.1. Fisheye Model

The image was generated by projecting 3D space coordi-

nates onto a 2D plane through a camera model. To capture a

wider FoV and as much information as possible, the fisheye

model alters the pinhole model d = ftanθ to a nonlinear re-

lationship between the incidence angle θ and the emergence

angle ρ :

ρ = k1θ + k2θ
3 + k3θ

5 + · · · (1)

However, this model involves precise angle calculation.

To simplify this process, traditional methods [32][29][28]

summarized two simple models: the polynomial model [32]

and the division model [29]. They neglect the angle and di-

rectly perform the coordinate transformation from the per-

spective image to the fisheye image. Although the prin-

ciples of both models are similar, the polynomial model

does not require handling cases where the denominator is

0. Therefore, we apply the polynomial model to synthesize

the fisheye dataset. It can be written as follows:[
x
y

]
= (1 + λ1(r

′)2 + λ2(r
′)4 + λ3(r

′)6 + · · · )
[
x′

y′

]
(2)

Where the coefficient of the polynomial λn reflects the dis-

tortion degree. (x′, y′) is an arbitrary point on the fisheye

image, with its corresponding point on the perspective im-

age being (x, y). r′ is the distortion radius, which can be

calculated by the Euclidean distance from (x′, y′) to the dis-

tortion center (xd, yd). Similarly, the undistorted radius r is

the distance from (x, y) to the image center (x0, y0) on the

perspective image.

3.2. Diffusion Model

DDPMs [20][21][33][34] are different from previous

generation models [35] [36] [37]. It breaks down an im-

age generation task into several subtasks, which include a

forward process q with progressive noise addition and a re-

verse process p with iterative noise removal. Generally, the

forward process can be represented as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (3)

βt represents the variance schedule utilized for generat-

ing Gaussian noise at each step. The data distribution xt

can be calculated from the previous distribution xt−1. As

opposed to the forward process, the reverse process needs

to denoise beginning with xT ∼ N (0, I). In general, It can

be written as neural network parameterization [38][39]:

pθ(xt−1|xt) = N (xt−1;μθ(xt, t),Σθ(xt, t)) (4)

The objective is to train networks μθ(·) and Σθ(·) to min-

imize the distance D of the forward and backward distribu-

tion. D can be calculated according to KL-divergence:

D = DKL(q(xt−1|xt)||pθ(xt−1|xt)) (5)

Therefore, the optimization function of the unconditional

diffusion model can be written as:

Lu(θ) = E
∥∥εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, t)

∥∥
1

(6)

where εt is the noise ground truth. εθ(·) represents the diffu-

sion model. ᾱt can be calculated from ᾱt =
∏t

i=1(1− βi).
For the conditional diffusion model, we need to add addi-

tional condition y to the network [40][41][42] and replace

t with continuous noise level [43][41][42]. Therefore, the

optimization of the conditional diffusion model becomes:

Lc(θ) = E
∥∥εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, ᾱt, y)

∥∥
1

(7)

4. Architecture
Most generative-based correction methods [18][30][31]

rely on paired synthetic datasets for training, leading to

blurred effects on the real fisheye correction. Therefore, as

shown in Figure 4, we propose a dual diffusion architecture

(DDA) consisting of a conditional (CDM) and uncondition-

al (UDM) diffusion module, as well as a one-pass network

(OPN). In training, the OPN predicts flow and generates a

coarse corrected image, which replace the original fisheye

image as a new guidance. The CDM predicts the noise in

the synthetic image guided by the new condition, while the

UDM simultaneously predicts noise in the unlabeled real

fisheye image. Our DDA supervises these two noises to

map synthetic and real images to a consistent noise distribu-

tion. In testing, we optimize our network by solely utilizing

the OPN and CDM to predict noise since the UDM cannot

benefit from the guidance of conditions. The high-quality

correction results of real and synthetic fisheye images are

obtained after denoising.
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Figure 4. Our network consists of a conditional (CDM) and unconditional (UDM) diffusion module, as well as a one-pass network (OPN).

During training, OPN pre-corrects fisheye images and provides new guidance for CDM. CDM and UDM perceive paired synthetic images

and unlabeled real fisheye, mapping them to a consistent noise distribution via supervised noise. During inference, we optimize our network

using only CDM to predict noise. Correction results of real and synthetic fisheye images are generated after denoising.

4.1. Conditional Diffusion Module (CDM)

Although it is difficult to obtain corresponding labels

for real fisheye images, we can synthesize paired fisheye

datasets. We fully leverage this paired resource by employ-

ing the conditional diffusion model (CDM) to perceive the

fundamental distortion distribution. Typically, the input of

CDM contains noisy target images and conditional images,

which correspond to the noisy synthetic ground truth S̄gt

and synthetic fisheye image Sf in our correction task. The

aim of the CDM is to use the fisheye image as a guide to

gradually generate an image with a similar distribution to

the synthetic gt Sgt during the denoising process. How-

ever, the distortion in the fisheye image can be extremely

misleading for the generation. To address this, we use a

one-pass network (OPN) to pre-correct the Sf and generate

a coarse pre-correction Sp, which replaces the original fish-

eye image as more plausible guidance. Since we also need

to correct the real fisheye image Rf , its pre-corrected result

Rp should also be used as the CDM condition. Therefore,

CDM takes both the S̄gt and a new condition yn concatenat-

ed by Sp and Rp to predict the noise εt
′ in the S̄gt. The CD-

M architecture consists of an encoder and a decoder, each

with four scales output. It is a traditional Unet and the out-

put channels are 64, 128, 256, and 512, respectively. There-

fore, the optimization function of CDM is:

Lsyn = E
∥∥ε− Cθ(

√
ᾱtSgt +

√
1− ᾱtε, ᾱt, yn)

∥∥
1

(8)

where Cθ(·) represents the conditional diffusion module.

4.2. One-Pass Network (OPN)

In CDM, fisheye images serve as a guiding condition.

However, the significant distortion in fisheye images mis-

leads image generation and causes severe artifacts. There-

fore, the fisheye image is not suitable to be directly used as

guidance. An intuitive idea is to alleviate the disparities be-

tween the prior condition and target by pre-correcting. We

embedded a one-pass network (OPN) in the CDM to pro-

vide a more reasonable condition. The architecture of OP-

N is shown in Figure 5. OPN is an encoder and decoder

structure, with each having six convolutional layers. The

channels for each layer are 32, 32, 64, 128, 256, and 512,

respectively. It takes the original fisheye image as input and

generates a two-channel distortion flow W that reflects the

image distortion degree. The W is used to resample the

original fisheye images (Sf and Rf ) and generate the pre-

corrected images (Sp and Rp). We reference the TPS [44]

to warp the image, as it is differentiable, which guarantees

that the gradient can be backpropagated from the CDM to

the OPN. Finally, we replace the fisheye image with the pre-

corrected image as a new condition yn to assist the network

in predicting the noise εt
′. Since the distortion in yn has

been greatly reduced, the network can predict more accu-

rately.

It is worth mentioning that our OPN is an unsupervised

network that relies on CDM for training. Upon obtaining W
from OPN, we use it directly without requiring flow label-

s for supervision. Because the entire aforementioned pro-
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cess is differentiable, the input of CDM includes the output

of OPN and noisy GT. Even though CDM supervises the

noise, the gradient can still be backpropagated and accu-

rately guide the flow prediction of OPN. Furthermore, OPN

offers an alternative fast correction scheme. Due to the dis-

tortion flow, we can promptly correct the fisheye images,

thereby avoiding the time-consuming inference in classic

DDPMs. The experiments demonstrate that the corrected

results from OPN also provide satisfactory performance as

inference results.

4.3. Unconditional Diffusion Module (UDM)

The fundamental distortion distribution learned from

paired synthetic datasets by OPN and CDM is not enough

to correct real fisheye images. Because most methods sole-

ly rely on paired synthetic datasets for training, resulting

in poor performance for real fisheye correction. To solve

this problem, we attempt to learn the real image distribution

directly from unlabeled real fisheye images via the uncondi-

tional diffusion module (UDM). The UDM structure is sim-

ilar to the conditional diffusion module (CDM), but with a

different input format. We concatenate the noisy synthetic

S̄gt and noisy real image R̄f as input. S̄gt are not used as

conditions because UDM does not require input condition-

s. Besides, there is no OPN in the UDM, it is equivalent

to performing a denoising task. Since noisy real fisheye

images are unlabeled and can only be processed by UDM,

CDM must employ UDM to learn the real distribution. To

enhance the network’s ability to learn the real and synthet-

ic distribution, the same noise applied to the synthetic im-

age is also applied to the real fisheye image. Subsequently,

the UDM predicts their same noise εt
′. Therefore, the op-

timization target of the unconditional diffusion module can

be represented as follows:

Lreal = E
∥∥ε− Uθ(

√
ᾱtRf +

√
1− ᾱtε,√

ᾱtSgt +
√
1− ᾱtε, ᾱt)

∥∥
1

(9)

where Uθ(·) refers to unconditional diffusion network.

4.4. Training strategy

In our work, we avoid relying on pre-trained network-

s (e.g. CycleGAN [22]) for bidirectional image transfor-

mation. This explicit transformation is inefficient for fish-

eye correction, which needs to correct the structure and re-

construct the content simultaneously. The pre-trained net-

work cannot guarantee consistency between source and tar-

get distribution. Therefore, training a network by supervis-

ing transformed images is not convincing. In contrast, we

use an implicit transformation that utilizes DDA to map da-

ta with different distributions onto a consistent noise space.

In this noise space, different images can achieve good align-

ment. As a result, our DDA can complete efficient training
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Figure 5. The architecture of OPN and training modality. It gen-

erates a new condition for CDM, allowing the gradient to be accu-

rately backpropagated and guide the unsupervised flow prediction.

by simply supervising the predicted noise. Joint optimiza-

tion is required for the CDM and UDM within our network.

Notably, the disparity between the real and synthetic fish-

eye images remains substantial and has not been eliminated

by the pre-trained network. Therefore, the weights between

CDM and UDM are not shared. The final loss function is:

L = Lsyn + λrLreal (10)

We leverage the tradeoff parameter λr to balance the

training between modules. Through integrated supervision,

our network can achieve end-to-end training.

4.5. Testing strategy

Benefiting from our DDA, we provide two optional test

methods (one-pass correction and inference correction),

which are a significant improvement over both the classic

DDPMs methods [41][42] and existing fisheye correction

methods [18][30]. For one-pass correction, we utilize the

OPN obtained from our trained DDA to directly predict the

distortion flow W of the fisheye image (real or synthetic).

We then use W to warp the fisheye image and quickly ob-

tain the correction result. This approach addresses the issue

that diffusion models require long-time inference.

For inference correction, we optimize the network using

only OPN and CDM to predict the noise. Because CDM and

UDM predicts the same noise, but UDM cannot use condi-

tions to guide generation. Therefore, UDM is avoided in

testing. We first use the OPN to predict the distortion flow

W and pre-correct the synthetic or real fish images. Then

we randomly sample a noise ε ∼ N (0, I) as initial image.

The initial image and the pre-corrected result are fed into

the CDM to predict the noise for denoising. By repeated-

ly predicting the noise and recalculating new images, we

can obtain high-quality results. This method significantly

enhances the subjective visual effect of the images.
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Fisheye Blind DCCNN DeepCalib PCN One-pass GTDDM Inference

Figure 6. Subjective comparison results on synthetic images. We test synthetic fisheye images with random distortion using the

state-of-the-art methods (Blind [19], DCCNN [13], DeepCalib [14], DDM [18], PCN [30]) and our methods (One-pass and Inferences).

One-pass InferencePCNDeepCalib One-pass InferencePCNDeepCalib

Figure 7. Additional comparisons on some better performance methods. We enlarged the local region (marked by red boxes on the

left) to compare the image texture. Besides, we highlighted the structural differences (marked by red arrows on the right).

5. Experiments

5.1. Experiment Setting

For simultaneously perceiving the distribution of real

and synthetic fisheye images, we need to use them for train-

ing. Initially, we refer to previous methods [16][18][30] and

utilize a polynomial model with four parameters to generate

the synthetic fisheye dataset. Our perspective image dataset

is the Places2 dataset [45], which comprises 10 million per-

spective images. We randomly selected 44K images (40K

for training, 4K for testing). We set the values of the four

parameters randomly, based on [18][30], to generate dis-

tortion for each perspective image. As for real fisheye im-

ages, we use the Woodscape dataset [46], which is a popu-

lar dataset that contains over 8K real fisheye images of on-

road driving. We randomly selected 8K images for training

and 200 for testing. To address the problem of quantitative

imbalance between real and synthetic fisheye images, we

perform data augmentation on the real fisheye images. All

images sent to the network are resized to 256 × 256. For

our experiments, we set λr = 1.0 empirically. The initial

learning rate and batch size are set to 1e-4 and 2, respec-

tively. Finally, the network is trained for 50 epochs on eight

NVIDIA RTX A4000.

5.2. Subjective and Objective Comparison

To evaluate the performance of our method, we re-

trained several mainstream correction methods using the

same dataset. Specifically, we retrained Blind [19], DCCN-

N [13], DDM [18], PCN [30]. Additionally, we compared

our results with DeepCalib [14], which employs a sphere

model for correction. However, DeepCalib uses panorama

images to synthesize its dataset, which is not available for

the Places2 dataset [45]. As a result, we were unable to gen-

erate synthetic images using the same method as DeepCalib

for direct comparison. Instead, we employed the pre-trained

DeepCalib model and cropped its output to maximize re-

semblance to the ground truth. We visualize the correction

results of each method and use common metrics, including

PSNR, SSIM, FID [47], MS-SSIM [48], LPIPS-Alex [49],
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Table 1. Performance comparison with the state-of-the-art methods.

Comparison Metrics

Methods Type PSNR ↑ SSIM ↑ MS-SSIM ↑ FID ↓ LPIPS-Alex ↓ LPIPS-Vgg ↓
Blind [19] Regression 14.7 0.47 0.55 211.3 0.434 0.427

DCCNN [13] Regression 15.2 0.48 0.37 190.8 0.289 0.345

DeepCalib [14] Regression 20.8 0.69 0.77 69.7 0.136 0.195

DDM [18] Generation 24.7 0.80 0.92 79.5 0.142 0.238

PCN [30] Generation 25.1 0.82 0.92 65.8 0.106 0.165

Ours (one-pass) Generation 26.0 0.85 0.95 57.8 0.149 0.123

Ours (inference) Generation 24.6 0.76 0.92 24.9 0.061 0.100

Fisheye Blind DCCNN DeepCalib PCN One-passDDM Inference
Figure 8. Visualization results on the real fisheye correction. We visualize the correction results of the mainstream methods and our

methods on the Woodscape dataset [46].

Fisheye PCNDeepCalib
clearcorrectedblurred correctedclearover-rectified clear  blurred 

Inference Fisheye PCNDeepCalib Inference

clear

Figure 9. Detailed comparison on real fisheye results. We enlarge the local region (indicated by red boxes on the left) and highlight

structural differences (indicated by arrows on the right). Additionally, other details require attention (indicated by the red circle on the

right). We achieve complete correction with more accurate structure and realistic texture compared to other methods.

LPIPS-Vgg [49], to quantify the objective performance.

The subjective and objective results are demonstrated

in Figure 6 and Table 1, respectively. Blind and DCCNN

achieve incomplete corrections due to their simplistic mod-

el and limited distortion interval. DeepCalib achieves good

results by leveraging a more realistic spherical model. How-

ever, DDM and PCN show more substantial progress with

network improvements, as their recursive correction leads

to better subjective and objective results.

By contrast, our method achieves more significan-
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Table 2. Performance comparison on different architectures.

Architecture Syn Real
One-Pass

PSNR SSIM MS-

SSIM

FID LPIPS

CDM � � − − − − −
CDM+OPN � � 25.9 0.85 0.94 56.4 0.146
DDA � � 26.0 0.85 0.95 57.8 0.149

Inference

CDM � � 18.6 0.55 0.72 127.9 0.191

CDM+OPN � � 22.1 0.71 0.84 55.1 0.101

DDA � � 24.6 0.76 0.92 24.9 0.061

t progress with a novel dual diffusion architecture, which

combines the strengths of GANs and DDPMs. For one-pass

correction, our unsupervised OPN outperforms the state-of-

the-art, mainly due to the effective backpropagation gradi-

ent from CDM. CDM uses noisy data as input, increasing

the network’s robustness. Additionally, CDM is trained by

supervising noise instead of images, enabling easier conver-

gence and more accurate distortion flow prediction in un-

supervised OPN. For inference correction, benefits from D-

DPMs’ iterative calculation, the results achieve greater clar-

ity based on accurate structure, as shown in Figure 7. Con-

sequently, our one-pass correction and inference correction

yield optimal objective performance in distortion metric-

s (PSNR, SSIM, MS-SSIM) and perception metrics (FID,

LPIPS-Alex, LPIPS-Vgg), respectively.

It is worth noting that even though the distortion met-

rics of one-pass correction are superior to inference correc-

tion, it does not imply that the inference process is futile.

In the correction task, PSNR and SSIM cannot effectively

evaluate the correction effect since they only reflect the de-

gree of pixel alignment between the corrected image and the

ground truth. However, achieving the highest visual similar-

ity (FID and LPIPS) with the ground truth without relying

on pixel alignment is also a viable solution for correction.

5.3. Comparison on Real Fisheye Image Correction

To compare the effectiveness of correcting real fisheye

images, we visualize the real correction results in Figure

8. We observe that Blind and DCCNN fail to achieve com-

plete correction. DDM and PCN can correct real fisheye im-

ages, but the results display obvious artifacts, indicating that

models trained on synthetic datasets can only effectively

correct synthetic fisheye images. DeepCalib performs well

because the sphere model is more consistent with the real

fisheye distribution. However, it crops the image bound-

aries, resulting in a loss of information. In contrast, both

our one-pass and inference correction achieve outstanding

results by preserving all boundaries, generating accurate

structure and clear content. To enhance the clarity of ob-

servations, we conducted a specific comparison, which is

CDM CDM+OPN DDAFisheye

Figure 10. Visualization results of different architectures. The

results obtained by DDA are the clearest and most accurate.

depicted in Figure 9. It further proves that our real correc-

tion effect outperforms other methods.

5.4. Ablation Study

The conditional diffusion module (CDM), the one-pass

network (OPN), and the unconditional diffusion module

(UDM) are the major components of our dual diffusion ar-

chitecture (DDA). To verify the effectiveness of each mod-

ule, we start with the original CDM, then add each module

and evaluate the improvement. The results are presented

in Figure 10 and Table 2. First, we only use CDM with

the original synthetic fisheye as the condition to correct our

fisheye image. It can be seen that the performance is poor,

and the correction results exhibit significant blurring. Sub-

sequently, we increase OPN (CDM + OPN). The artifacts of

the image are eliminated to a certain extent, and the quan-

titative results of inference correction for synthetic images

have significant improvement. It indicates that it is effective

to replace the original image with more reasonable condi-

tions generated by OPN. However, this scheme generates

obvious artifacts in the correction of real fisheye images.

Thus, we further increase the UDM and introduce unlabeled

real fisheye images for training. With this approach, the net-

work achieved satisfactory performance for both synthetic

and real fisheye images. This result confirms that even in the

absence of corresponding labels, UDM can learn the distor-

tion rules of real fisheye images, thus enhancing the ability

of CDM to correct both synthetic and real fisheye images.

6. Conclusion
In this paper, we propose a novel dual diffusion architec-

ture (DDA) that addresses the low applicability of the syn-

thetic fisheye image model in real fisheye correction. Our

DDA combines both conditional and unconditional diffu-

sion modules and leverages both paired synthetic fisheye
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images and unlabeled real fisheye images for training. By

progressively adding noise to the two source images, we

can transform their inconsistent distributions into a consis-

tent noise distribution, enabling the network to improve the

correction performance on real fisheye images without cor-

responding labels. Different from previous diffusion meth-

ods, we introduce a one-pass network (OPN) in the con-

ditional diffusion module to provide new reasonable guid-

ance. OPN achieves unsupervised training and provides a

fast correction scheme. Experiments demonstrate our one-

pass and inference results outperform all comparisons.
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